Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
1.
Chem Biol Interact ; 393: 110944, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38518851

RESUMEN

Ferroptosis is a form of programmed cell death involved in various types of acute kidney injury (AKI). It is characterized by inactivation of the selenoprotein, glutathione peroxidase 4 (GPX4), and upregulation of acyl-CoA synthetase long-chain family member 4 (ACSL4). Since urinary selenium binding protein 1 (SBP1/SELENBP1) is a potential biomarker for AKI, this study investigated whether SBP1 plays a role in AKI. First, we showed that SBP1 is expressed in proximal tubular cells in normal human kidney, but is significant downregulated in cases of AKI in association with reduced GPX4 expression and increased ACSL4 expression. In mouse renal ischemia-reperfusion injury (I/R), the rapid downregulation of SBP1 protein levels preceded downregulation of GPX4 and the onset of necrosis. In vitro, hypoxia/reoxygenation (H/R) stimulation in human proximal tubular epithelial (HK-2) cells induced ferroptotic cell death in associated with an acute reduction in SBP1 and GPX4 expression, and increased oxidative stress. Knockdown of SBP1 reduced GPX4 expression and increased the susceptibility of HK-2 cells to H/R-induced cell death, whereas overexpression of SBP1 reduced oxidative stress, maintained GPX4 expression, reduced mitochondrial damage, and reduced H/R-induced cell death. Finally, selenium deficiency reduced GPX4 expression and promoted H/R-induced cell death, whereas addition of selenium was protective against H/R-induced oxidative stress. In conclusion, SBP1 plays a functional role in hypoxia-induced tubular cell death. Enhancing SBP1 expression is a potential therapeutic approach for the treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Ferroptosis , Selenio , Animales , Humanos , Ratones , Lesión Renal Aguda/inducido químicamente , Células Epiteliales/metabolismo , Hipoxia , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Selenio/farmacología , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo
2.
Mol Med ; 29(1): 121, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37684566

RESUMEN

BACKGROUND: As the tissue with the highest selenium content in the body, the occurrence and development of thyroid cancer are closely related to selenium and selenoproteins. Selenium-binding protein 1 (SBP1) has been repeatedly implicated in several cancers, but its role and molecular mechanisms in thyroid cancer remains largely undefined. METHODS: The expression of SBP1, sodium/iodide symporter (NIS) and thioredoxin (TXN) were analyzed in clinical samples and cell lines. Cell counting kit-8 (CCK-8) and tube formation assays were used to analyze the cell viability and tube formation of cells. Immunofluorescence was used to determine the expression of the NIS. Co-immunoprecipitation (Co-IP) assay was carried out to verify the interaction of SBP1 with TXN. The mouse xenograft experiment was performed to investigate the growth of thyroid cancer cells with SBP1 knockdown in vivo. RESULTS: SBP1 was significantly increased in human thyroid cancer tissues and cells, especially in anaplastic thyroid cancer. Overexpression of SBP1 promoted FTC-133 cell proliferation, and the culture supernatant of SBP1-overexpression FTC-133 cells promoted tube formation of human retinal microvascular endothelial cells. Knockdown of SBP1, however, inhibited cell proliferation and tube formation. Furthermore, overexpression of SBP1 inhibited cellular differentiation of differentiated thyroid cancer cell line FTC-133, as indicated by decreased expression of thyroid stimulating hormone receptors, thyroglobulin and NIS. Knockdown of SBP1, however, promoted differentiation of BHT101 cells, an anaplastic thyroid cancer cell line. Notably, TXN, a negative regulator of NIS, was found to be significantly upregulated in human thyroid cancer tissues, and it was positively regulated by SBP1. Co-IP assay implied a direct interaction of SBP1 with TXN. Additionally, TXN overexpression reversed the effect of SBP1 knockdown on BHT101 cell viability, tube formation and cell differentiation. An in vivo study found that knockdown of SBP1 promoted the expression of thyroid stimulating hormone receptors, thyroglobulin and NIS, as well as inhibited the growth and progression of thyroid cancer tumors. CONCLUSION: SBP1 promoted tumorigenesis and dedifferentiation of thyroid cancer through positively regulating TXN.


Asunto(s)
Selenio , Carcinoma Anaplásico de Tiroides , Neoplasias de la Tiroides , Animales , Humanos , Ratones , Carcinogénesis/genética , Transformación Celular Neoplásica , Células Endoteliales , Receptores de Tirotropina , Tiorredoxinas , Tiroglobulina , Carcinoma Anaplásico de Tiroides/genética , Neoplasias de la Tiroides/genética , Proteínas de Unión al Selenio/metabolismo
3.
Redox Biol ; 65: 102807, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37437449

