Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.047
Filtrar
1.
Int J Biol Macromol ; 245: 125513, 2023 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-37353116

RESUMEN

Previous studies demonstrated that ASP-3 was a novel calcium-binding protein from Arca subcrenata that effectively inhibited the proliferation of HepG2 cells. To further study the antitumor activity and mechanism of ASP-3, the cytotoxic effects of recombinant ASP-3 were evaluated in HepG2 cells. The results demonstrated that ASP-3 inhibited the proliferation of HepG2 cells by competitively binding to the EGF binding pocket of EGFR and inhibiting the JAK-STAT, RAS-RAF-MEK-ERK, and PI3K-Akt-mTOR signaling pathways mediated by EGFR. ASP-3 significantly inhibited tumor growth in a HepG2 cell subcutaneous xenograft nude mouse model, and its (25 mg/kg and 75 mg/kg) tumor inhibition rates were 46.92 % and 60.28 %, respectively. Furthermore, the crystal structure of ASP-3 was resolved at 1.4 Å. ASP-3 formed as a stable dimer and folded as an EF-Hand structure. ASP-3 stably bound to domain I and domain III of the EGFR extracellular region by using molecular docking and molecular dynamics simulation analysis. Compared with the endogenous ligand EGF, ASP-3 displayed a stronger interaction with EGFR. These experimental results indicated that recombinant ASP-3 possessed an effective anti-hepatoma effect. So, it might be a potential molecule for liver cancer therapy.


Asunto(s)
Bivalvos , Proteínas de Unión al Calcio , Carcinoma Hepatocelular , Neoplasias Hepáticas , Proteínas Recombinantes , Ensayos Antitumor por Modelo de Xenoinjerto , Animales , Humanos , Ratones , Sitios de Unión , Bivalvos/química , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Proteínas de Unión al Calcio/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Proliferación Celular/efectos de los fármacos , Propuestas de Licitación , Cristalografía por Rayos X , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/metabolismo , Escherichia coli , Células Hep G2 , Enlace de Hidrógeno , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Simulación de Dinámica Molecular , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/uso terapéutico , Transducción de Señal , Simulación del Acoplamiento Molecular
2.
Zhongguo Zhong Yao Za Zhi ; 48(6): 1578-1588, 2023 Mar.
Artículo en Chino | MEDLINE | ID: mdl-37005846

RESUMEN

This study aimed to explore the mechanism of n-butanol alcohol extract of Baitouweng Decoction(BAEB) in the treatment of vulvovaginal candidiasis(VVC) in mice based on the negative regulation of NLRP3 inflammasome via PKCδ/NLRC4/IL-1Ra axis. In the experiment, female C57BL/6 mice were divided randomly into the following six groups: a blank control group, a VVC model group, high-, medium-, and low-dose BAEB groups(80, 40, and 20 mg·kg~(-1)), and a fluconazole group(20 mg·kg~(-1)). The VVC model was induced in mice except for those in the blank control group by the estrogen dependence method. After modeling, no treatment was carried out in the blank control group. The mice in the high-, medium-, and low-dose BAEB groups were treated with BAEB at 80, 40, and 20 mg·kg~(-1), respectively, and those in the fluconazole group were treated with fluconazole at 20 mg·kg~(-1). The mice in the VVC model group received the same volume of normal saline. The general state and body weight of mice in each group were observed every day, and the morphological changes of Candida albicans in the vaginal lavage of mice were examined by Gram staining. The fungal load in the vaginal lavage of mice was detected by microdilution assay. After the mice were killed, the degree of neutrophil infiltration in the vaginal lavage was detected by Papanicolaou staining. The content of inflammatory cytokines interleukin(IL)-1ß, IL-18, and lactate dehydrogenase(LDH) in the vaginal lavage was tested by enzyme-linked immunosorbent assay(ELISA), and vaginal histopathology was analyzed by hematoxylin-eosin(HE) staining. The expression and distribution of NLRP3, PKCδ, pNLRC4, and IL-1Ra in vaginal tissues were measured by immunohistochemistry(IHC), and the expression and distribution of pNLRC4 and IL-1Ra in vaginal tissues were detected by immunofluorescence(IF). The protein expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by Western blot(WB), and the mRNA expression of NLRP3, PKCδ, pNLRC4, and IL-1Ra was detected by qRT-PCR. The results showed that compared with the blank control group, the VVC model group showed redness, edema, and white secretions in the vagina. Compared with the VVC model group, the BAEB groups showed improved general state of VVC mice. As revealed by Gram staining, Papanicolaou staining, microdilution assay, and HE staining, compared with the blank control group, the VVC model group showed a large number of hyphae, neutrophils infiltration, and increased fungal load in the vaginal lavage, destroyed vaginal mucosa, and infiltration of a large number of inflammatory cells. BAEB could reduce the transformation of C. albicans from yeast to hyphae. High-dose BAEB could significantly reduce neutrophil infiltration and fungal load. Low-and medium-dose BAEB could reduce the da-mage to the vaginal tissue, while high-dose BAEB could restore the damaged vaginal tissues to normal levels. ELISA results showed that the content of inflammatory cytokines IL-1ß, IL-18, and LDH in the VVC model group significantly increased compared with that in the blank control group, and the content of IL-1ß, IL-18 and LDH in the medium-and high-dose BAEB groups was significantly reduced compared with that in the VVC model group. WB and qRT-PCR results showed that compared with the blank control group, the VVC model group showed reduced protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues of mice and increased protein and mRNA expression of NLRP3. Compared with the VVC model group, the medium-and high-dose BAEB groups showed up-regulated protein and mRNA expression of PKCδ, pNLRC4, and IL-1Ra in vaginal tissues and inhibited protein and mRNA expression of NLRP3 in vaginal tissues. This study indicated that the therapeutic effect of BAEB on VVC mice was presumably related to the negative regulation of NLRP3 inflammasome by promoting PKCδ/NLRC4/IL-1Ra axis.


