Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Exp Mol Med ; 55(2): 283-289, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36720916

RESUMEN

Translation is mediated by precisely orchestrated sequential interactions among translation initiation components, mRNA, and ribosomes. Biochemical, structural, and genetic techniques have revealed the fundamental mechanism that determines what occurs and when, where and in what order. Most mRNAs are circularized via the eIF4E-eIF4G-PABP interaction, which stabilizes mRNAs and enhances translation by recycling ribosomes. However, studies using single-molecule fluorescence imaging have allowed for the visualization of complex data that opposes the traditional "functional circularization" theory. Here, we briefly introduce single-molecule techniques applied to studies on mRNA circularization and describe the results of in vitro and live-cell imaging. Finally, we discuss relevant insights and questions gained from single-molecule research related to translation.


Asunto(s)
Proteínas de Unión a Poli(A) , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo
2.
J Mol Biol ; 434(24): 167877, 2022 12 30.
Artículo en Inglés | MEDLINE | ID: mdl-36368412

RESUMEN

The 5' cap and 3' poly(A) tail of mRNA are known to synergistically stimulate translation initiation via the formation of the cap•eIF4E•eIF4G•PABP•poly(A) complex. Most mRNA sequences have an intrinsic propensity to fold into extensive intramolecular secondary structures that result in short end-to-end distances. The inherent compactness of mRNAs might stabilize the cap•eIF4E•eIF4G•PABP•poly(A) complex and enhance cap-poly(A) translational synergy. Here, we test this hypothesis by introducing intrinsically unstructured sequences into the 5' or 3' UTRs of model mRNAs. We found that the introduction of unstructured sequences into the 3' UTR, but not the 5' UTR, decreases mRNA translation in cell-free wheat germ and yeast extracts without affecting mRNA stability. The observed reduction in protein synthesis results from the diminished ability of the poly(A) tail to stimulate translation. These results suggest that base pair formation by the 3' UTR enhances the cap-poly(A) synergy in translation initiation.


Asunto(s)
Regiones no Traducidas 3' , Poli A , Biosíntesis de Proteínas , Regiones no Traducidas 5' , Factor 4G Eucariótico de Iniciación/química , Poli A/química , Proteínas de Unión a Poli(A)/química , Caperuzas de ARN/química , Sistema Libre de Células , Triticum , Saccharomyces cerevisiae , Conformación de Ácido Nucleico , Estabilidad del ARN
3.
J Mol Biol ; 434(14): 167662, 2022 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-35640718

RESUMEN

Degradation of cytoplasmic mRNA in eukaryotes involves the shortening and removal of the mRNA poly(A) tail by poly(A)-selective ribonuclease (deadenylase) enzymes. In human cells, BTG2 can stimulate deadenylation of poly(A) bound by cytoplasmic poly(A)-binding protein PABPC1. This involves the concurrent binding by BTG2 of PABPC1 and the Caf1/CNOT7 nuclease subunit of the Ccr4-Not deadenylase complex. To understand in molecular detail how PABPC1 and BTG2 interact, we set out to identify amino acid residues of PABPC1 and BTG2 contributing to the interaction. To this end, we first used algorithms to predict PABPC1 interaction surfaces. Comparison of the predicted interaction surface with known residues involved in the binding to poly(A) resulted in the identification of a putative interaction surface for BTG2. Subsequently, we used pulldown assays to confirm the requirement of PABPC1 residues for the interaction with BTG2. Analysis of RNA-binding by PABPC1 variants indicated that PABPC1 residues required for interaction with BTG2 do not interfere with poly(A) binding. After further defining residues of BTG2 that are required for the interaction with PABPC1, we used information from published NMR chemical shift perturbation experiments to guide docking and generate a structural model of the BTG2-PABPC1 complex. A quaternary poly(A)-PABPC1-BTG2-Caf1/CNOT7 model showed that the 3' end of poly(A) RNA is directed towards the catalytic centre of Caf1/CNOT7, thereby providing a rationale for enhanced deadenylation by Caf1/CNOT7 in the presence of BTG2 and PABPC1.