RESUMEN

Selenium-binding protein 1 (SELENBP1) was reported to act as a methanethiol oxidase (MTO) in humans, catalyzing the conversion of methanethiol to hydrogen peroxide, hydrogen sulfide and formaldehyde. Here, we identify copper ions as essential to this novel MTO activity. Site-directed mutagenesis of putative copper-binding sites in human SELENBP1 produced as recombinant protein in E. coli resulted in loss of its enzymatic function. On the other hand, the eponymous binding of selenium (as selenite) was no requirement for MTO activity and only moderately increased SELENBP1-catalyzed oxidation of methanethiol. Furthermore, SEMO-1, the SELENBP1 ortholog recently identified in the nematode C. elegans, also requires copper ions, and MTO activity was enhanced or abrogated, respectively, if worms were grown in the presence of cupric chloride or of a Cu chelator. In addition to methanethiol, we identified novel substrates of SELENBP1 from the group of volatile sulfur compounds, ranging from ethanethiol to 1-pentanethiol as well as 2-propene-1-thiol. Gut microbiome-derived methanethiol as well as food-derived volatile sulfur compounds (VSCs) account for malodors that may contribute to extraoral halitosis in humans, if not metabolized properly. As SELENBP1 is particularly abundant in tissues exposed to VSCs, such as colon, liver, and lung, it appears to contribute to copper-dependent VSC degradation.


Asunto(s)
Caenorhabditis elegans , Cobre , Animales , Humanos , Cobre/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Compuestos de Sulfhidrilo/metabolismo , Compuestos de Azufre/química , Oxidorreductasas/metabolismo , Ceruloplasmina/metabolismo
4.
J Mol Evol ; 91(4): 471-481, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37039856

RESUMEN

Selenium-binding proteins represent a ubiquitous protein family and recently SBP1 was described as a new stress response regulator in plants. SBP1 has been characterized as a methanethiol oxidase, however its exact role remains unclear. Moreover, in mammals, it is involved in the regulation of anti-carcinogenic growth and progression as well as reduction/oxidation modulation and detoxification. In this work, we delineate the functional potential of certain motifs of SBP in the context of evolutionary relationships. The phylogenetic profiling approach revealed the absence of SBP in the fungi phylum as well as in most non eukaryotic organisms. The phylogenetic tree also indicates the differentiation and evolution of characteristic SBP motifs. Main evolutionary events concern the CSSC motif for which Acidobacteria, Fungi and Archaea carry modifications. Moreover, the CC motif is harbored by some bacteria and remains conserved in Plants, while modified to CxxC in Animals. Thus, the characteristic sequence motifs of SBPs mainly appeared in Archaea and Bacteria and retained in Animals and Plants. Our results demonstrate the emergence of SBP from bacteria and most likely as a methanethiol oxidase.


Asunto(s)
Proteínas , Proteínas de Unión al Selenio , Animales , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Filogenia , Bacterias/genética , Bacterias/metabolismo , Archaea/genética , Archaea/metabolismo , Plantas , Oxidorreductasas/genética , Mamíferos/metabolismo
5.
Proc Natl Acad Sci U S A ; 119(51): e2203711119, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36512497

RESUMEN

The selenium-binding protein 1 (SELENBP1) has been reported to be up-regulated in the prefrontal cortex (PFC) of schizophrenia patients in postmortem reports. However, no causative link between SELENBP1 and schizophrenia has yet been established. Here, we provide evidence linking the upregulation of SELENBP1 in the PFC of mice with the negative symptoms of schizophrenia. We verified the levels of SELENBP1 transcripts in postmortem PFC brain tissues from patients with schizophrenia and matched healthy controls. We also generated transgenic mice expressing human SELENBP1 (hSELENBP1 Tg) and examined their neuropathological features, intrinsic firing properties of PFC 2/3-layer pyramidal neurons, and frontal cortex (FC) electroencephalographic (EEG) responses to auditory stimuli. Schizophrenia-like behaviors in hSELENBP1 Tg mice and mice expressing Selenbp1 in the FC were assessed. SELENBP1 transcript levels were higher in the brains of patients with schizophrenia than in those of matched healthy controls. The hSELENBP1 Tg mice displayed negative endophenotype behaviors, including heterotopias- and ectopias-like anatomical deformities in upper-layer cortical neurons and social withdrawal, deficits in nesting, and anhedonia-like behavior. Additionally, hSELENBP1 Tg mice exhibited reduced excitabilities of PFC 2/3-layer pyramidal neurons and abnormalities in EEG biomarkers observed in schizophrenia. Furthermore, mice overexpressing Selenbp1 in FC showed deficits in sociability. These results suggest that upregulation of SELENBP1 in the PFC causes asociality, a negative symptom of schizophrenia.


Asunto(s)
Esquizofrenia , Humanos , Animales , Ratones , Esquizofrenia/genética , Esquizofrenia/metabolismo , Corteza Prefrontal/metabolismo , Células Piramidales/metabolismo , Encéfalo/metabolismo , Ratones Transgénicos , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo
6.
Arch Biochem Biophys ; 732: 109451, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36334799

RESUMEN

The contribution of selenium and selenoproteins in prostate cancer etiology remains elusive, potentially due to insufficient information regarding the biochemical pathways in which they are involved. There are twenty-five human selenocysteine-containing proteins or selenoproteins as well as a smaller class of selenium-containing proteins that do not include selenocysteine, and their cancer-associated aberrations, both genetic and functional, have evoked special interest, although their contribution to the metabolic reprogramming of prostate cancers remains has not been extensively studied. While benign prostate tissue exhibits a glycolytic phenotype, neoplastic events restore the truncated tricarboxylic acid cycle and enhance oxidative phosphorylation. Two selenium-containing proteins, selenium binding protein 1 and selenoprotein F, affect prostate cancer phenotypes by modulating tumor cell metabolic profiles with significant effects on mitochondrial biology, including oxidative phosphorylation and ATP synthesis. One of the pathways affected by both proteins is the activation of adenosine monophosphate kinase and its downstream signaling with concomitant induction of glycolysis. This review focuses on highlighting the role of these two proteins in modulating the bioenergetic profile of prostate cancer and in maintaining the metabolic plasticity of these cells rendering growth advantage and possible therapeutic resistance.


