Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 614
Filtrar
1.
Commun Biol ; 4(1): 1158, 2021 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-34620987

RESUMEN

The enpp ectonucleotidases regulate lipidic and purinergic signalling pathways by controlling the extracellular concentrations of purines and bioactive lipids. Although both pathways are key regulators of kidney physiology and linked to human renal pathologies, their roles during nephrogenesis remain poorly understood. We previously showed that the pronephros was a major site of enpp expression and now demonstrate an unsuspected role for the conserved vertebrate enpp4 protein during kidney formation in Xenopus. Enpp4 over-expression results in ectopic renal tissues and, on rare occasion, complete mini-duplication of the entire kidney. Enpp4 is required and sufficient for pronephric markers expression and regulates the expression of RA, Notch and Wnt pathway members. Enpp4 is a membrane protein that binds, without hydrolyzing, phosphatidylserine and its effects are mediated by the receptor s1pr5, although not via the generation of S1P. Finally, we propose a novel and non-catalytic mechanism by which lipidic signalling regulates nephrogenesis.


Asunto(s)
Tipificación del Cuerpo/genética , Riñón/fisiología , Hidrolasas Diéster Fosfóricas/fisiología , Transducción de Señal , Proteínas de Xenopus/fisiología , Xenopus laevis/genética , Animales , Embrión no Mamífero/embriología , Desarrollo Embrionario , Redes Reguladoras de Genes , Riñón/embriología , Hidrolasas Diéster Fosfóricas/genética , Proteínas de Xenopus/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
2.
Gene ; 799: 145824, 2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34252531

RESUMEN

The SLC39A12 gene encodes the zinc transporter protein ZIP12, which is expressed across many tissues and is highly abundant in the vertebrate nervous system. As a zinc transporter, ZIP12 functions to transport zinc across cellular membranes, including cellular zinc influx across the plasma membrane. Genome-wide association and exome sequencing studies have shown that brain susceptibility-weighted magnetic resonance imaging (MRI) intensity is associated with ZIP12 polymorphisms and rare mutations. ZIP12 is required for neural tube closure and embryonic development in Xenopus tropicalis. Frog embryos depleted of ZIP12 by antisense morpholinos develop an anterior neural tube defect and lack viability. ZIP12 is also necessary for neurite outgrowth and mitochondrial function in mouse neural cells. ZIP12 mRNA is increased in brain regions of schizophrenic patients. Outside of the nervous system, hypoxia induces ZIP12 expression in multiple mammalian species, including humans, which leads to endothelial and smooth muscle thickening in the lung and contributes towards pulmonary hypertension. Other studies have associated ZIP12 with other diseases such as cancer. Given that ZIP12 is highly expressed in the brain and that susceptibility-weighted MRI is associated with brain metal content, ZIP12 may affect neurological diseases and psychiatric illnesses such as Parkinson's disease, Alzheimer's disease, and schizophrenia. Furthermore, the induction of ZIP12 and resultant zinc uptake under pathophysiological conditions may be a critical component of disease pathology, such as in pulmonary hypertension. Drug compounds that bind metals like zinc may be able to treat diseases associated with impaired zinc homeostasis and altered ZIP12 function.


Asunto(s)
Proteínas de Transporte de Catión/fisiología , Fenómenos Fisiológicos del Sistema Nervioso , Proteínas de Xenopus/fisiología , Zinc/metabolismo , Animales , Trastorno Autístico/metabolismo , Bancos de Muestras Biológicas , Regulación del Desarrollo de la Expresión Génica , Humanos , Pulmón/fisiopatología , Familia de Multigenes , Enfermedades Neurodegenerativas/etiología , Estrés Oxidativo/fisiología , Reino Unido , Vertebrados/genética
3.
Sci Rep ; 11(1): 13433, 2021 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-34183732

RESUMEN

The Wnt pathway activates target genes by controlling the ß-catenin-T-cell factor (TCF) transcriptional complex during embryonic development and cancer. This pathway can be potentiated by R-spondins, a family of proteins that bind RNF43/ZNRF3 E3 ubiquitin ligases and LGR4/5 receptors to prevent Frizzled degradation. Here we demonstrate that, during Xenopus anteroposterior axis specification, Rspo2 functions as a Wnt antagonist, both morphologically and at the level of gene targets and pathway mediators. Unexpectedly, the binding to RNF43/ZNRF3 and LGR4/5 was not required for the Wnt inhibitory activity. Moreover, Rspo2 did not influence Dishevelled phosphorylation in response to Wnt ligands, suggesting that Frizzled activity is not affected. Further analysis indicated that the Wnt antagonism is due to the inhibitory effect of Rspo2 on TCF3/TCF7L1 phosphorylation that normally leads to target gene activation. Consistent with this mechanism, Rspo2 anteriorizing activity has been rescued in TCF3-depleted embryos. These observations suggest that Rspo2 is a context-specific regulator of TCF3 phosphorylation and Wnt signaling.