Asunto(s)
Proteínas Inmediatas-Precoces , Proteínas de Unión a Poli(A) , Proteínas Supresoras de Tumor , Humanos , Proteínas Inmediatas-Precoces/química , Proteínas Inmediatas-Precoces/genética , Modelos Estructurales , Simulación del Acoplamiento Molecular , Mutagénesis , Poli A/química , Poli A/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Conformación Proteica , ARN Mensajero/química , ARN Mensajero/metabolismo , Proteínas Supresoras de Tumor/química , Proteínas Supresoras de Tumor/genética
4.
Chemistry ; 28(42): e202201115, 2022 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-35575378

RESUMEN

Poly(A)-binding protein (PABP) is an essential element of cellular translational machinery. Recent studies have revealed that poly(A) tail modifications can modulate mRNA stability and translational potential, and that oligoadenylate-derived PABP ligands can act as effective translational inhibitors with potential applications in pain management. Although extensive research has focused on protein-RNA and protein-protein interactions involving PABPs, further studies are required to examine the ligand specificity of PABP. In this study, we developed a microscale thermophoresis-based assay to probe the interactions between PABP and oligoadenylate analogs containing different chemical modifications. Using this method, we evaluated oligoadenylate analogs modified with nucleobase, ribose, and phosphate moieties to identify modification hotspots. In addition, we determined the susceptibility of the modified oligos to CNOT7 to identify those with the potential for increased cellular stability. Consequently, we selected two enzymatically stable oligoadenylate analogs that inhibit translation in rabbit reticulocyte lysates with a higher potency than a previously reported PABP ligand. We believe that the results presented in this study and the implemented methodology can be capitalized upon in the future development of RNA-based biological tools.


Asunto(s)
Poli A , Biosíntesis de Proteínas , Animales , Ligandos , Poli A/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , ARN/metabolismo , ARN Mensajero/metabolismo , Conejos , Relación Estructura-Actividad
5.
Biol Reprod ; 106(1): 83-94, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34726234

RESUMEN

Infertility affects 10-15% of families worldwide. However, the pathogenesis of female infertility caused by abnormal early embryonic development is not clear. A recent study showed that poly(A)binding protein nuclear 1-like (PABPN1L) recruited BTG anti-proliferation factor 4 (BTG4) to mRNA 3'-poly(A) tails and was essential for maternal mRNA degradation. Here, we generated a PABPN1L-antibody and found "ring-like" PABPN1L aggregates in the cytoplasm of MII oocytes. PABPN1L-EGFP proteins spontaneously formed "ring-like" aggregates in vitro. This phenomenon is similar with CCR4-NOT catalytic subunit, CCR4-NOT transcription complex subunit 7 (CNOT7), when it starts deadenylation process in vitro. We constructed two mouse model (Pabpn1l-/- and Pabpn1l  tm1a/tm1a) simulating the intron 1-exon 2 abnormality of human PABPN1L and found that the female was sterile and the male was fertile. Using RNA-Seq, we observed a large-scale up-regulation of RNA in zygotes derived from Pabpn1l-/- MII oocytes. We found that 9222 genes were up-regulated instead of being degraded in the Pabpn1l-♀/+♂zygote. Both the Btg4 and CCR4-NOT transcription complex subunit 6 like (Cnot6l) genes are necessary for the deadenylation process and Pabpn1l-/- resembled both the Btg4 and Cnot6l knockouts, where 71.2% genes stabilized in the Btg4-♀/+♂ zygote and 84.2% genes stabilized in the Cnot6l-♀/+♂zygote were also stabilized in Pabpn1l-♀/+♂ zygote. BTG4/CNOT7/CNOT6L was partially co-located with PABPN1L in MII oocytes. The above results suggest that PABPN1L is widely associated with CCR4-NOT-mediated maternal mRNA degradation and PABPN1L variants on intron 1-exon 2 could be a genetic marker of female infertility.