Asunto(s)
Neoplasias de la Próstata , Proteínas de Unión al Selenio , Selenio , Selenoproteínas , Humanos , Masculino , Metabolismo Energético , Neoplasias de la Próstata/patología , Proteínas de Unión al Selenio/metabolismo , Selenocisteína/metabolismo , Selenoproteínas/metabolismo
7.
BMC Gastroenterol ; 22(1): 437, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36253721

RESUMEN

BACKGROUND: Selenium-binding protein 1 (SELENBP1), a member of the selenium-containing protein family, plays an important role in malignant tumorigenesis and progression. However, it is currently lacking research about relationship between SELENBP1 and immunotherapy in colorectal cancer (CRC). METHODS: We first analyzed the expression levels of SELENBP1 based on the Cancer Genome Atlas (TCGA), Oncomine andUALCAN. Chisq.test, Fisher.test, Wilcoxon-Mann-Whitney test and logistic regression were used to analyze the relationship of clinical characteristics with SELENBP1 expression. Then Gene ontology/ Kyoto encyclopedia of genes and genomes (GO/KEGG), Gene set enrichment analysis (GSEA) enrichment analysis to clarify bio-processes and signaling pathways. The cBioPortal was used to perform analysis of mutation sites, types, etc. of SELENBP1. In addition, the correlation of SELENBP1 gene with tumor immune infiltration and prognosis was analyzed using ssGSEA, ESTIMATE, tumor immune dysfunction and rejection (TIDE) algorithm and Kaplan-Meier (KM) Plotter database. Quantitative real-time PCR (qRT-PCR) and western blotting (WB) were used to validate the expression of SELENBP1 in CRC samples and matched normal tissues. Immunohistochemistry (IHC) was further performed to detect the expression of SELENBP1 in CRC samples and matched normal tissues. RESULTS: We found that SELENBP1 expression was lower in CRC compared to normal colorectal tissue and was associated with poor prognosis. The aggressiveness of CRC increased with decreased SELENBP1 expression. Enrichment analysis showed that the SELENBP1 gene was significantly enriched in several pathways, such as programmed death 1 (PD-1) signaling, signaling by interleukins, TCR signaling, collagen degradation, costimulation by the CD28 family. Decreased expression of SELENBP1 was associated with DNA methylation and mutation. Immune infiltration analysis identified that SELENBP1 expression was closely related to various immune cells and immune chemokines/receptors. With increasing SELENBP1 expression, immune and stromal components in the tumor microenvironment were significantly decreased. SELENBP1 expression in CRC patients affects patient prognosis by influencing tumor immune infiltration. Beside this, SELENBP1 expression is closely related to the sensitivity of chemotherapy and immunotherapy. CONCLUSIONS: Survival analysis as well as enrichment and immunoassay results suggest that SELENBP1 can be considered as a promising prognostic biomarker for CRC. SELENBP1 expression is closely associated with immune infiltration and immunotherapy. Collectively, our study provided useful information on the oncogenic role of SELENBP1, contributing to further exploring the underlying mechanisms.


Asunto(s)
Neoplasias Colorrectales , Selenio , Antígenos CD28 , Colágeno , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Neoplasias Colorrectales/terapia , Humanos , Factores Inmunológicos , Inmunoterapia , Pronóstico , Receptor de Muerte Celular Programada 1 , Receptores de Antígenos de Linfocitos T , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Microambiente Tumoral
8.
Nutrients ; 14(11)2022 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-35684088

RESUMEN

With the gaining prevalence of obesity, related risks during pregnancy are rising. Inflammation and oxidative stress are considered key mechanisms arising in white adipose tissue (WAT) sparking obesity-associated complications and diseases. The established anti-diabetic drug metformin reduces both on a systemic level, but only little is known about such effects on WAT. Because inhibiting these mechanisms in WAT might prevent obesity-related adverse effects, we investigated metformin treatment during pregnancy using a mouse model of diet-induced maternal obesity. After mating, obese mice were randomised to metformin administration. On gestational day G15.5, phenotypic data were collected and perigonadal WAT (pgWAT) morphology and proteome were examined. Metformin treatment reduced weight gain and visceral fat accumulation. We detected downregulation of perilipin-1 as a correlate and observed indications of recovering respiratory capacity and adipocyte metabolism under metformin treatment. By regulating four newly discovered potential adipokines (alpha-1 antitrypsin, Apoa4, Lrg1 and Selenbp1), metformin could mediate anti-diabetic, anti-inflammatory and oxidative stress-modulating effects on local and systemic levels. Our study provides an insight into obesity-specific proteome alterations and shows novel modulating effects of metformin in pgWAT of obese dams. Accordingly, metformin therapy appears suitable to prevent some of obesity's key mechanisms in WAT.