Asunto(s)
Candidiasis Vulvovaginal , Medicamentos Herbarios Chinos , Femenino , Animales , Humanos , Ratones , Candidiasis Vulvovaginal/tratamiento farmacológico , Inflamasomas/genética , Interleucina-18 , Proteína con Dominio Pirina 3 de la Familia NLR/genética , 1-Butanol/farmacología , Fluconazol/farmacología , Fluconazol/uso terapéutico , Proteína Antagonista del Receptor de Interleucina 1/farmacología , Proteína Antagonista del Receptor de Interleucina 1/uso terapéutico , Ratones Endogámicos C57BL , Candida albicans , Citocinas , Medicamentos Herbarios Chinos/farmacología , Etanol , ARN Mensajero , Proteínas de Unión al Calcio/farmacología , Proteínas de Unión al Calcio/uso terapéutico
3.
Bioengineered ; 13(4): 9855-9871, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35412939

RESUMEN

Osteoarthritis (OA) is a degenerative joint disease that affects cartilage and its peripheral tissues. Up-regulation of Calcium-binding protein 39 (CAB39) has a significant protective effect on osteoblasts, but the role and related molecular mechanisms of CAB39 in OA have not yet been reported. CAB39 overexpression and knockdown models were set up in chondrocytes (ATDC5) and macrophages (RAW264.7). The OA cell model was induced in ATDC5 cells with IL-1ß (10 ng/mL). Cell viability was tested by the cell counting kit-8 assay, apoptosis was checked by flow cytometry. Western blot was applied for checking the expression of MMP3, MMP13, Aggrecan, the AMPK/Sirt-1 pathway, apoptosis-related proteins (Bax, Bcl-2, and Caspase-3), and macrophage phenotypic markers (CD86, iNOS, CD206, and Arg1). An OA model was constructed in mice, and CAB39 overexpression plasmids were administered to the knee cavity of the OA model mice. As a result, CAB39 was down-regulated in IL-1ß-treated chondrocytes and OA mice. Overexpressing CAB39 enhanced ATDC5 cell viability and choked IL-1ß-mediated apoptosis. Overexpression of CAB39 boosted the polarization of macrophages from M1-phenotype into M2 phenotype. In addition, overexpressing CAB39 facilitated the AMPK/Sirt-1 pathway activation, and AMPK inhibitors reversed the protective effect of CAB39 overexpression on chondrocytes. Moreover, CAB39 exhibited anti-inflammatory effects in OA mice by activating the AMPK/Sirt-1 pathway. Collectively, overexpressing CAB39 heightened macrophages' M2 polarization and declined chondrocyte injury in OA by activating the AMPK/Sirt-1 pathway.Abbreviations AMPK: AMP-activated protein kinaseArg1: arginase 1Bax: Bcl-2-associated X proteinBcl-2: B-cell lymphoma-2CAB39: Calcium-binding protein 39CM: Conditioned mediumDMM: destabilization of the medial meniscusECM: extracellular matrixELISA: enzyme-linked immunosorbent assayFCM: Flow cytometryIL-1ß: interleukin-1ßIL-4: interleukin-4IL-6: interleukin-6IL-10: interleukin-10IFN - γ: Interferon-gammaIHC: ImmunohistochemistryiNOS: Inducible nitric oxide synthaseLKB1: liver kinase B1MMP3: Matrix metalloproteinase3MMP13:Matrix metalloproteinase13NF-κB: NF-kappaBOA: OsteoarthritisqRT-PCR: Quantitative reverse transcription-polymerase chain reactionRT: room temperatureSirt-1: sirtuin 1STRAD: STE20-related adaptor alphaWB: Western blot.


Asunto(s)
Proteínas de Unión al Calcio , Condrocitos , Osteoartritis , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Apoptosis , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Condrocitos/metabolismo , Interleucina-1beta/metabolismo , Macrófagos/metabolismo , Ratones , Osteoartritis/genética , Osteoartritis/metabolismo , Fenotipo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Sirtuina 1/genética , Sirtuina 1/metabolismo
4.
Oncology ; 100(7): 399-412, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35340010

RESUMEN

INTRODUCTION: Regucalcin plays a multifunctional role in the regulation of cellular function including metabolism, signaling process, and transcriptional activity in maintaining cell homeostasis. Downregulated expression or activity of regucalcin contributes to the development of malignancies in various types of human cancer. Survival of cancer patients, including metastatic prostate cancer, is prolonged with high expression of regucalcin in the tumor tissues. METHODS: We elucidate whether extracellular regucalcin conquers the growth, migration, invasion, and adhesion of metastatic human prostate cancer PC-3 and DU-145 cells. RESULTS: Extracellular regucalcin (0.1, 1, and 10 nM) of physiologic levels (1 nM at human serum) inhibited colony formation and growth of PC-3 and DU-145 cells, while it did not have an effect on cell death. Repressive effects of extracellular regucalcin on the proliferation were not exhibited by the presence of inhibitors of the cell cycle, intracellular signaling process, and transcriptional activity, suggesting that the signals of extracellular regucalcin are transmitted to block cell growth. Furthermore, extracellular regucalcin (0.1, 1, or 10 nM) inhibited migration, invasion, and adhesion of PC-3 and DU-145 cells. Mechanistically, extracellular regucalcin (10 nM) decreased the levels of various signaling proteins including Ras, posphatidylinositol-3 kinase, mitogen-activated protein kinase, mechanistic target of rapamycin, RSK-2, caveolin-1, and integrin ß1 in PC-3 cells. DISCUSSION AND CONCLUSION: Thus, extracellular regucalcin may play a suppressive role in growth, migration, invasion, and adhesion, which are involved in the metastatic activity of human prostate cancer cells, via affecting diverse signaling processes. This study may provide a new strategy in preventing metastatic prostate cancer with exogenous regucalcin.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Neoplasias de la Próstata , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Línea Celular Tumoral , Proliferación Celular , Regulación Neoplásica de la Expresión Génica , Humanos , Masculino
5.
Clin Transl Med ; 12(2): e684, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35184390