Asunto(s)
Citoplasma/química , Oocitos/ultraestructura , Proteína I de Unión a Poli(A)/química , Proteína I de Unión a Poli(A)/fisiología , Agregado de Proteínas , Animales , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/fisiología , Femenino , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas Fluorescentes Verdes/química , Humanos , Infertilidad Femenina , Masculino , Ratones , Ratones Noqueados , Proteína I de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , ARN Mensajero/metabolismo , Receptores CCR4/genética , Receptores CCR4/fisiología , Cigoto/metabolismo
6.
Nucleic Acids Res ; 50(1): 306-321, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34904669

RESUMEN

Poly(A)-binding protein (PABP) is a translation initiation factor that interacts with the poly(A) tail of mRNAs. PABP bound to poly(A) stimulates translation by interacting with the eukaryotic initiation factor 4G (eIF4G), which brings the 3' end of an mRNA close to its 5' m7G cap structure through consecutive interactions of the 3'-poly(A)-PABP-eIF4G-eIF4E-5' m7G cap. PABP is a highly abundant translation factor present in considerably larger quantities than mRNA and eIF4G in cells. However, it has not been elucidated how eIF4G, present in limited cellular concentrations, is not sequestered by mRNA-free PABP, present at high cellular concentrations, but associates with PABP complexed with the poly(A) tail of an mRNA. Here, we report that RNA-free PABPs dimerize with a head-to-head type configuration of PABP, which interferes in the interaction between PABP and eIF4G. We identified the domains of PABP responsible for PABP-PABP interaction. Poly(A) RNA was shown to convert the PABP-PABP complex into a poly(A)-PABP complex, with a head-to-tail-type configuration of PABP that facilitates the interaction between PABP and eIF4G. Lastly, we showed that the transition from the PABP dimer to the poly(A)-PABP complex is necessary for the translational activation function.


Asunto(s)
Proteínas de Unión a Poli(A)/química , Línea Celular Tumoral , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Multimerización de Proteína , ARN Mensajero/metabolismo
7.
Biomolecules ; 11(8)2021 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-34439914

RESUMEN

Membraneless organelles are non-stoichiometric supramolecular structures in the micron scale. These structures can be quickly assembled/disassembled in a regulated fashion in response to specific stimuli. Membraneless organelles contribute to the spatiotemporal compartmentalization of the cell, and they are involved in diverse cellular processes often, but not exclusively, related to RNA metabolism. Liquid-liquid phase separation, a reversible event involving demixing into two distinct liquid phases, provides a physical framework to gain insights concerning the molecular forces underlying the process and how they can be tuned according to the cellular needs. Proteins able to undergo phase separation usually present a modular architecture, which favors a multivalency-driven demixing. We discuss the role of low complexity regions in establishing networks of intra- and intermolecular interactions that collectively control the phase regime. Post-translational modifications of the residues present in these domains provide a convenient strategy to reshape the residue-residue interaction networks that determine the dynamics of phase separation. Focus will be placed on those proteins with low complexity domains exhibiting a biased composition towards the amino acid methionine and the prominent role that reversible methionine sulfoxidation plays in the assembly/disassembly of biomolecular condensates.


Asunto(s)
Extracción Líquido-Líquido , Metionina/química , Procesamiento Proteico-Postraduccional , Animales , Ataxina-2/metabolismo , Proteínas de Unión al ADN/química , Humanos , Simulación de Dinámica Molecular , Orgánulos/química , Proteínas de Unión a Poli(A)/química , Dominios Proteicos , Proteínas/química , ARN/metabolismo , Proteínas de Saccharomyces cerevisiae/química
8.
J Mol Biol ; 433(13): 166922, 2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-33713675