Asunto(s)
Tipificación del Cuerpo/efectos de los fármacos , Péptidos y Proteínas de Señalización Intercelular/fisiología , Factor de Transcripción 3/antagonistas & inhibidores , Vía de Señalización Wnt/efectos de los fármacos , Proteínas de Xenopus/antagonistas & inhibidores , Proteínas de Xenopus/fisiología , Animales , Tipificación del Cuerpo/fisiología , Embrión no Mamífero/anomalías , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Desarrollo Embrionario/efectos de los fármacos , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Genes Reporteros , Cabeza/embriología , Fosforilación/efectos de los fármacos , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Factor de Transcripción 3/metabolismo , Proteínas de Xenopus/biosíntesis , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/farmacología , Xenopus laevis/embriología
4.
Proc Natl Acad Sci U S A ; 118(20)2021 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-33975953

RESUMEN

Fibroblast growth factor (FGF)/extracellular signal-regulated kinase (ERK) signaling plays a crucial role in anterior-posterior (A-P) axial patterning of vertebrate embryos by promoting posterior development. In our screens for novel developmental regulators in Xenopus embryos, we identified Fam3b as a secreted factor regulated in ectodermal explants. Family with sequence similarity 3 member B (FAM3B)/PANDER (pancreatic-derived factor) is a cytokine involved in glucose metabolism, type 2 diabetes, and cancer in mammals. However, the molecular mechanism of FAM3B action in these processes remains poorly understood, largely because its receptor is still unidentified. Here we uncover an unexpected role of FAM3B acting as a FGF receptor (FGFR) ligand in Xenopus embryos. fam3b messenger RNA (mRNA) is initially expressed maternally and uniformly in the early Xenopus embryo and then in the epidermis at neurula stages. Overexpression of Xenopus fam3b mRNA inhibited cephalic structures and induced ectopic tail-like structures. Recombinant human FAM3B protein was purified readily from transfected tissue culture cells and, when injected into the blastocoele cavity, also caused outgrowth of tail-like structures at the expense of anterior structures, indicating FGF-like activity. Depletion of fam3b by specific antisense morpholino oligonucleotides in Xenopus resulted in macrocephaly in tailbud tadpoles, rescuable by FAM3B protein. Mechanistically, FAM3B protein bound to FGFR and activated the downstream ERK signaling in an FGFR-dependent manner. In Xenopus embryos, FGFR activity was required epistatically downstream of Fam3b to mediate its promotion of posterior cell fates. Our findings define a FAM3B/FGFR/ERK-signaling pathway that is required for axial patterning in Xenopus embryos and may provide molecular insights into FAM3B-associated human diseases.


Asunto(s)
Citocinas/fisiología , Desarrollo Embrionario/fisiología , Receptores de Factores de Crecimiento de Fibroblastos/metabolismo , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Animales , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Células HEK293 , Humanos
5.
Gene ; 787: 145647, 2021 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-33845136

RESUMEN

RecQ4, a member of the RecQ helicase family, is required for the maintenance of genome integrity. RecQ4 has been shown to promote the following two DNA double-strand break (DSB) repair pathways: non-homologous end joining (NHEJ) and homologous recombination (HR). However, its molecular function has not been fully elucidated. In the present study, we aimed to investigate the role of RecQ4 in NHEJ using Xenopus egg extracts. The N-terminal 598 amino acid region of Xenopus RecQ4 (N598), which lacks a central helicase domain and a downstream C-terminal region, was added to the extracts and its effect on the joining of DNA ends was analyzed. We found that N598 inhibited the joining of linearized DNA ends in the extracts. In addition, N598 inhibited DSB-induced chromatin binding of Ku70, which is essential for NHEJ, while the DSB-induced chromatin binding of the HR-associated proteins, replication protein A (RPA) and Rad51, increased upon the addition of N598. These results suggest that RecQ4 possibly influences the choice of the DSB repair pathway by influencing the association of the Ku heterodimer with the DNA ends.