RESUMEN

BACKGROUND: Multiple myeloma (MM) is a distinctive malignancy of plasma cell within the bone marrow (BM), of which alternative splicing factors play vital roles in the progression. Splicing factor arginine/serine-rich 8 (SFRS8) is the exclusive factor associated with MM prognosis, however its role in MM remains undefined. METHODS: The analyses of 3-(4,5)-dimethylthiahiazo (-z-y1)-3,5-di- phenytetrazoliumromide (MTT) assay, immunohistochemistry, flow cytometry and xenograft model were performed to examine cell proliferation, cell cycle and apoptosis in SFRS8 overexpression or knockdown MM cells in vitro and in vivo. The SFRS8-regulated alternative splicing events were identified by RNA immunoprecipitation sequencing (RIP-seq) and validated by RIP-qPCR and Co-IP methods. Exosomes were extracted from the supernatant of myeloma cells by ultracentrifugation. Bone lesion was evaluated by TRAP staining in vitro and SCID/NOD-TIBIA mouse model. A neon electroporation system was utilised to deliver siRNA through exosomes. The effect of siRNA-loaded exosomes in vivo was evaluated by using a patient-derived tumor xenograft (PDX) model and SCID/NOD-TIBIA mouse model. RESULTS: SFRS8 was significantly upregulated in MM samples and positively associated with poor overall survival (OS) in MM patients. SFRS8 promoted MM cell proliferation in vitro and in vivo. Furthermore, calcyclin binding protein (CACYBP) was identified as the downstream target of SFRS8. Particularly, SFRS8 could reduce CACYBP isoform1 (NM_014412.3) and increase CACYBP isoform2 (NM_001007214.1) by mediating the alternative splicing of CACYBP, thereby altering the ubiquitination degradation of ß-catenin to promote MM progression. In addition, SFRS8 promoted osteoclast differentiation through exosomes in vitro and in vivo. More importantly, exosomal siRNA targeting CACYBP isoform2 inhibited tumour growth in PDX and SCID/NOD-TIBIA mouse models. CONCLUSION: Our findings demonstrate that targeting the SFRS8/CACYBP/ß-catenin axis may be a promising strategy for MM diagnosis and treatment.


Asunto(s)
Mieloma Múltiple/genética , Neoplasias/etiología , Factores de Empalme de ARN/efectos adversos , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Línea Celular/efectos de los fármacos , Humanos , Inmunoquímica/métodos , Inmunoquímica/estadística & datos numéricos , Estimación de Kaplan-Meier , Mieloma Múltiple/fisiopatología , Neoplasias/genética , Neoplasias/fisiopatología , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Regulación hacia Arriba/efectos de los fármacos , Regulación hacia Arriba/genética
6.
Bioengineered ; 13(3): 6558-6566, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35220882

RESUMEN

Adipose-derived mesenchymal stem cells (ADSCs) are a class of pluripotent stem cells isolated from the adipose tissue; they can differentiate into osteoblasts after induction and play an important role in bone repair. EGFL6 protein is secreted by adipocytes and osteoblasts and can promote endothelial cell migration and angiogenesis. This study aimed to explore the effect of recombinant EGFL6 protein on the osteogenic differentiation of ADSCs. The cells were incubated with fluorescein isothiocyanate-conjugated antibodies and analyzed by flow cytometry. Alizarin red staining and alkaline phosphatase staining were used to detect the osteogenic differentiation ability. mRNA expression was analyzed by real-time quantitative polymerase chain reaction (RT-qPCR). Protein expression was determined using Western blotting. The osteogenic differentiation ability of ADSCs isolated from the adipose tissue was significantly weakened after EGFL6 knockdown; this ability was restored upon the addition of EGFL6 recombinant protein. BMP2 knockdown inhibited the effect of EGFL6 recombinant protein on osteogenic differentiation. EGFL6 recombinant protein promoted osteogenic differentiation of ADSCs through the BMP2/SMAD4 signaling pathway. This may provide a potential target for the osteogenic differentiation of ADSCs.