RESUMEN

In eukaryotic cells RNA-binding proteins have been implicated in virtually all post-transcriptional mechanisms of gene expression regulation. Based on the structural features of their RNA binding domains these proteins have been divided into several subfamilies. The presence of at least two RNA recognition motifs defines the group of heterogenous nuclear ribonucleoproteins H/F and one of its members is the guanine-rich sequence binding factor 1 (GRSF1). GRSF1 was first described 25 years ago and is widely distributed in eukaryotic cells. It is present in the nucleus, the cytoplasm and in mitochondria and has been implicated in a variety of physiological processes (embryogenesis, erythropoiesis, redox homeostasis, RNA metabolism) but also in the pathogenesis of various diseases. This review summarizes our current understanding on GRSF1 biology, critically discusses the literature reports and gives an outlook of future developments in the field.


Asunto(s)
Regulación de la Expresión Génica , Guanina/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Secuencia de Aminoácidos , Animales , Evolución Molecular , Humanos , Unión Proteica , ARN/metabolismo
9.
RNA Biol ; 18(2): 275-289, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33292040

RESUMEN

The protein domain arrangement known as the La-module, comprised of a La motif (LaM) followed by a linker and RNA recognition motif (RRM), is found in seven La-related proteins: LARP1, LARP1B, LARP3 (La protein), LARP4, LARP4B, LARP6, and LARP7 in humans. Several LARPs have been characterized for their distinct activity in a specific aspect of RNA metabolism. The La-modules vary among the LARPs in linker length and RRM subtype. The La-modules of La protein and LARP7 bind and protect nuclear RNAs with UUU-3' tails from degradation by 3' exonucleases. LARP4 is an mRNA poly(A) stabilization factor that binds poly(A) and the cytoplasmic poly(A)-binding protein PABPC1 (also known as PABP). LARP1 exhibits poly(A) length protection and mRNA stabilization similar to LARP4. Here, we show that these LARP1 activities are mediated by its La-module and dependent on a PAM2 motif that binds PABP. The isolated La-module of LARP1 is sufficient for PABP-dependent poly(A) length protection and mRNA stabilization in HEK293 cells. A point mutation in the PAM2 motif in the La-module impairs mRNA stabilization and PABP binding in vivo but does not impair oligo(A) RNA binding by the purified recombinant La-module in vitro. We characterize the unusual PAM2 sequence of LARP1 and show it may differentially affect stable and unstable mRNAs. The unique LARP1 La-module can function as an autonomous factor to confer poly(A) protection and stabilization to heterologous mRNAs.


Asunto(s)
Autoantígenos/química , Autoantígenos/metabolismo , Oligopéptidos/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/genética , Ribonucleoproteínas/química , Ribonucleoproteínas/metabolismo , Receptor Toll-Like 2/agonistas , Receptor Toll-Like 9/agonistas , Sitios de Unión , Células HEK293 , Humanos , Motivos de Nucleótidos , Unión Proteica , Estabilidad del ARN , ARN Mensajero/química , ARN Mensajero/metabolismo , Receptor Toll-Like 2/metabolismo , Receptor Toll-Like 9/metabolismo , Antígeno SS-B
10.
Nucleic Acids Res ; 48(17): 9491-9504, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32857852

RESUMEN

Proteins and RNAs assemble in membrane-less organelles that organize intracellular spaces and regulate biochemical reactions. The ability of proteins and RNAs to form condensates is encoded in their sequences, yet it is unknown which domains drive the phase separation (PS) process and what are their specific roles. Here, we systematically investigated the human and yeast proteomes to find regions promoting condensation. Using advanced computational methods to predict the PS propensity of proteins, we designed a set of experiments to investigate the contributions of Prion-Like Domains (PrLDs) and RNA-binding domains (RBDs). We found that one PrLD is sufficient to drive PS, whereas multiple RBDs are needed to modulate the dynamics of the assemblies. In the case of stress granule protein Pub1 we show that the PrLD promotes sequestration of protein partners and the RBD confers liquid-like behaviour to the condensate. Our work sheds light on the fine interplay between RBDs and PrLD to regulate formation of membrane-less organelles, opening up the avenue for their manipulation.