Asunto(s)
Reparación del ADN por Unión de Extremidades , Autoantígeno Ku/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Xenopus/fisiología , Animales , Cromatina , ADN/metabolismo , Autoantígeno Ku/antagonistas & inhibidores , Unión Proteica , RecQ Helicasas/genética , Xenopus laevis
6.
Acta Biochim Biophys Sin (Shanghai) ; 53(4): 463-471, 2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33751023

RESUMEN

A large number of proteins involved in RNA metabolism possess a double-stranded RNA-binding domain (dsRBD), whose sequence variations and functional versatilities are still being recognized. All dsRBDs have a similar structural fold: α1-L1-ß1-L2-ß2-L3-ß3-L4-α2 (α represents an α-helix, ß a ß-sheet, and L a loop conformation between the well-defined secondary structures). Our recent work revealed that the dsRBD in Drosha, which is involved in animal microRNA (miRNA) biogenesis, differs from other dsRBDs by containing a short insertion in its L1 region and that this insertion is important for Drosha function. We asked why the same insertion is excluded in all other dsRBDs and proposed that a longer L1 may be detrimental to their functions. In this study, to test this hypothesis, we inserted the Drosha sequence into several well-known dsRBDs from various organisms. Gel mobility shift assay demonstrated that L1 extension invariably reduced RNA binding by these dsRBDs. In addition, such a mutation in Dicer, another protein involved in miRNA biogenesis, impaired Dicer's ability to process miRNAs, which led to de-repression of reporter expression, in human cells. Taken together, our results add to the growing appreciation of the diversity in dsRBDs and suggest that dsRBDs have intricate structures and functions that are sensitive to perturbations in the L1 region.


Asunto(s)
Motivo de Unión al ARN Bicatenario , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/fisiología , Secuencia de Aminoácidos , Animales , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/fisiología , ADN de Cadena Simple/metabolismo , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Proteínas de Drosophila/fisiología , Células HEK293 , Humanos , MicroARNs/metabolismo , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Estructura Secundaria de Proteína , ARN/metabolismo , Proteínas de Unión al ARN/genética , Ribonucleasa III/química , Ribonucleasa III/genética , Ribonucleasa III/fisiología , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/fisiología , Proteínas de Xenopus/química , Proteínas de Xenopus/genética , Proteínas de Xenopus/fisiología
7.
Nucleic Acids Res ; 49(6): 3263-3273, 2021 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-33660782

RESUMEN

The tumor suppressor BRCA1 is considered a master regulator of genome integrity. Although widely recognized for its DNA repair functions, BRCA1 has also been implicated in various mechanisms of chromatin remodeling and transcription regulation. However, the precise role that BRCA1 plays in these processes has been difficult to establish due to the widespread consequences of its cellular dysfunction. Here, we use nucleoplasmic extract derived from the eggs of Xenopus laevis to investigate the role of BRCA1 in a cell-free transcription system. We report that BRCA1-BARD1 suppresses transcription initiation independent of DNA damage signaling and its established role in histone H2A ubiquitination. BRCA1-BARD1 acts through a histone intermediate, altering acetylation of histone H4K8 and recruitment of the chromatin reader and oncogene regulator BRD4. Together, these results establish a functional relationship between an established (BRCA1) and emerging (BRD4) regulator of genome integrity.


Asunto(s)
Proteína BRCA1/fisiología , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Transcripción Genética , Ubiquitina-Proteína Ligasas/fisiología , Proteínas de Xenopus/fisiología , Animales , Daño del ADN , Histonas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis
8.
Dev Biol ; 469: 46-53, 2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-33065118

RESUMEN

Ciliopathies affect a variety of tissues during development including the heart, kidneys, respiratory tract, and retina. Though an increasing number of monogenic causes of ciliopathies have been described, many remain unexplained. Recently, recessive variants in NUP93 and NUP205 encoding two proteins of the inner ring of the nuclear pore complex were implicated as causes of steroid resistant nephrotic syndrome. In addition, we previously found that the inner ring nucleoporins NUP93 and NUP188 function in proper left-right patterning in developing embryos via a role at the cilium. Here, we describe the role of an additional inner ring nucleoporin NUP205 in cilia biology and establishment of normal organ situs. Using knockdown in Xenopus, we show that Nup205 depletion results in loss of cilia and abnormal cardiac morphology. Furthermore, by transmission electron microscopy, we observe a loss of cilia and mispositioning of intracellular ciliary structures such as basal bodies and rootlets upon depleting inner ring nucleoporins. We describe a model wherein NUP93 interacting with either NUP188 or NUP205 is necessary for cilia. We thus provide evidence that dysregulation of inner ring nucleoporin genes that have been identified in patients may contribute to pathogenesis through cilia dysfunction.