Asunto(s)
Proteína Morfogenética Ósea 2/genética , Proteínas de Unión al Calcio , Moléculas de Adhesión Celular , Osteogénesis/efectos de los fármacos , Proteína Smad4/genética , Células Madre/efectos de los fármacos , Factor de Crecimiento Transformador beta/genética , Adipocitos/efectos de los fármacos , Proteína Morfogenética Ósea 2/metabolismo , Proteínas de Unión al Calcio/genética , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Moléculas de Adhesión Celular/farmacología , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Humanos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/farmacología , Transducción de Señal/efectos de los fármacos , Proteína Smad4/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
7.
J Vet Sci ; 23(2): e26, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35187882

RESUMEN

BACKGROUND: Glutamate is the main excitatory neurotransmitter. Excessive glutamate causes excitatory toxicity and increases intracellular calcium, leading to neuronal death. Parvalbumin is a calcium-binding protein that regulates calcium homeostasis. Quercetin is a polyphenol found in plant and has neuroprotective effects against neurodegenerative diseases. OBJECTIVES: We investigated whether quercetin regulates apoptosis by modulating parvalbumin expression in glutamate induced neuronal damage. METHODS: Glutamate was treated in hippocampal-derived cell line, and quercetin or vehicle was treated 1 h before glutamate exposure. Cells were collected for experimental procedure 24 h after glutamate treatment and intracellular calcium concentration and parvalbumin expression were examined. Parvalbumin small interfering RNA (siRNA) transfection was performed to detect the relation between parvalbumin and apoptosis. RESULTS: Glutamate reduced cell viability and increased intracellular calcium concentration, while quercetin preserved calcium concentration and neuronal damage. Moreover, glutamate reduced parvalbumin expression and quercetin alleviated this reduction. Glutamate increased caspase-3 expression, and quercetin attenuated this increase in both parvalbumin siRNA transfected and non-transfected cells. The alleviative effect of quercetin was statistically significant in non-transfected cells. Moreover, glutamate decreased bcl-2 and increased bax expressions, while quercetin alleviated these changes. The alleviative effect of quercetin in bcl-2 family protein expression was more remarkable in non-transfected cells. CONCLUSIONS: These results demonstrate that parvalbumin contributes to the maintainace of intracellular calcium concentration and the prevention of apoptosis, and quercetin modulates parvalbumin expression in glutamate-exposed cells. Thus, these findings suggest that quercetin performs neuroprotective function against glutamate toxicity by regulating parvalbumin expression.


Asunto(s)
Ácido Glutámico , Parvalbúminas , Animales , Apoptosis , Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Muerte Celular , Ácido Glutámico/metabolismo , Ácido Glutámico/toxicidad , Parvalbúminas/genética , Parvalbúminas/metabolismo , Parvalbúminas/farmacología , Quercetina/farmacología , Ratas , Ratas Sprague-Dawley
8.
Stem Cell Rev Rep ; 18(2): 839-852, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35061207

RESUMEN

Little is known about genes that induce stem cells differentiation into astrocytes. We previously described that heat shock protein 27 (HSP27) downregulation is directly related to neural differentiation under chemical induction in placenta-derived multipotent stem cells (PDMCs). Using this neural differentiation cell model, we cross-compared transcriptomic and proteomic data and selected 26 candidate genes with the same expression trends in both omics analyses. Those genes were further compared with a transcriptomic database derived from Alzheimer's disease (AD). Eighteen out of 26 candidates showed opposite expression trends between our data and the AD database. The mRNA and protein expression levels of those candidates showed downregulation of HSP27, S100 calcium-binding protein A16 (S100A16) and two other genes in our neural differentiation cell model. Silencing these four genes with various combinations showed that co-silencing HSP27 and S100A16 has stronger effects than other combinations for astrocyte differentiation. The induced astrocyte showed typical astrocytic star-shape and developed with ramified, stringy and filamentous processes as well as differentiated endfoot structures. Also, some of them connected with each other and formed continuous network. Immunofluorescence quantification of various neural markers indicated that HSP27 and S100A16 downregulation mainly drive PDMCs differentiation into astrocytes. Immunofluorescence and confocal microscopic images showed the classical star-like shape morphology and co-expression of crucial astrocyte markers in induced astrocytes, while electrophysiology and Ca2+ influx examination further confirmed their functional characteristics. In conclusion, co-silencing of S100A16 and HSP27 without chemical induction leads to PDMCs differentiation into functional astrocytes.


Asunto(s)
Astrocitos , Proteínas de Choque Térmico HSP27 , Células Madre Multipotentes , Astrocitos/metabolismo , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Femenino , Proteínas de Choque Térmico HSP27/genética , Proteínas de Choque Térmico HSP27/metabolismo , Proteínas de Choque Térmico HSP27/farmacología , Humanos , Células Madre Multipotentes/citología , Células Madre Multipotentes/metabolismo , Placenta/citología , Placenta/metabolismo , Embarazo , Proteómica , Proteínas S100/genética , Proteínas S100/metabolismo
9.
Folia Morphol (Warsz) ; 81(2): 379-386, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33778937

RESUMEN

BACKGROUND: Nesfatin-1 is a newly identified satiety peptide that has regulatory effects on food intake and glucose metabolism, and is located in the hypothalamic nuclei, including the supraoptic nucleus (SON). In this study, we have investigated the hypothesis that nesfatin-1 neurons are activated by refeeding and intraperitoneal glucose injection and that the glutamatergic system has regulatory influences on nesfatin-1 neurons in the SON. MATERIALS AND METHODS: The first set of experiments analysed activation of nesfatin-1 neurons after refeeding as a physiological stimulus and the effectiveness of the glutamatergic system on this physiological stimulation. The subjects were randomly divided into three groups: fasting group, refeeding group and antagonist (CNQX + refeeding) group. The second set of experiments analysed activation of nesfatin-1 neurons by glucose injection as a metabolic stimulus and the effectiveness of the glutamatergic system on this metabolic stimulation. The subjects were randomly divided into three groups: saline group, glucose group and antagonist (CNQX + glucose) group. RESULTS: Refeeding significantly increased the number of activated nesfatin-1 neurons by approximately 66%, and intraperitoneal glucose injection activated these neurons by about 55%, compared to the fasting and saline controls. The injections of glutamate antagonist (CNQX) greatly decreased the number of activated nesfatin-1 neurons. CONCLUSIONS: This study suggested that nesfatin-1 neurons were activated by peripheral and/or metabolic signals and that this effect was mediated through the glutamatergic system.