Asunto(s)
Transición de Fase , Priones/metabolismo , Proteínas/metabolismo , ARN/metabolismo , Sitios de Unión , Recuperación de Fluorescencia tras Fotoblanqueo , Humanos , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Priones/química , Dominios Proteicos , Proteínas/química , Proteoma , ARN/química , Proteínas con Motivos de Reconocimiento de ARN/química , Proteínas con Motivos de Reconocimiento de ARN/metabolismo , Motivos de Unión al ARN , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crecimiento & desarrollo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Biochim Biophys Acta Gen Subj ; 1864(11): 129678, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32645484

RESUMEN

BACKGROUND: The guanine-rich RNA sequence binding factor 1 (GRSF1) is an RNA-binding protein of the hnRNP H/F family, which has been implicated in erythropoiesis, regulation of the redox homeostasis, embryonic brain development, mitochondrial function and cellular senescence. The molecular basis for GRSF1-RNA interaction has extensively been studied in the past but for the time being GRSF1 binding proteins have not been identified. METHODS: To search for GRSF1 binding proteins we first employed the yeast two-hybrid system and screened a cDNA library of human fetal brain for potential GRSF1 binding proteins. Subsequently, we explored the protein-protein-interaction of the recombiant proteins, carried out immunoprecipitation experiments to confirm the interaction of the native proteins in living cells and performed truncation studies to identify the protein-binding motif of GRSF1. RESULTS: Using the yeast two-hybrid system we identified the COMM-domain containing protein 1 (COMMD1) as specific GRSF1 binding protein and in vitro truncation studies suggested that COMMD1 interacts with the alanine-rich domain of GRSF1. Co-immunoprecipitation strategies indicated that COMMD1-GRSF1 interaction was RNA independent and also occurred in living cells expressing the two native proteins. CONCLUSION: In mammalian cells the COMM-domain containing protein 1 (COMMD1) specifically interacts with the Ala-rich domain of GRSF1 in an RNA-independent manner. GENERAL SIGNIFICANCE: This is the first report describing a specific GRSF1 binding protein.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , ARN/metabolismo , Proteínas Adaptadoras Transductoras de Señales/química , Células HEK293 , Humanos , Proteínas de Unión a Poli(A)/química , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Mapas de Interacción de Proteínas
12.
Hum Genet ; 139(12): 1513-1529, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32529326

RESUMEN

Prader-Willi syndrome (PWS) is a neurodevelopmental disorder caused by the loss of function of a set of imprinted genes on chromosome 15q11-15q13. One of these genes, NDN, encodes necdin, a protein that is important for neuronal differentiation and survival. Loss of Ndn in mice causes defects in the formation and function of the nervous system. Necdin is a member of the melanoma-associated antigen gene (MAGE) protein family. The functions of MAGE proteins depend highly on their interactions with other proteins, and in particular MAGE proteins interact with E3 ubiquitin ligases and deubiquitinases to form MAGE-RING E3 ligase-deubiquitinase complexes. Here, we used proximity-dependent biotin identification (BioID) and mass spectrometry (MS) to determine the network of protein-protein interactions (interactome) of the necdin protein. This process yielded novel as well as known necdin-proximate proteins that cluster into a protein network. Next, we used BioID-MS to define the interactomes of necdin proteins carrying coding variants. Variant necdin proteins had interactomes that were distinct from wildtype necdin. BioID-MS is not only a useful tool to identify protein-protein interactions, but also to analyze the effects of variants of unknown significance on the interactomes of proteins involved in genetic disease.