Asunto(s)
Cilios/fisiología , Proteínas de Complejo Poro Nuclear/fisiología , Proteínas de Xenopus/fisiología , Animales , Tipificación del Cuerpo , Cilios/ultraestructura , Epidermis/embriología , Epidermis/ultraestructura , Técnicas de Silenciamiento del Gen , Cardiopatías Congénitas/genética , Humanos , Proteínas de Complejo Poro Nuclear/genética , Pronefro/ultraestructura , Xenopus/embriología , Proteínas de Xenopus/genética
9.
Dev Biol ; 470: 74-83, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33159936

RESUMEN

We previously identified the protein Lbh as necessary for cranial neural crest (CNC) cell migration in Xenopus through the use of morpholinos. However, Lbh is a maternally deposited protein and morpholinos achieve knockdowns through prevention of translation. In order to investigate the role of Lbh in earlier embryonic events, we employed the new technique "Trim-Away" to degrade this maternally deposited protein. Trim-Away utilizes the E3 ubiquitin ligase trim21 to degrade proteins targeted with an antibody and was developed in mammalian systems. Our results show that Xenopus is amenable to the Trim-Away technique. We also show that early knockdown of Lbh in Xenopus results in defects in gastrulation that present with a decrease in fibronectin matrix assembly, an increased in mesodermal cell migration and decrease in endodermal cell cohesion. We further show that the technique is also effective on a second abundant maternal protein PACSIN2. We discuss potential advantages and limit of the technique in Xenopus embryos as well as the mechanism of gastrulation inhibition.


Asunto(s)
Gastrulación , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Proteínas Adaptadoras Transductoras de Señales/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Anticuerpos Monoclonales/inmunología , Movimiento Celular , Ectodermo/citología , Ectodermo/embriología , Ectodermo/patología , Inducción Embrionaria , Endodermo/citología , Endodermo/embriología , Endodermo/fisiología , Fibronectinas/metabolismo , Mesodermo/citología , Mesodermo/embriología , Mesodermo/fisiología , Morfolinos , Cresta Neural/citología , Cresta Neural/embriología , Proteolisis , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Proteínas de Xenopus/genética , Proteínas de Xenopus/inmunología , Proteínas de Xenopus/metabolismo
10.
PLoS Biol ; 18(11): e3000901, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33137110

RESUMEN

The steroid hormone progesterone (P4) mediates many physiological processes through either nuclear receptors that modulate gene expression or membrane P4 receptors (mPRs) that mediate nongenomic signaling. mPR signaling remains poorly understood. Here we show that the topology of mPRß is similar to adiponectin receptors and opposite to that of G-protein-coupled receptors (GPCRs). Using Xenopus oocyte meiosis as a well-established physiological readout of nongenomic P4 signaling, we demonstrate that mPRß signaling requires the adaptor protein APPL1 and the kinase Akt2. We further show that P4 induces clathrin-dependent endocytosis of mPRß into signaling endosome, where mPR interacts transiently with APPL1 and Akt2 to induce meiosis. Our findings outline the early steps involved in mPR signaling and expand the spectrum of mPR signaling through the multitude of pathways involving APPL1.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores de Progesterona/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas Adaptadoras Transductoras de Señales/fisiología , Animales , Endocitosis , Endosomas/metabolismo , Femenino , Meiosis/fisiología , Oocitos/metabolismo , Progesterona/farmacología , Receptores Acoplados a Proteínas G/metabolismo , Transducción de Señal , Proteínas de Xenopus/fisiología , Xenopus laevis
11.
Sci Rep ; 10(1): 17326, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-33060598

RESUMEN

Classical cadherins are well-known adhesion molecules responsible for physically connecting neighboring cells and signaling this cell-cell contact. Recent studies have suggested novel signaling roles for "non-junctional" cadherins (NJCads); however, the function of cadherin signaling independent of cell-cell contacts remains unknown. In this study, mesendodermal cells and tissues from gastrula stage Xenopus laevis embryos demonstrate that deletion of extracellular domains of Cadherin3 (Cdh3; formerly C-cadherin in Xenopus) disrupts contact inhibition of locomotion. In both bulk Rac1 activity assays and spatio-temporal FRET image analysis, the extracellular and cytoplasmic Cdh3 domains disrupt NJCad signaling and regulate Rac1 activity in opposing directions. Stabilization of the cytoskeleton counteracted this regulation in single cell migration assays. Our study provides novel insights into adhesion-independent signaling by Cadherin3 and its role in regulating single and collective cell migration.