Asunto(s)
Antagonistas de Aminoácidos Excitadores , Glucosa , 6-Ciano 7-nitroquinoxalina 2,3-diona/metabolismo , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ADN/farmacología , Ingestión de Alimentos/fisiología , Antagonistas de Aminoácidos Excitadores/metabolismo , Antagonistas de Aminoácidos Excitadores/farmacología , Glucosa/metabolismo , Glucosa/farmacología , Humanos , Proteínas del Tejido Nervioso/metabolismo , Neuronas/fisiología , Nucleobindinas
10.
Am J Physiol Cell Physiol ; 322(2): C185-C196, 2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34878922

RESUMEN

The Notch pathway regulates complex patterning events in many species and is critical for the proper formation and function of the vasculature. Despite this importance, how the various components of the Notch pathway work in concert is still not well understood. For example, NOTCH1 stabilizes homotypic endothelial junctions, but the role of NOTCH1 in heterotypic interactions is not entirely clear. NOTCH3, on the other hand, is essential for heterotypic interactions of pericytes with the endothelium, but how NOTCH3 signaling in pericytes impacts the endothelium remains elusive. Here, we use in vitro vascular models to investigate whether pericyte-induced stabilization of the vasculature requires the cooperation of NOTCH1 and NOTCH3. We observe that both pericyte NOTCH3 and endothelial NOTCH1 are required for the stabilization of the endothelium. Loss of either NOTCH3 or NOTCH1 decreases the accumulation of VE-cadherin at endothelial adherens junctions and increases the frequency of wider, more motile junctions. We found that DLL4 was the key ligand for simulating NOTCH1 activation in endothelial cells and observed that DLL4 expression in pericytes is dependent on NOTCH3. Altogether, these data suggest that an interplay between pericyte NOTCH3 and endothelial NOTCH1 is critical for pericyte-induced vascular stabilization.


Asunto(s)
Células Endoteliales/metabolismo , Microvasos/metabolismo , Pericitos/metabolismo , Receptor Notch1/metabolismo , Receptor Notch3/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Adaptadoras Transductoras de Señales/farmacología , Proteínas de Unión al Calcio/metabolismo , Proteínas de Unión al Calcio/farmacología , Células Cultivadas , Técnicas de Cocultivo , Células Endoteliales/efectos de los fármacos , Células HEK293 , Humanos , Microvasos/citología , Microvasos/efectos de los fármacos , Pericitos/efectos de los fármacos , Receptor Notch1/agonistas , Receptor Notch3/agonistas
11.
Sci Rep ; 11(1): 23724, 2021 12 09.
Artículo en Inglés | MEDLINE | ID: mdl-34887426

RESUMEN

The mouth environment comprises the second most significant microbiome in the body, and its equilibrium is critical in oral health. Secretory calcium-binding phosphoprotein proline-glutamine rich 1 (SCPPPQ1), a protein normally produced by the gingival epithelium to mediate its attachment to teeth, was suggested to be bactericidal. Our aim was to further explore the antibacterial potential of human SCPPPQ1 by characterizing its mode of action and identifying its active portions. In silico analysis showed that it has molecular parallels with antimicrobial peptides. Incubation of Porphyromonas gingivalis, a major periodontopathogen, with the full-length protein resulted in decrease in bacterial number, formation of aggregates and membrane disruptions. Analysis of SCPPPQ1-derived peptides indicated that these effects are sustained by specific regions of the molecule. Altogether, these data suggest that human SCPPPQ1 exhibits antibacterial capacity and provide new insight into its mechanism of action.


Asunto(s)
Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/farmacología , Fosfoproteínas/química , Fosfoproteínas/farmacología , Porphyromonas gingivalis/efectos de los fármacos , Secuencia de Aminoácidos , Péptidos Antimicrobianos/biosíntesis , Péptidos Antimicrobianos/química , Péptidos Antimicrobianos/farmacología , Proteínas de Unión al Calcio/metabolismo , Resistencia a la Enfermedad , Interacciones Huésped-Patógeno , Humanos , Pruebas de Sensibilidad Microbiana , Modelos Moleculares , Fosfoproteínas/metabolismo , Unión Proteica , Conformación Proteica , Relación Estructura-Actividad
12.
Mar Drugs ; 19(10)2021 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-34677440

RESUMEN

Fish skin has been gaining attention due to its efficacy as a human-wound-treatment product and to identify factors promoting its enhanced action. Skin fibroblasts have a central role in maintaining skin integrity and secrete extra cellular matrix (ECM) proteins, growth factors and cytokines to rapidly repair lesions and prevent further damage or infection. The effects on scratch repair of the ubiquitous but poorly characterized ECM protein, cartilage acidic protein 1 (CRTAC1), from piscine and human sources were compared using a zebrafish SJD.1 primary fibroblast cell line. A classic in vitro cell scratch assay, immunofluorescence, biosensor and gene expression analysis were used. Our results demonstrated that the duplicate sea bass Crtac1a and Crtac1b proteins and human CRTAC-1A all promoted SJD.1 primary fibroblast migration in a classic scratch assay and in an electric cell impedance sensing assay. The immunofluorescence analysis revealed that CRTAC1 enhanced cell migration was most likely caused by actin-driven cytoskeletal changes and the cellular transcriptional response was most affected in the early stage (6 h) of scratch repair. In summary, our results suggest that CRTAC1 may be an important factor in fish skin promoting damage repair.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Fibroblastos/efectos de los fármacos , Pez Cebra , Animales , Organismos Acuáticos , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/uso terapéutico , Humanos , Modelos Animales , Cicatrización de Heridas/efectos de los fármacos
13.
Nat Struct Mol Biol ; 28(9): 762-770, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34518698