Asunto(s)
Metformina , Tejido Adiposo/metabolismo , Tejido Adiposo Blanco/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Femenino , Humanos , Grasa Intraabdominal/metabolismo , Metformina/farmacología , Metformina/uso terapéutico , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Obesidad/metabolismo , Embarazo , Proteoma/metabolismo , Proteínas de Unión al Selenio/metabolismo
9.
Plant Physiol ; 189(4): 2368-2381, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35579367

RESUMEN

Selenium-binding proteins (SBPs) represent a ubiquitous protein family implicated in various environmental stress responses, although the exact molecular and physiological role of the SBP family remains elusive. In this work, we report the identification and characterization of CrSBD1, an SBP homolog from the model microalgae Chlamydomonas reinhardtii. Growth analysis of the C. reinhardtii sbd1 mutant strain revealed that the absence of a functional CrSBD1 resulted in increased growth under mild oxidative stress conditions, although cell viability rapidly declined at higher hydrogen peroxide (H2O2) concentrations. Furthermore, a combined global transcriptomic and metabolomic analysis indicated that the sbd1 mutant exhibited a dramatic quenching of the molecular and biochemical responses upon H2O2-induced oxidative stress when compared to the wild-type. Our results indicate that CrSBD1 represents a cell regulator, which is involved in the modulation of C. reinhardtii early responses to oxidative stress. We assert that CrSBD1 acts as a member of an extensive and conserved protein-protein interaction network including Fructose-bisphosphate aldolase 3, Cysteine endopeptidase 2, and Glutaredoxin 6 proteins, as indicated by yeast two-hybrid assays.


Asunto(s)
Chlamydomonas reinhardtii , Microalgas , Chlamydomonas reinhardtii/metabolismo , Peróxido de Hidrógeno/metabolismo , Microalgas/metabolismo , Estrés Oxidativo , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo
10.
Plant Sci ; 315: 111157, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35067295

RESUMEN

AtRD19c is a member of the papain-like cysteine proteases known for its participation in anther development after its maturation by ßVPE (vacuolar processing enzyme). This papain-like cysteine protease was identified as an interacting protein of AtSBP1 (selenium binding protein 1) in a yeast two-hybrid screening. To confirm this interaction, we studied AtRD19c with respect to its expression and ability to interact with AtSBP1. The highest gene expression levels of AtRD19c were observed in the roots of 10-day-old seedlings, whereas minimum levels appeared in the hypocotyls of 10-day-old seedlings and flowers. AtRD19c expression was upregulated by selenium, and analysis of its promoter activity showed colocalization of a reporter gene (GUS) with AtSBP1. Additionally, the AtRD19c expression pattern was upregulated in the presence of selenite, indicating its participation in the Se response network. Confocal fluorescence microscopy revealed that AtRD19c localizes in the root tip, lateral roots, and leaf trichomes. Finally, we confirmed the physical interaction between AtRD19c and AtSBP1 and showed the importance of the first 175 aa of the AtSBP1 polypeptide in this interaction. Importantly, the AtRD19c-AtSBP1 interaction was also demonstrated in planta by employing bimolecular fluorescent complementation (BiFC) in a protoplast system.


Asunto(s)
Arabidopsis/genética , Arabidopsis/metabolismo , Proteasas de Cisteína/genética , Proteasas de Cisteína/metabolismo , Papaína/genética , Papaína/metabolismo , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Genes Reporteros , Filogenia
11.
Clin Nutr ; 40(12): 5812-5822, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34800819

RESUMEN

SCOPE: Hesperidin exerts cardiovascular beneficial effects, but its mechanisms of action remain undefined. In a previous study we demonstrated that a single dose and a 12-week treatment of hesperidin decreased systolic blood pressure. The aim of this study was to ascertain the action mechanisms of hesperidin consumption in subjects with elevated blood pressure or with stage 1 hypertension, by determining their transcriptomic profile after a single dose or a 12-week treatment. METHODS AND RESULTS: For transcriptomic analysis, peripheral blood mononuclear cells were obtained from 37 subjects with elevated blood pressure and stage 1 hypertension from CITRUS study who were randomized to receive for 12 weeks: control drink (CD; n = 11), OJ (containing 345 mg of hesperidin; n = 15) or EOJ (containing 600 mg of hesperidin; n = 11). Before starting the 12-weeks treatment, a single dose study with a 6 h of follow-up in each group was performed. After the single dose consumption, EOJ versus OJ, downregulated DHRS9 gene which is related with insulin resistance. Compared to CD, 12-week treatment of EOJ downregulated 6 proinflammatory genes while after OJ consumption only 1 proinflammatory gene was downregulated. Moreover, 12-week treatment of EOJ versus OJ, downregulated acute coronary syndrome gene related (SELENBP1). CONCLUSION: A single dose consumption of EOJ could protect from insulin resistance. Moreover, EOJ decrease the expression of proinflammatory genes after 12-week treatment providing a possible mechanism of action on inflammation pathway.