Asunto(s)
Sustitución de Aminoácidos/genética , Proteínas del Tejido Nervioso/genética , Proteínas Nucleares/genética , Mapas de Interacción de Proteínas/genética , Ubiquitina-Proteína Ligasas/genética , Animales , Biotinilación/genética , Diferenciación Celular/genética , Enzimas Desubicuitinizantes/genética , Regulación de la Expresión Génica/genética , Células HEK293 , Humanos , Espectrometría de Masas/métodos , Ratones , Mutación/genética , Proteínas del Tejido Nervioso/química , Proteínas del Tejido Nervioso/ultraestructura , Malformaciones del Sistema Nervioso/genética , Malformaciones del Sistema Nervioso/patología , Neuronas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/ultraestructura , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Síndrome de Prader-Willi/genética , Conformación Proteica , Relación Estructura-Actividad , Ubiquitina-Proteína Ligasas/química
13.
Nat Genet ; 51(7): 1170-1176, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209393

RESUMEN

We describe an experimental method of three-dimensional (3D) structure determination that exploits the increasing ease of high-throughput mutational scans. Inspired by the success of using natural, evolutionary sequence covariation to compute protein and RNA folds, we explored whether 'laboratory', synthetic sequence variation might also yield 3D structures. We analyzed five large-scale mutational scans and discovered that the pairs of residues with the largest positive epistasis in the experiments are sufficient to determine the 3D fold. We show that the strongest epistatic pairings from genetic screens of three proteins, a ribozyme and a protein interaction reveal 3D contacts within and between macromolecules. Using these experimental epistatic pairs, we compute ab initio folds for a GB1 domain (within 1.8 Å of the crystal structure) and a WW domain (2.1 Å). We propose strategies that reduce the number of mutants needed for contact prediction, suggesting that genomics-based techniques can efficiently predict 3D structure.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Bacterianas/química , Epistasis Genética , Mutación , Proteínas de Unión a Poli(A)/química , Conformación Proteica , ARN Catalítico/química , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Bacterianas/genética , Humanos , Proteínas de Unión a Poli(A)/genética , Dominios Proteicos , Pliegue de Proteína , ARN Catalítico/genética , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Proteínas Señalizadoras YAP
14.
Nat Genet ; 51(7): 1177-1186, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31209395

RESUMEN

Determining the three-dimensional structures of macromolecules is a major goal of biological research, because of the close relationship between structure and function; however, thousands of protein domains still have unknown structures. Structure determination usually relies on physical techniques including X-ray crystallography, NMR spectroscopy and cryo-electron microscopy. Here we present a method that allows the high-resolution three-dimensional backbone structure of a biological macromolecule to be determined only from measurements of the activity of mutant variants of the molecule. This genetic approach to structure determination relies on the quantification of genetic interactions (epistasis) between mutations and the discrimination of direct from indirect interactions. This provides an alternative experimental strategy for structure determination, with the potential to reveal functional and in vivo structures.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/química , Proteínas Bacterianas/química , Epistasis Genética , Mutagénesis , Mutación , Proteínas de Unión a Poli(A)/química , ARN Catalítico/química , Proteínas de Saccharomyces cerevisiae/química , Factores de Transcripción/química , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Humanos , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Conformación Proteica , Dominios Proteicos , Dominios y Motivos de Interacción de Proteínas , ARN Catalítico/genética , ARN Catalítico/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Señalizadoras YAP
15.
Proc Natl Acad Sci U S A ; 116(16): 7857-7866, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30940748

RESUMEN

Protein synthesis is essential for cell growth, proliferation, and survival. Protein synthesis is a tightly regulated process that involves multiple mechanisms. Deregulation of protein synthesis is considered as a key factor in the development and progression of a number of diseases, such as cancer. Here we show that the dynamic modification of proteins by O-linked ß-N-acetyl-glucosamine (O-GlcNAcylation) regulates translation initiation by modifying core initiation factors eIF4A and eIF4G, respectively. Mechanistically, site-specific O-GlcNAcylation of eIF4A on Ser322/323 disrupts the formation of the translation initiation complex by perturbing its interaction with eIF4G. In addition, O-GlcNAcylation inhibits the duplex unwinding activity of eIF4A, leading to impaired protein synthesis, and decreased cell proliferation. In contrast, site-specific O-GlcNAcylation of eIF4G on Ser61 promotes its interaction with poly(A)-binding protein (PABP) and poly(A) mRNA. Depletion of eIF4G O-GlcNAcylation results in inhibition of protein synthesis, cell proliferation, and soft agar colony formation. The differential glycosylation of eIF4A and eIF4G appears to be regulated in the initiation complex to fine-tune protein synthesis. Our study thus expands the current understanding of protein synthesis, and adds another dimension of complexity to translational control of cellular proteins.