RESUMEN

Kinases play central roles in signaling cascades, relaying information from the outside to the inside of mammalian cells. De novo designed protein switches capable of interfacing with tyrosine kinase signaling pathways would open new avenues for controlling cellular behavior, but, so far, no such systems have been described. Here we describe the de novo design of two classes of protein switch that link phosphorylation by tyrosine and serine kinases to protein-protein association. In the first class, protein-protein association is required for phosphorylation by the kinase, while in the second class, kinase activity drives protein-protein association. We design systems that couple protein binding to kinase activity on the immunoreceptor tyrosine-based activation motif central to T-cell signaling, and kinase activity to reconstitution of green fluorescent protein fluorescence from fragments and the inhibition of the protease calpain. The designed switches are reversible and function in vitro and in cells with up to 40-fold activation of switching by phosphorylation.


Asunto(s)
Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Secuencias de Aminoácidos , Unión Competitiva , Proteínas de Unión al Calcio/farmacología , Calpaína/antagonistas & inhibidores , Calpaína/metabolismo , Catálisis , Dominio Catalítico , Línea Celular , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Diseño de Fármacos , Genes Sintéticos , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Fosforilación , Fosfotirosina/metabolismo , Unión Proteica , Conformación Proteica , Dominios Proteicos , Mapeo de Interacción de Proteínas , Procesamiento Proteico-Postraduccional , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transducción de Señal , Relación Estructura-Actividad , Familia-src Quinasas/metabolismo
14.
Int J Nanomedicine ; 16: 4321-4332, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34211273

RESUMEN

BACKGROUND: As commonly bone defect is a disease of jaw that can seriously affect implant restoration, the bioactive scaffold can be used as potential systems to provide effective repair for bone defect. PURPOSE: A osteoinductive bone tissue engineering scaffold has been prepared in order to explore the effect of bioactive materials on bone tissue engineering. METHODS: In this study, NELL-1 nanoparticles (Chi/NNP) and nano hydroxyapatite were incorporated in composite scaffolds by electrospinning and characterized using TEM, SEM, contact angle, tensile tests and in vitro drug release. In vitro biological activities such as MC3T3-E1 cell attachment, proliferation and osteogenic activity were studied. RESULTS: With the addition of nHA and nanoparticles, the fiber diameter of PCL/BNPs group, PCL/NNPs group and PCL/nHA/NNPs group was significantly increased. Moreover, the hydrophilic hydroxyl group and amino group presented in nHA and nanoparticles had improved the hydrophilicity of the composite fibers. The composite electrospun containing Chi/NNPs can form a double protective barrier which can effectively prolong the release time of NELL-1 growth factor. In addition, the hydroxyapatite/NELL-1 nanoparticles electrospun fibers can promote attachment, proliferation, differentiation of MC3T3-E1 cells and good cytocompatibility, indicating better ability of inducing osteogenic differentiation. CONCLUSION: A multi-functional PCL/nHA/NNPs composite fiber with long-term bioactivity and osteoinductivity was successfully prepared by electrospinning. This potential composite could be used as scaffolds in bone tissue engineering application after in vivo studies.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Durapatita/química , Nanofibras/química , Osteogénesis/efectos de los fármacos , Ingeniería de Tejidos/métodos , Huesos , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/farmacocinética , Diferenciación Celular/efectos de los fármacos , Quitosano/química , Liberación de Fármacos , Humanos , Microscopía Electrónica de Rastreo , Nanopartículas/química , Poliésteres/química , Albúmina Sérica Bovina/química , Andamios del Tejido
15.
Int J Mol Sci ; 22(11)2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071277

RESUMEN

Hypertrophic scars, the most common complication of burn injuries, are characterized by excessive deposition of fibroblast-derived extracellular matrix proteins. Calpain, a calcium-dependent protease, is involved in the fibroblast proliferation and extracellular matrix production observed in certain fibrotic diseases. However, its role in the formation of post-burn hypertrophic skin scars remains largely unknown. Here, calpain expression and activity were assessed in skin fibroblasts obtained directly from patients with third-degree burns, who consequently developed post-burn hypertrophic scars. Furthermore, the antifibrotic effect of calpastatin, an endogenous calpain inhibitor, was evaluated in human fibroblasts and a murine burn model. The activity, mRNA levels, and protein levels of calpain were markedly higher in fibroblasts from the burn wounds of patients than in normal cells. Selective calpain inhibition by calpastatin markedly reduced not only the proliferation of burn-wound fibroblasts but also the mRNA and protein expression of calpain, transforming growth factor-beta 1, α-smooth muscle actin, type I and type III collagens, fibronectin, and vimentin in burn-wound fibroblasts. The anti-scarring effects of calpastatin were validated using a murine burn model by molecular, histological, and visual analyses. This study demonstrates the pathological role of calpain and the antifibrotic effect of calpastatin via calpain inhibition in post-burn hypertrophic scar formation.