Asunto(s)
Presión Sanguínea/genética , Citrus sinensis , Expresión Génica/efectos de los fármacos , Hesperidina/administración & dosificación , Hesperidina/farmacología , Hipertensión/genética , Transcriptoma/efectos de los fármacos , 3-Hidroxiesteroide Deshidrogenasas/metabolismo , Adulto , Método Doble Ciego , Regulación hacia Abajo , Femenino , Jugos de Frutas y Vegetales , Humanos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Proteínas de Unión al Selenio/metabolismo
12.
Cancer Med ; 10(24): 9058-9077, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34734491

RESUMEN

BACKGROUND: Lung adenocarcinoma (LUAD) is a heterogeneous disease. However the inner sub-groups of LUAD have not been fully studied. Markers predicted the sub-groups and prognosis of LUAD are badly needed. AIMS: To identify biomarkers associated with the sub-groups and prognosis of LUAD. MATERIALS AND METHODS: Using nonnegative matrix factorization (NMF) clustering, LUAD patients from The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) datasets and LUAD cell lines from Genomics of Drug Sensitivity in Cancer (GDSC) dataset were divided into different sub-consensuses based on the gene expression profiling. The overall survival of LUAD patients in each sub-consensus was determined by Kaplan-Meier survival analysis. The common genes which were differentially expressed in each sub-consensus of LUAD patients and LUAD cell lines were identified using TBtools. The predictive accuracy of TPX2 and SELENBP1 for theinner sub-consensuses of LUAD was determined by Receiver operator characteristic (ROC) analysis. The Kaplan-Meier survival analysis was also used to test the prognostic significance of TPX2 and SELENBP1 in LUAD patients. RESULTS: Using nonnegative matrix factorization clustering, LUAD patients in The Cancer Genome Atlas (TCGA), GSE30219, GSE42127, GSE50081, GSE68465, and GSE72094 datasets were divided into three sub-consensuses. Sub-consensus3 LUAD patients were with low overall survival and were with high TP53 mutations. Similarly, LUAD cell lines were also divided into three sub-consensuses by NMF method, and sub-consensus2 cell lines were resistant to EGFR inhibitors. Identification of the common genes which were differentially expressed in different sub-consensuses of LUAD patients and LUAD cell lines revealed that TPX2 was highly expressed in sub-consensus3 LUAD patients and sub-consensus2 LUAD cell lines. On the contrary, SELENBP1 was highly expressed in sub-consensus1 LUAD patients and sub-consensus1 LUAD cell lines. The expression levels of TPX2 and SELENBP1 could distinguish sub-consensus3 LUAD patients or sub-consensus2 LUAD cell lines from other sub-consensuses of LUAD patients or cell lines. Moreover, compared with normal lung tissues, TPX2 was highly expressed, while, SELENBP1 was lowly expressed in LUAD tissues. Furthermore, the higher expression levels of TPX2 were associated with the lower relapse-free survival and the lower overall survival of LUAD patients. While, the higher expression levels of SELENBP1 were associated with the higher relapse-free survival and higher overall survival. At last, we showed that TP53 mutant LUAD patients were with higher TPX2 and lower SELENBP1 expressions. DISCUSSION: Both iCluster and NMF method are proved to be robust LUAD classification systems. However, the LUAD patients in different iclusters had no significant clinical overall survival, while, sub-consensus3 LUAD patients from NMF classification were with lower overall survival than other sub-consensuses. CONCLUSIONS: By integrated analysis of 1765 LUAD patients and 64 LUAD cell lines, we showed that NMF was a robust inner sub-consensuses classification method of LUAD. TPX2 and SELENBP1 were differentially expressed in different LUAD sub- consensuses, and predicted the inner sub-consensuses of LUAD with high accuracy. TPX2 was an unfavorable prognostic biomarker of LUAD which was up-regulated in LUAD tissues and associated with the low overall survival of LUAD. SELENBP1 was a favorable prognostic biomarker of LUAD which was down-regulated in LUAD tissues and associated with the prolonged overall survival of LUAD.


Asunto(s)
Adenocarcinoma del Pulmón/genética , Proteínas de Ciclo Celular/metabolismo , Biología Computacional/métodos , Neoplasias Pulmonares/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Proteínas de Unión al Selenio/metabolismo , Adenocarcinoma del Pulmón/mortalidad , Adenocarcinoma del Pulmón/patología , Femenino , Humanos , Neoplasias Pulmonares/mortalidad , Neoplasias Pulmonares/patología , Masculino , Mutación , Pronóstico , Análisis de Supervivencia
13.
J Nutr Biochem ; 98: 108831, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34339819