Asunto(s)
Cadherinas/fisiología , Movimiento Celular/fisiología , Proteínas de Xenopus/fisiología , Proteína de Unión al GTP rac1/fisiología , Animales , Cadherinas/genética , Mutación , Proteínas de Xenopus/genética , Xenopus laevis/embriología
12.
Acta Biochim Biophys Sin (Shanghai) ; 52(11): 1215-1226, 2020 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-33098302

RESUMEN

X-box-binding protein 1 (XBP1) is a protein containing the basic leucine zipper structure. It belongs to the cAMP-response element binding protein (CREB)/activating transcription factor transcription factor family. As the main transcription factor, spliced XBP1 (XBP1s) participates in many physiological and pathological processes and plays an important role in embryonic development. Previous studies showed that XBP1-knockout mice died because of pancreatic exocrine function deficiency, indicating that XBP1 plays an important role in pancreatic development. However, the exact role of XBP1 in pancreatic development remains unclear. This study aimed to investigate the role of XBP1 in the pancreatic development of Xenopus laevis embryos. Whole-mount in situ hybridization and quantitative real-time PCR results revealed that the expression levels of pancreatic progenitor marker genes pdx1, p48, ngn3, and sox9 were downregulated in XBP1s morpholino oligonucleotide (MO)-injected embryos. The expression levels of pancreatic exocrine and endocrine marker genes insulin and amylase were also downregulated. Through the overexpression of XBP1s, the phenotype and gene expressions were opposite to those in XBP1s MO-injected embryos. Luciferase and chromatin immunoprecipitation assays showed that XBP1s could bind to the XBP1-binding site in the foxa2 promoter. These results revealed that XBP1 is required in the pancreatic development of Xenopus laevis and might function by regulating foxa2.


Asunto(s)
Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/fisiología , Páncreas/embriología , Proteínas de Xenopus/fisiología , Xenopus laevis/embriología , Xenopus laevis/genética , Animales , Apoptosis/genética , Proliferación Celular/genética , Inmunoprecipitación de Cromatina , Desarrollo Embrionario/genética , Factores de Transcripción Forkhead/genética , Factores de Transcripción Forkhead/metabolismo , Regulación de la Expresión Génica , Técnicas de Silenciamiento del Gen , Estratos Germinativos/embriología , Estratos Germinativos/metabolismo , Páncreas/citología , Páncreas/metabolismo , Regiones Promotoras Genéticas , Xenopus laevis/metabolismo
13.
Cell Rep ; 32(4): 107973, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32726636

RESUMEN

Canonical Wnt signaling is emerging as a major regulator of endocytosis. Here, we report that Wnt-induced macropinocytosis is regulated through glycogen synthase kinase 3 (GSK3) and the ß-catenin destruction complex. We find that mutation of Axin1, a tumor suppressor and component of the destruction complex, results in the activation of macropinocytosis. Surprisingly, inhibition of GSK3 by lithium chloride (LiCl), CHIR99021, or dominant-negative GSK3 triggers macropinocytosis. GSK3 inhibition causes a rapid increase in acidic endolysosomes that is independent of new protein synthesis. GSK3 inhibition or Axin1 mutation increases lysosomal activity, which can be followed with tracers of active cathepsin D, ß-glucosidase, and ovalbumin degradation. Microinjection of LiCl into the blastula cavity of Xenopus embryos causes a striking increase in dextran macropinocytosis. The effects of GSK3 inhibition on protein degradation in endolysosomes are blocked by the macropinocytosis inhibitors EIPA or IPA-3, suggesting that increases in membrane trafficking drive lysosomal activity.


Asunto(s)
Proteína Axina/metabolismo , Glucógeno Sintasa Quinasa 3/metabolismo , Pinocitosis/fisiología , Proteínas de Xenopus/metabolismo , Animales , Línea Celular Tumoral , Endocitosis/fisiología , Endosomas/metabolismo , Glucógeno Sintasa Quinasa 3/fisiología , Lisosomas/metabolismo , Fosforilación , Proteínas Wnt/metabolismo , Vía de Señalización Wnt/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis , beta Catenina/metabolismo
14.
Dev Dyn ; 249(8): 912-923, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32315468