Asunto(s)
Glicosilación , Iniciación de la Cadena Peptídica Traduccional , Línea Celular Tumoral , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Modelos Moleculares , Neoplasias/química , Neoplasias/metabolismo , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , ARN Mensajero/química , ARN Mensajero/metabolismo
16.
Nucleic Acids Res ; 47(8): 4272-4291, 2019 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-30820564

RESUMEN

LARP4A belongs to the ancient RNA-binding protein superfamily of La-related proteins (LARPs). In humans, it acts mainly by stabilizing mRNAs, enhancing translation and controlling polyA lengths of heterologous mRNAs. These activities are known to implicate its association with mRNA, protein partners and translating ribosomes, albeit molecular details are missing. Here, we characterize the direct interaction between LARP4A, oligoA RNA and the MLLE domain of the PolyA-binding protein (PABP). Our study shows that LARP4A-oligoA association entails novel RNA recognition features involving the N-terminal region of the protein that exists in a semi-disordered state and lacks any recognizable RNA-binding motif. Against expectations, we show that the La module, the conserved RNA-binding unit across LARPs, is not the principal determinant for oligoA interaction, only contributing to binding to a limited degree. Furthermore, the variant PABP-interacting motif 2 (PAM2w) featured in the N-terminal region of LARP4A was found to be important for both RNA and PABP recognition, revealing a new role for this protein-protein binding motif. Our analysis demonstrates the mutual exclusive nature of the PAM2w-mediated interactions, thereby unveiling a tantalizing interplay between LARP4A, polyA and PABP.


Asunto(s)
Autoantígenos/química , Poli A/química , Proteínas de Unión a Poli(A)/química , ARN Mensajero/química , Proteínas de Unión al ARN/química , Ribonucleoproteínas/química , Secuencias de Aminoácidos , Autoantígenos/genética , Autoantígenos/metabolismo , Sitios de Unión , Clonación Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Humanos , Cinética , Modelos Moleculares , Poli A/genética , Poli A/metabolismo , Proteínas de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Especificidad por Sustrato , Termodinámica , Antígeno SS-B
17.
Yeast ; 36(1): 23-34, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30006991

RESUMEN

Pab1, the major poly (A) binding protein of the yeast Saccharomyces cerevisiae, is involved in many intracellular functions associated with mRNA metabolism, such as mRNA nuclear export, deadenylation, translation initiation and termination. Pab1 consists of four RNA recognition motifs (RRM), a proline-rich domain (P) and a carboxy-terminal (C) domain. Due to its modular structure, Pab1 can simultaneously interact with poly (A) tails and different proteins that regulate mRNA turnover and translation. Furthermore, Pab1 also influences cell physiology under stressful conditions by affecting the formation of quinary assemblies and stress granules, as well as by stabilizing specific mRNAs to allow translation re-initiation after stress. The main goal of this review is to correlate the structural complexity of this protein with the multiplicity of its functions.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Unión a Poli(A)/genética , Unión Proteica , Saccharomyces cerevisiae/fisiología , Proteínas de Saccharomyces cerevisiae/genética
18.
PLoS One ; 13(12): e0209713, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30576379