RESUMEN

There is a U-shaped dose-response between selenium (Se) status and health outcomes, but underlying metabolic processes are unclear. This study aims to identify candidate proteins in liver regulated by dietary Se, ranging from deficiency to toxic. Male rats (n=4) were fed graded Se concentrations as selenite for 28 days. Bulk Se analysis was performed by ICP-MS on both soluble and insoluble fractions. Soluble fraction samples were chromatographically separated for identification of selenocompounds by SEC-ICP-MS and protein quantification by LC-MS/MS. Bioinformatics analysis compared low-Se (0 and 0.08 µg Se g-1) and high-Se (0.8, 2 and 5 µg Se g-1) with adequate-Se (0.24 µg Se g-1) diets. Major breakpoints for Se were seen at 0.8 and 2 µg Se g-1 in the insoluble and soluble fractions, respectively. Glutathione peroxidase 1 protein abundance reached a plateau at ≥0.08 µg Se g-1diet; Se bound to selenium binding protein 2 was observed with 2 and 5 µg Se g-1 Se. The extreme diets presented the highest number of differentially expressed (P value <0.05, FC ≥1.2) proteins in comparison to the adequate-Se diet (0 µg Se g-1: 45 proteins; 5 µg Se g-1: 59 proteins); 13 proteins were commonly affected in 0 and 5 µg Se g-1 treatments. Network analysis revealed that the metabolism of glutathione, xenobiotics and amino acids were enriched in both 0 and 5 µg Se g-1 diets, indicating a U-shape effect of Se. This similarity is likely due to down-stream effects of lack of essential selenoproteins in Se deficiency and due to toxic effects of Se that exceeds the capacity to cope with excess Se.


Asunto(s)
Hígado/metabolismo , Selenio/farmacología , Selenoproteínas/metabolismo , Animales , Cromatografía Liquida/métodos , Biología Computacional/métodos , Dieta/métodos , Glutatión Peroxidasa/metabolismo , Masculino , Necesidades Nutricionales , Proteómica/métodos , Ratas , Selenio/deficiencia , Selenio/toxicidad , Proteínas de Unión al Selenio/metabolismo , Espectrometría de Masas en Tándem/métodos , Glutatión Peroxidasa GPX1
14.
Int J Mol Sci ; 22(10)2021 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-34069420

RESUMEN

Selenium-binding protein 1 (Selenbp1) is a 2,3,7,8-tetrechlorodibenzo-p-dioxin inducible protein whose function is yet to be comprehensively elucidated. As the highly homologous isoform, Selenbp2, is expressed at low levels in the kidney, it is worthwhile comparing wild-type C57BL mice and Selenbp1-deficient mice under dioxin-free conditions. Accordingly, we conducted a mouse metabolomics analysis under non-dioxin-treated conditions. DNA microarray analysis was performed based on observed changes in lipid metabolism-related factors. The results showed fluctuations in the expression of numerous genes. Real-time RT-PCR confirmed the decreased expression levels of the cytochrome P450 4a (Cyp4a) subfamily, known to be involved in fatty acid ω- and ω-1 hydroxylation. Furthermore, peroxisome proliferator-activated receptor-α (Pparα) and retinoid-X-receptor-α (Rxrα), which form a heterodimer with Pparα to promote gene expression, were simultaneously reduced. This indicated that reduced Cyp4a expression was mediated via decreased Pparα and Rxrα. In line with this finding, increased levels of leukotrienes and prostaglandins were detected. Conversely, decreased hydrogen peroxide levels and reduced superoxide dismutase (SOD) activity supported the suppression of the renal expression of Sod1 and Sod2 in Selenbp1-deficient mice. Therefore, we infer that ablation of Selenbp1 elicits oxidative stress caused by increased levels of superoxide anions, which alters lipid metabolism via the Pparα pathway.


Asunto(s)
Metabolismo de los Lípidos/genética , Proteínas de Unión al Selenio/metabolismo , Animales , Citocromo P-450 CYP4A/metabolismo , Expresión Génica , Riñón/patología , Lípidos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/genética , PPAR alfa/metabolismo , PPAR alfa/fisiología , ARN Mensajero/genética , Receptor alfa X Retinoide/metabolismo , Receptor alfa X Retinoide/fisiología , Proteínas de Unión al Selenio/genética , Factores de Transcripción/metabolismo
15.
Sci Rep ; 11(1): 4132, 2021 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-33603109

RESUMEN

To identify markers in the CSF of multiple sclerosis (MS) subtypes, we used a two-step proteomic approach: (i) Discovery proteomics compared 169 pooled CSF from MS subtypes and inflammatory/degenerative CNS diseases (NMO spectrum and Alzheimer disease) and healthy controls. (ii) Next, 299 proteins selected by comprehensive statistics were quantified in 170 individual CSF samples. (iii) Genes of the identified proteins were also screened among transcripts in 73 MS brain lesions compared to 25 control brains. F-test based feature selection resulted in 8 proteins differentiating the MS subtypes, and secondary progressive (SP)MS was the most different also from controls. Genes of 7 out these 8 proteins were present in MS brain lesions: GOLM was significantly differentially expressed in active, chronic active, inactive and remyelinating lesions, FRZB in active and chronic active lesions, and SELENBP1 in inactive lesions. Volcano maps of normalized proteins in the different disease groups also indicated the highest amount of altered proteins in SPMS. Apolipoprotein C-I, apolipoprotein A-II, augurin, receptor-type tyrosine-protein phosphatase gamma, and trypsin-1 were upregulated in the CSF of MS subtypes compared to controls. This CSF profile and associated brain lesion spectrum highlight non-inflammatory mechanisms in differentiating CNS diseases and MS subtypes and the uniqueness of SPMS.