RESUMEN

A common theme in organogenesis is how the final structure of organs emerge from epithelial tube structures, with the formation of the neural tube being one of the best examples. Two types of cell movements co-occur during neural tube closure involving the migration of cells toward the midline of the embryo (mediolateral intercalation or convergent extension) as well as the deep movement of cells from inside the embryo to the outside of the lateral side of the neural plate (radial intercalation). Failure of either type of cell movement will prevent neural tube closure, which can produce a range of neural tube defects (NTDs), a common congenital disease in humans. Numerous studies have identified signaling pathways that regulate mediolateral intercalation during neural tube closure. Less understood are the pathways that govern radial intercalation. Using the Xenopus laevis system, our group reported the identification of transient receptor potential (TRP) channels, TRPM6 and TRPM7, and the Mg2+ ion they conduct, as novel and key factors regulating both mediolateral and radial intercalation during neural tube closure. Here we broadly discuss tubulogenesis and cell intercalation from the perspective of neural tube closure and the respective roles of TRPM7 and TRPM6 in this critical embryonic process.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica , Magnesio/química , Proteínas Serina-Treonina Quinasas/fisiología , Canales Catiónicos TRPM/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo , Células 3T3 , Animales , Movimiento Celular , Desarrollo Embrionario , Humanos , Iones , Magnesio/metabolismo , Ratones , Placa Neural/metabolismo , Tubo Neural/metabolismo , Defectos del Tubo Neural/genética , Defectos del Tubo Neural/metabolismo , Neurulación , Dominios Proteicos , Proteínas Serina-Treonina Quinasas/genética , Transducción de Señal , Canales Catiónicos TRPM/genética , Canales Catiónicos TRPM/metabolismo , Proteínas de Xenopus/genética , Pez Cebra
15.
Elife ; 92020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32207683

RESUMEN

The cardiac ventricular action potential depends on several voltage-gated ion channels, including NaV, CaV, and KV channels. Mutations in these channels can cause Long QT Syndrome (LQTS) which increases the risk for ventricular fibrillation and sudden cardiac death. Polyunsaturated fatty acids (PUFAs) have emerged as potential therapeutics for LQTS because they are modulators of voltage-gated ion channels. Here we demonstrate that PUFA analogues vary in their selectivity for human voltage-gated ion channels involved in the ventricular action potential. The effects of specific PUFA analogues range from selective for a specific ion channel to broadly modulating cardiac ion channels from all three families (NaV, CaV, and KV). In addition, a PUFA analogue selective for the cardiac IKs channel (Kv7.1/KCNE1) is effective in shortening the cardiac action potential in human-induced pluripotent stem cell-derived cardiomyocytes. Our data suggest that PUFA analogues could potentially be developed as therapeutics for LQTS and cardiac arrhythmia.


Asunto(s)
Canales de Calcio Tipo L/efectos de los fármacos , Ácidos Grasos Insaturados/farmacología , Canal de Potasio KCNQ1/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/efectos de los fármacos , Canales de Potasio con Entrada de Voltaje/efectos de los fármacos , Proteínas de Xenopus/efectos de los fármacos , Potenciales de Acción/efectos de los fármacos , Animales , Antiarrítmicos/farmacología , Canales de Calcio Tipo L/fisiología , Células Madre Pluripotentes Inducidas/citología , Canal de Potasio KCNQ1/fisiología , Síndrome de QT Prolongado/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Canal de Sodio Activado por Voltaje NAV1.5/fisiología , Canales de Potasio con Entrada de Voltaje/fisiología , Proteínas de Xenopus/fisiología , Xenopus laevis
16.
J Biol Chem ; 295(9): 2724-2735, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31996376

RESUMEN

Embryonic cell fate specification and axis patterning requires integration of several signaling pathways that orchestrate region-specific gene expression. The transcription factor signal transducer and activator of transcription 3 (Stat3) plays important roles during early development, but it is unclear how Stat3 is activated. Here, using Xenopus as a model, we analyzed the post-translational regulation and functional consequences of Stat3 activation in dorsoventral axis patterning. We show that Stat3 phosphorylation, lysine methylation, and transcriptional activity increase before gastrulation and induce ventral mesoderm formation. Down syndrome critical region gene 6 (DSCR6), a RIPPLY family member that induces dorsal mesoderm by releasing repressive polycomb group proteins from chromatin, bound to the Stat3 C-terminal region and antagonized its transcriptional and ventralizing activities by interfering with its lysine methylation. Enhancer of zeste 2 polycomb-repressive complex 2 subunit (Ezh2) also bound to this region; however, its methyltransferase activity was required for Stat3 methylation and activation. Loss of Ezh2 resulted in dorsalization of ventral mesoderm and formation of a secondary axis. Furthermore, interference with Ezh2 phosphorylation also prevented Stat3 lysine methylation and transcriptional activity. Thus, inhibition of either Ezh2 phosphorylation or Stat3 lysine methylation compensated for the absence of DSCR6 function. These results reveal that DSCR6 and Ezh2 critically and post-translationally regulate Stat3 transcriptional activity. Ezh2 promotes Stat3 activation in ventral mesoderm formation independently of epigenetic regulation, whereas DSCR6 specifies dorsal fate by counteracting this ventralizing activity. This antagonism helps pattern the mesoderm along the dorsoventral axis, representing a critical facet of cell identity regulation during development.