Asunto(s)
Quemaduras/metabolismo , Proteínas de Unión al Calcio/metabolismo , Calpaína/metabolismo , Adulto , Animales , Quemaduras/complicaciones , Proteínas de Unión al Calcio/farmacología , Calpaína/antagonistas & inhibidores , Proliferación Celular , Cicatriz Hipertrófica/metabolismo , Colágeno Tipo III , Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Femenino , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Humanos , Hipertrofia , Masculino , Ratones , Persona de Mediana Edad , ARN Mensajero/metabolismo , Piel/metabolismo , Piel/patología , Factor de Crecimiento Transformador beta1/metabolismo , Adulto Joven
16.
Parasit Vectors ; 14(1): 276, 2021 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-34022913

RESUMEN

BACKGROUND: The liver fluke Fasciola gigantica secretes excretory-secretory proteins during infection to mediate its interaction with the host. In this study, we investigated the immunomodulatory effects of a recombinant tegumental calcium-binding EF-hand protein 4 of F. gigantica (rFg-CaBP4) on goat monocytes. METHODS: The rFg-CaBP4 protein was induced and purified by affinity chromatography. The immunogenic reaction of rFg-CaBP4 against specific antibodies was detected through western blot analysis. The binding of rFg-CaBP4 on surface of goat monocytes was visualized by immunofluorescence assay. The localization of CaBP4 within adult fluke structure was detected by immunohistochemical analysis. The cytokine transcription levels in response to rFg-CaBP4 were examined using ABI 7500 real-time PCR system. The expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) in response to rFg-CaBP4 protein was analyzed using Flow cytometry. RESULTS: The isopropyl-ß-D-thiogalactopyranoside-induced rFg-CaBP4 protein reacted with rat sera containing anti-rFg-CaBP4 polyclonal antibodies in a western blot analysis. The adhesion of rFg-CaBP4 to monocytes was visualized by immunofluorescence and laser scanning confocal microscopy. Immunohistochemical analysis localized native CaBP4 to the oral sucker, pharynx, genital pore, acetabulum and tegument of adult F. gigantica. Co-incubation of rFg-CaBP4 with concanavalin A-stimulated monocytes increased the transcription levels of interleukin (IL)-2, IL-4, interferon gamma and transforming growth factor-ß. However, a reduction in the expression of IL-10 and no change in the expression of tumor necrosis factor-α were detected. Additionally, rFg-CaBP4-treated monocytes exhibited a marked increase in the expression of the major histocompatibility complex (MHC) class-II molecule (MHC-II) and a decrease in MHC-I expression, in a dose-dependent manner. CONCLUSIONS: These findings provide additional evidence that calcium-binding EF-hand proteins play roles in host-parasite interaction. Further characterization of the immunomodulatory role of rFg-CaBP4 should expand our understanding of the strategies used by F. gigantica to evade the host immune responses.


Asunto(s)
Proteínas de Unión al Calcio/inmunología , Fasciola/química , Fasciola/inmunología , Inmunomodulación , Monocitos/inmunología , Animales , Proteínas de Unión al Calcio/farmacología , Citocinas/genética , Citocinas/inmunología , Fasciola/genética , Fascioliasis/parasitología , Cabras/inmunología , Monocitos/efectos de los fármacos , Proteínas Recombinantes/farmacología
17.
PLoS Biol ; 19(5): e3001235, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33939689

RESUMEN

New technologies make it possible to measure activity from many neurons simultaneously. One approach is to analyze simultaneously recorded neurons individually, then group together neurons which increase their activity during similar behaviors into an "ensemble." However, this notion of an ensemble ignores the ability of neurons to act collectively and encode and transmit information in ways that are not reflected by their individual activity levels. We used microendoscopic GCaMP imaging to measure prefrontal activity while mice were either alone or engaged in social interaction. We developed an approach that combines a neural network classifier and surrogate (shuffled) datasets to characterize how neurons synergistically transmit information about social behavior. Notably, unlike optimal linear classifiers, a neural network classifier with a single linear hidden layer can discriminate network states which differ solely in patterns of coactivity, and not in the activity levels of individual neurons. Using this approach, we found that surrogate datasets which preserve behaviorally specific patterns of coactivity (correlations) outperform those which preserve behaviorally driven changes in activity levels but not correlated activity. Thus, social behavior elicits increases in correlated activity that are not explained simply by the activity levels of the underlying neurons, and prefrontal neurons act collectively to transmit information about socialization via these correlations. Notably, this ability of correlated activity to enhance the information transmitted by neuronal ensembles is diminished in mice lacking the autism-associated gene Shank3. These results show that synergy is an important concept for the coding of social behavior which can be disrupted in disease states, reveal a specific mechanism underlying this synergy (social behavior increases correlated activity within specific ensembles), and outline methods for studying how neurons within an ensemble can work together to encode information.


Asunto(s)
Neuronas/fisiología , Corteza Prefrontal/fisiología , Conducta Social , Potenciales de Acción/fisiología , Animales , Proteínas de Unión al Calcio/química , Proteínas de Unión al Calcio/farmacología , Endoscopios , Proteínas Fluorescentes Verdes/química , Proteínas Fluorescentes Verdes/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Proteínas de Microfilamentos/metabolismo , Red Nerviosa/fisiología , Proteínas del Tejido Nervioso/metabolismo , Neuronas/metabolismo , Corteza Prefrontal/diagnóstico por imagen , Corteza Prefrontal/metabolismo
18.
Tissue Cell ; 67: 101447, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33137709