Asunto(s)
Encéfalo/metabolismo , Líquido Cefalorraquídeo/metabolismo , Esclerosis Múltiple Crónica Progresiva/líquido cefalorraquídeo , Esclerosis Múltiple Crónica Progresiva/metabolismo , Proteoma/genética , Proteoma/metabolismo , Transcriptoma/genética , Adulto , Biomarcadores/líquido cefalorraquídeo , Femenino , Humanos , Masculino , Esclerosis Múltiple Crónica Progresiva/genética , Proteómica/métodos , Remielinización/genética , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo
16.
Hum Cell ; 34(3): 745-749, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33616868

RESUMEN

The production of red blood cells in vitro, which is useful for basic or clinical research, has been improved. Further optimization of culture protocols may facilitate erythroid differentiation from hematopoietic stem cells to red blood cells. However, the details of erythropoiesis, particularly regarding the behaviors of differentiation-related proteins, remain unclear. Here, we performed erythroid differentiation using two independent bone marrow- or cord blood-derived CD34+ cell sources and identified proteins showing reproducible differential expression in all groups. Notably, most of the proteins expressed at the early stage were downregulated during erythroid differentiation. However, seven proteins showed upregulated expression in both bone marrow cells and cord blood cells. These proteins included alpha-synuclein and selenium-binding protein 1, the roles of which have not been clarified in erythropoiesis. There is a possibility that these factors contribute to erythroid differentiation as they maintained a high expression level. These findings provide a foundation for further mechanistic studies on erythropoiesis.


Asunto(s)
Diferenciación Celular/genética , Eritrocitos , Eritropoyesis/genética , Células Madre Hematopoyéticas/metabolismo , Células Madre Hematopoyéticas/fisiología , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Células de la Médula Ósea/metabolismo , Células Cultivadas , Sangre Fetal/citología , Sangre Fetal/metabolismo , Expresión Génica , Humanos , Regulación hacia Arriba
17.
Prostate ; 80(12): 962-976, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32511787

RESUMEN

OBJECTIVE: The broad goal of the research described in this study was to investigate the contributions of selenium-binding protein 1 (SBP1) loss in prostate cancer development and outcome. METHODS: SBP1 levels were altered in prostate cancer cell lines and the consequences on oxygen consumption, expression of proteins associated with energy metabolism, and cellular transformation and migration were investigated. The effects of exposing cells to the SBP1 reaction products, H2 O2 and H2 S were also assessed. In silico analyses identified potential HNF4α binding sites within the SBP1 promoter region and this was investigated using an inhibitor specific for that transcription factor. RESULTS: Using in silico analyses, it was determined that the promoter region of SBP1 contains putative binding sites for the HNF4α transcription factor. The potential for HNF4α to regulate SBP1 expression was supported by data indicating that HNF4α inhibition resulted in a dose-response increase in the levels of SBP1 messenger RNA and protein, identifying HNF4α as a novel negative regulator of SBP1 expression in prostate cancer cells. The consequences of altering the levels of SBP1 were investigated by ectopically expressing SBP1 in PC-3 prostate cancer cells, where SBP1 expression attenuated anchorage-independent cellular growth and migration in culture, both properties associated with transformation. SBP1 overexpression reduced oxygen consumption in these cells and increased the activation of AMP-activated protein kinase (AMPK), a major regulator of energy homeostasis. In addition, the reaction products of SBP1, H2 O2 , and H2 S also activated AMPK. CONCLUSIONS: Based on the obtained data, it is hypothesized that SBP1 negatively regulates oxidative phosphorylation (OXPHOS) in the healthy prostate cells by the production of H2 O2 and H2 S and consequential activation of AMPK. The reduction of SBP1 levels in prostate cancer can occur due to increased binding of HNF4α, acting as a transcriptional inhibitor to the SBP1 promoter. Consequently, there is a reduction in H2 O2 and H2 S-mediated signaling, inhibition of AMPK, and stimulation of OXPHOS and building blocks of biomolecules needed for tumor growth and progression. Other effects of SBP1 loss in tumor cells remain to be discovered.


Asunto(s)
Neoplasias de la Próstata/metabolismo , Proteínas de Unión al Selenio/metabolismo , Quinasas de la Proteína-Quinasa Activada por el AMP , Línea Celular Tumoral , Transformación Celular Viral , Metilación de ADN , Progresión de la Enfermedad , Metabolismo Energético , Regulación Neoplásica de la Expresión Génica , Glucosa/metabolismo , Factor Nuclear 4 del Hepatocito/genética , Factor Nuclear 4 del Hepatocito/metabolismo , Humanos , Peróxido de Hidrógeno/metabolismo , Sulfuro de Hidrógeno/metabolismo , Masculino , Fosforilación Oxidativa , Consumo de Oxígeno , Células PC-3 , Regiones Promotoras Genéticas , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/patología , Proteínas Quinasas/metabolismo , Proteínas de Unión al Selenio/deficiencia , Proteínas de Unión al Selenio/genética , Fracciones Subcelulares/metabolismo
18.
Viruses ; 12(5)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32443734