Asunto(s)
Proteína Potenciadora del Homólogo Zeste 2/fisiología , Proteínas Represoras/fisiología , Factor de Transcripción STAT3/metabolismo , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiología , Xenopus/crecimiento & desarrollo , Animales , Tipificación del Cuerpo , Regulación del Desarrollo de la Expresión Génica , Mesodermo/citología , Procesamiento Proteico-Postraduccional , Factores de Transcripción
17.
Hum Mol Genet ; 29(2): 305-319, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31813957

RESUMEN

Kabuki syndrome is an autosomal dominant developmental disorder with high similarities to CHARGE syndrome. It is characterized by a typical facial gestalt in combination with short stature, intellectual disability, skeletal findings and additional features like cardiac and urogenital malformations, cleft palate, hearing loss and ophthalmological anomalies. The major cause of Kabuki syndrome are mutations in KMT2D, a gene encoding a histone H3 lysine 4 (H3K4) methyltransferase belonging to the group of chromatin modifiers. Here we provide evidence that Kabuki syndrome is a neurocrestopathy, by showing that Kmt2d loss-of-function inhibits specific steps of neural crest (NC) development. Using the Xenopus model system, we find that Kmt2d loss-of-function recapitulates major features of Kabuki syndrome including severe craniofacial malformations. A detailed marker analysis revealed defects in NC formation as well as migration. Transplantation experiments confirm that Kmt2d function is required in NC cells. Furthermore, analyzing in vivo and in vitro NC migration behavior demonstrates that Kmt2d is necessary for cell dispersion but not protrusion formation of migrating NC cells. Importantly, Kmt2d knockdown correlates with a decrease in H3K4 monomethylation and H3K27 acetylation supporting a role of Kmt2d in the transcriptional activation of target genes. Consistently, using a candidate approach, we find that Kmt2d loss-of-function inhibits Xenopus Sema3F expression, and overexpression of Sema3F can partially rescue Kmt2d loss-of-function defects. Taken together, our data reveal novel functions of Kmt2d in multiple steps of NC development and support the hypothesis that major features of Kabuki syndrome are caused by defects in NC development.


Asunto(s)
Anomalías Múltiples/enzimología , Cara/anomalías , Enfermedades Hematológicas/enzimología , N-Metiltransferasa de Histona-Lisina/genética , N-Metiltransferasa de Histona-Lisina/metabolismo , Cresta Neural/metabolismo , Enfermedades Vestibulares/enzimología , Proteínas de Xenopus/genética , Proteínas de Xenopus/metabolismo , Anomalías Múltiples/genética , Anomalías Múltiples/metabolismo , Anomalías Múltiples/patología , Acetilación , Animales , Movimiento Celular/genética , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Cara/patología , Enfermedades Hematológicas/genética , Enfermedades Hematológicas/metabolismo , Enfermedades Hematológicas/patología , Histonas/metabolismo , Mutación con Pérdida de Función , Metilación , Mutación , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Cresta Neural/enzimología , Cresta Neural/patología , Placa Neural/crecimiento & desarrollo , Placa Neural/metabolismo , Placa Neural/patología , Semaforinas/genética , Semaforinas/metabolismo , Enfermedades Vestibulares/genética , Enfermedades Vestibulares/metabolismo , Enfermedades Vestibulares/patología , Xenopus/embriología , Xenopus/genética , Xenopus/metabolismo , Proteínas de Xenopus/fisiología
18.
J Biol Chem ; 294(28): 10969-10986, 2019 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-31152063