RESUMEN

Regucalcin plays a multifunctional role in cell regulation as a suppressor in the processes of intracellular signaling and transcription, leading to inhibition of cell growth. The downregulated expression or activity of regucalcin has been shown to contribute to the development of carcinogenesis in various types of human cancer. The wild-type tumor suppressor TP53 gene encodes for a transcriptional factor p53. This protein may play a role in cell proliferation. Loss of p53 function may induce cell transformation during carcinogenesis and tumor progression of human cancer. We investigate whether or not extracellular regucalcin suppresses the proliferation of non-tumorigenic human mammary epithelial MCF 10A cells with loss of p53 in vitro. Loss of p53 did not impact colony formation and proliferation of the cells. Interestingly, p53 loss caused decrease in the cell cycle suppressor p21, but not retinoblastoma and regucalcin, as compared with those of wild-type MCF 10A cells. Notably, extracellular regucalcin suppressed colony formation and proliferation of wild-type MCF 10A cells and p53 (-/-) cells, while it did not have an effect on cell death. Mechanistically, extracellular regucalcin decreased levels of various signaling factors including Ras, phosphatidylinositol-3 kinase, mitogen-activated protein kinase (MAPK), phospho-MAPK, and signal transducer and activator of transcription 3 in wild-type MCF 10A cells and p53 (-/-) cells. Thus, extracellular regucalcin was found to suppress the growth of MCF 10A cells with loss of p53. Extracellular regucalcin may play a role as a suppressor in the growth of human mammary epithelial cells with p53 loss, providing a novel strategy for cancer.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Hidrolasas de Éster Carboxílico/farmacología , Células Epiteliales/citología , Células Epiteliales/metabolismo , Espacio Extracelular/química , Glándulas Mamarias Humanas/citología , Animales , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Ensayo de Unidades Formadoras de Colonias , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/efectos de los fármacos , Humanos , Ratas , Transducción de Señal/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/metabolismo , beta Catenina/metabolismo
19.
Biochem J ; 477(21): 4281-4294, 2020 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-33111944

RESUMEN

Na+-K+-ATPase from mice lacking the γ subunit exhibits decreased thermal stability. Phospholamban (PLN) and sarcolipin (SLN) are small homologous proteins that regulate sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) with properties similar to the γ subunit, through physical interactions with SERCAs. Here, we tested the hypothesis that PLN and SLN may protect against thermal inactivation of SERCAs. HEK-293 cells were co-transfected with different combinations of cDNAs encoding SERCA2a, PLN, a PLN mutant (N34A) that cannot bind to SERCA2a, and SLN. One-half of the cells were heat stressed at 40°C for 1 h (HS), and one-half were maintained at 37°C (CTL) before harvesting the cells and isolating microsomes. Compared with CTL, maximal SERCA activity was reduced by 25-35% following HS in cells that expressed either SERCA2a alone or SERCA2a and mutant PLN (N34A) whereas no change in maximal SERCA2a activity was observed in cells that co-expressed SERCA2a and either PLN or SLN following HS. Increases in SERCA2a carbonyl group content and nitrotyrosine levels that were detected following HS in cells that expressed SERCA2a alone were prevented in cells co-expressing SERCA2a with PLN or SLN, whereas co-expression of SERCA2a with mutant PLN (N34A) only prevented carbonyl group formation. In other experiments using knock-out mice, we found that thermal inactivation of SERCA was increased in cardiac left ventricle samples from Pln-null mice and in diaphragm samples from Sln-null mice, compared with WT littermates. Our results show that both PLN and SLN form a protective interaction with SERCA pumps during HS, preventing nitrosylation and oxidation of SERCA and thus preserving its maximal activity.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Proteínas Musculares/farmacología , Proteolípidos/farmacología , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Animales , ADN Complementario/metabolismo , Ratones , Ratones Noqueados , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Oxidación-Reducción/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/efectos de los fármacos , Temperatura
20.
Sci Rep ; 10(1): 18041, 2020 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-33093500

RESUMEN

Classically, neurexins are thought to mediate synaptic connections through trans interactions with a number of different postsynaptic partners. Neurexins are cleaved by metalloproteases in an activity-dependent manner, releasing the soluble extracellular domain. Here, we report that in both immature (before synaptogenesis) and mature (after synaptogenesis) hippocampal neurons, the soluble neurexin-1ß ectodomain triggers acute Ca2+-influx at the dendritic/postsynaptic side. In both cases, neuroligin-1 expression was required. In immature neurons, calcium influx required N-type calcium channels and stimulated dendritic outgrowth and neuronal survival. In mature glutamatergic neurons the neurexin-1ß ectodomain stimulated calcium influx through NMDA-receptors, which increased presynaptic release probability. In contrast, prolonged exposure to the ectodomain led to inhibition of synaptic transmission. This secondary inhibition was activity- and neuroligin-1 dependent and caused by a reduction in the readily-releasable pool of vesicles. A synthetic peptide modeled after the neurexin-1ß:neuroligin-1 interaction site reproduced the cellular effects of the neurexin-1ß ectodomain. Collectively, our findings demonstrate that the soluble neurexin ectodomain stimulates growth of neurons and exerts acute and chronic effects on trans-synaptic signaling involved in setting synaptic strength.


Asunto(s)
Proteínas de Unión al Calcio/farmacología , Calcio/metabolismo , Células Dendríticas/efectos de los fármacos , Células Dendríticas/fisiología , Moléculas de Adhesión de Célula Nerviosa/farmacología , Transmisión Sináptica/efectos de los fármacos , Animales , Proteínas de Unión al Calcio/metabolismo , Moléculas de Adhesión Celular Neuronal/metabolismo , Células Cultivadas , Hipocampo/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/metabolismo , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo , Solubilidad , Estimulación Química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...