RESUMEN

Pentatricopeptide repeat (PPR) proteins are helical repeat proteins that bind specific RNA sequences via modular 1-repeat:1-nucleotide interactions. Binding specificity is dictated, in part, by hydrogen bonds between the amino acids at two positions in each PPR motif and the Watson-Crick face of the aligned nucleobase. There is evidence that PPR-RNA interactions can compete with RNA-RNA interactions in vivo, and that this competition underlies some effects of PPR proteins on gene expression. Conversely, RNA secondary structure can inhibit the binding of a PPR protein to its specific binding site. The parameters that influence whether PPR-RNA or RNA-RNA interactions prevail are unknown. Understanding these parameters will be important for understanding the functions of natural PPR proteins and for the design of engineered PPR proteins for synthetic biology purposes. We addressed this question by analyzing the effects of RNA structures of varying stability and position on the binding of the model protein PPR10 to its atpH RNA ligand. Our results show that even very weak RNA structures (ΔG° ~ 0 kcal/mol) involving only one nucleotide at either end of the minimal binding site impede PPR10 binding. Analysis of binding kinetics using Surface Plasmon Resonance showed that RNA structures reduce PPR10's on-rate and increase its off-rate. Complexes between the PPR proteins PPR10 and HCF152 and their respective RNA ligands have long half-lives (one hour or more), correlating with their functions as barriers to exonucleolytic RNA decay in vivo. The effects of salt concentration on PPR10-RNA binding kinetics showed that electrostatic interactions play an important role in establishing PPR10-RNA interactions but play a relatively small role in maintaining specific interactions once established.


Asunto(s)
Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/metabolismo , ARN/química , ARN/metabolismo , Cinética , Ligandos , Unión Proteica
19.
Sci Rep ; 8(1): 17435, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487538

RESUMEN

Eukaryotic mRNA has a cap structure and a poly(A) tail at the 5' and 3' ends, respectively. The cap structure is recognized by eIF (eukaryotic translation initiation factor) 4 F, while the poly(A) tail is bound by poly(A)-binding protein (PABP). PABP has four RNA recognition motifs (RRM1-4), and RRM1-2 binds both the poly(A) tail and eIF4G component of eIF4F, resulting in enhancement of translation. Here, we show that PABP interacts with the 40S and 60S ribosomal subunits dynamically via RRM2-3 or RRM3-4. Using a reconstituted protein expression system, we demonstrate that wild-type PABP activates translation in a dose-dependent manner, while a PABP mutant that binds poly(A) RNA and eIF4G, but not the ribosome, fails to do so. From these results, functional significance of the interaction of PABP with the ribosome is discussed.


Asunto(s)
Proteínas de Unión a Poli(A)/metabolismo , Ribosomas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Línea Celular , Factor 4F Eucariótico de Iniciación , Factor 4G Eucariótico de Iniciación/metabolismo , Humanos , Modelos Moleculares , Conformación Molecular , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/genética , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/metabolismo , Ribosomas/química , Relación Estructura-Actividad
20.
Cell Rep ; 23(11): 3327-3339, 2018 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-29898402

RESUMEN

How cells adapt to varying environmental conditions is largely unknown. Here, we show that, in budding yeast, the RNA-binding and stress granule protein Pub1 has an intrinsic property to form condensates upon starvation or heat stress and that condensate formation is associated with cell-cycle arrest. Release from arrest coincides with condensate dissolution, which takes minutes (starvation) or hours (heat shock). In vitro reconstitution reveals that the different dissolution rates of starvation- and heat-induced condensates are due to their different material properties: starvation-induced Pub1 condensates form by liquid-liquid demixing and subsequently convert into reversible gel-like particles; heat-induced condensates are more solid-like and require chaperones for disaggregation. Our data suggest that different physiological stresses, as well as stress durations and intensities, induce condensates with distinct physical properties and thereby define different modes of stress adaptation and rates of recovery.


Asunto(s)
Adaptación Fisiológica , Proteínas de Unión a Poli(A)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Choque Térmico/metabolismo , Respuesta al Choque Térmico , Concentración de Iones de Hidrógeno , Chaperonas Moleculares/metabolismo , Proteínas de Unión a Poli(A)/química , Dominios Proteicos , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Temperatura
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...