RESUMEN

Selenium binding protein 1 (SELENBP1) has been known to be reduced in various types cancer, and epigenetic change is shown to be likely to account for the reduction of SELNEBP1 expression. With cDNA microarray comparative analysis, we found that SELENBP1 is markedly decreased in hepatitis B virus-X (HBx)-expressing cells. To clarify the effect of HBx on SELENBP1 expression, we compared the expression levels of SELENBP1 mRNA and protein by semi-quantitative RT-PCR, Northern blot, and Western blot. As expected, SELENBP1 expression was shown to be reduced in cells expressing HBx, and reporter gene analysis showed that the SELENBP1 promoter is repressed by HBx. In addition, the stepwise deletion of 5' flanking promoter sequences resulted in a gradual decrease in basal promoter activity and inhibition of SELENBP1 expression by HBx. Moreover, immunohistochemistry on tissue microarrays containing 60 pairs of human liver tissue showed decreased intensity of SELENBP1 in tumor tissues as compared with their matched non-tumor liver tissues. Taken together, our findings suggest that inhibition of SELENBP1 expression by HBx might act as one of the causes in the development of hepatocellular carcinoma caused by HBV infection.


Asunto(s)
Regulación hacia Abajo , Virus de la Hepatitis B/metabolismo , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Epigénesis Genética , Regulación Neoplásica de la Expresión Génica , Hepatitis B , Virus de la Hepatitis B/genética , Humanos , Inmunohistoquímica , Hígado/patología , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero , Transactivadores , Proteínas Reguladoras y Accesorias Virales
19.
Nutrients ; 12(4)2020 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-32290296

RESUMEN

In this Special Issue of Nutrients, "The Role of Selenium in Health and Disease" covers diverse diseases in the 8 original research articles and 2 reviews, such as cardiovascular disorders (CVD), metabolic syndrome, obesity, cancer, and viral infection, and highlights novel potential biomarkers of disease risk and prognosis [...].


Asunto(s)
Enfermedades Cardiovasculares/etiología , Síndrome Metabólico/etiología , Neoplasias/etiología , Obesidad/etiología , Selenio/deficiencia , Selenio/fisiología , Biomarcadores/metabolismo , Enfermedades Cardiovasculares/diagnóstico , Enfermedades Cardiovasculares/metabolismo , Humanos , Síndrome Metabólico/diagnóstico , Síndrome Metabólico/metabolismo , Neoplasias/diagnóstico , Neoplasias/metabolismo , Fenómenos Fisiológicos de la Nutrición , Obesidad/diagnóstico , Obesidad/metabolismo , Selenio/metabolismo , Proteínas de Unión al Selenio/metabolismo , Selenoproteína P/metabolismo , Selenoproteínas/metabolismo
20.
J Transl Med ; 18(1): 17, 2020 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-31918717

RESUMEN

BACKGROUND: Recent studies have shown that selenium-binding protein 1 (SELENBP1) is significantly down-regulated in a variety of solid tumors. Nevertheless, the clinical relevance of SELENBP1 in human bladder cancer has not been described in any detail, and the molecular mechanism underlying its inhibitory role in cancer cell growth is largely unknown. METHODS: SELENBP1 expression levels in tumor tissues and adjacent normal tissues were evaluated using immunoblotting assay. The association of SELENBP1 expression, clinicopathological features, and clinical outcome was determined using publicly available dataset from The Cancer Genome Atlas bladder cancer (TCGA-BLCA) cohort. DNA methylation in SELENBP1 gene was assessed using online MEXPRESS tool. We generated stable SELENBP1-overexpression and their corresponding control cell lines to determine its potential effect on cell cycle and transcriptional activity of p21 by using flow cytometry and luciferase reporter assay, respectively. The dominant-negative mutant constructs, TAM67 and STAT1 Y701F, were employed to define the roles of c-Jun and STAT1 in the regulation of p21 protein. RESULTS: Here, we report that the reduction of SELENBP1 is a frequent event and significantly correlates with tumor progression as well as unfavorable prognosis in human bladder cancer. By utilizing TCGA-BLCA cohort, DNA hypermethylation, especially in gene body, is shown to be likely to account for the reduction of SELENBP1 expression. However, an apparent paradox is observed in its 3'-UTR region, in which DNA methylation is positively related to SELENBP1 expression. More importantly, we verify the growth inhibitory role for SELENBP1 in human bladder cancer, and further report a novel function for SELENBP1 in transcriptionally modulating p21 expression through a p53-independent mechanism. Instead, ectopic expression of SELENBP1 pronouncedly attenuates the phosphorylation of c-Jun and STAT1, both of which are indispensable for SELENBP1-mediated transcriptional induction of p21, thereby resulting in the G0/G1 phase cell cycle arrest in bladder cancer cell. CONCLUSIONS: Taken together, our findings provide clinical and molecular insights into improved understanding of the tumor suppressive role for SELENBP1 in human bladder cancer, suggesting that SELENBP1 could potentially be utilized as a prognostic biomarker as well as a therapeutic target in future cancer therapy.


Asunto(s)
Proteínas de Unión al Selenio , Proteína p53 Supresora de Tumor , Neoplasias de la Vejiga Urinaria , Puntos de Control del Ciclo Celular , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Femenino , Humanos , Masculino , Pronóstico , Proteínas de Unión al Selenio/genética , Proteínas de Unión al Selenio/metabolismo , Neoplasias de la Vejiga Urinaria/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...