RESUMEN

The Musashi family of mRNA translational regulators controls both physiological and pathological stem cell self-renewal primarily by repressing target mRNAs that promote differentiation. In response to differentiation cues, Musashi can switch from a repressor to an activator of target mRNA translation. However, the molecular events that distinguish Musashi-mediated translational activation from repression are not understood. We have previously reported that Musashi function is required for the maturation of Xenopus oocytes and specifically for translational activation of specific dormant maternal mRNAs. Here, we employed MS to identify cellular factors necessary for Musashi-dependent mRNA translational activation. We report that Musashi1 needs to associate with the embryonic poly(A)-binding protein (ePABP) or the canonical somatic cell poly(A)-binding protein PABPC1 for activation of Musashi target mRNA translation. Co-immunoprecipitation studies demonstrated an increased Musashi1 interaction with ePABP during oocyte maturation. Attenuation of endogenous ePABP activity severely compromised Musashi function, preventing downstream signaling and blocking oocyte maturation. Ectopic expression of either ePABP or PABPC1 restored Musashi-dependent mRNA translational activation and maturation of ePABP-attenuated oocytes. Consistent with these Xenopus findings, PABPC1 remained associated with Musashi under conditions of Musashi target mRNA de-repression and translation during mammalian stem cell differentiation. Because association of Musashi1 with poly(A)-binding proteins has previously been implicated only in repression of Musashi target mRNAs, our findings reveal novel context-dependent roles for the interaction of Musashi with poly(A)-binding protein family members in response to extracellular cues that control cell fate.


Asunto(s)
Proteínas del Tejido Nervioso/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Xenopus/metabolismo , Animales , Ciclo Celular , Diferenciación Celular , Proteínas del Tejido Nervioso/fisiología , Oocitos/metabolismo , Oogénesis/fisiología , Proteína I de Unión a Poli(A)/genética , Proteínas de Unión a Poli(A)/genética , Poliadenilación , Biosíntesis de Proteínas , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/fisiología , Transducción de Señal , Proteínas de Xenopus/fisiología , Xenopus laevis/metabolismo
19.
Dev Dyn ; 248(7): 569-582, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31081963

RESUMEN

BACKGROUND: The embryonic gut tube undergoes extensive lengthening to generate the surface area required for nutrient absorption across the digestive epithelium. In Xenopus, narrowing and elongation of the tube is driven by radial rearrangements of its core of endoderm cells, a process that concomitantly opens the gut lumen and facilitates epithelial morphogenesis. How endoderm rearrangements are properly oriented and coordinated to achieve this complex morphogenetic outcome is unknown. RESULTS: We find that, prior to gut elongation, the core Wnt/PCP component Vangl2 becomes enriched at both the anterior and apical aspects of individual endoderm cells. In Vangl2-depleted guts, the cells remain unpolarized, down-regulate cell-cell adhesion proteins, and, consequently, fail to rearrange, leading to a short gut with an occluded lumen and undifferentiated epithelium. In contrast, endoderm cells with ectopic Vangl2 protein acquire abnormal polarity and adhesive contacts. As a result, endoderm cells also fail to rearrange properly and undergo ectopic differentiation, resulting in guts with multiple torturous lumens, irregular epithelial architecture, and variable intestinal topologies. CONCLUSIONS: Asymmetrical enrichment of Vangl2 in individual gut endoderm cells orients polarity and adhesion during radial rearrangements, coordinating digestive epithelial morphogenesis and lumen formation with gut tube elongation.


Asunto(s)
Intestinos/crecimiento & desarrollo , Proteínas de la Membrana/fisiología , Proteínas de Xenopus/fisiología , Animales , Tipificación del Cuerpo , Adhesión Celular , Movimiento Celular , Polaridad Celular , Endodermo/citología , Intestinos/anatomía & histología , Proteínas de la Membrana/metabolismo , Morfogénesis , Proteínas de Xenopus/metabolismo , Xenopus laevis/crecimiento & desarrollo
20.
Dev Dyn ; 248(6): 465-476, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30980591

RESUMEN

BACKGROUND: Kabuki syndrome is a haploinsufficient congenital multi-organ malformation syndrome, which frequently includes severe heart defects. Mutations in the histone H3K4 methyltransferase KMT2D have been identified as the main cause of Kabuki syndrome, however, the role of KMT2D in heart development remains to be characterized. RESULTS: Here we analyze the function of Kmt2d at different stages of Xenopus heart development. Xenopus Kmt2d is ubiquitously expressed at early stages of cardiogenesis, with enrichment in the anterior region including the cardiac precursor cells. Morpholino-mediated knockdown of Kmt2d led to hypoplastic hearts lacking the three-chambered structure. Analyzing different stages of cardiogenesis revealed that development of the first and second heart fields as well as cardiac differentiation were severely affected by loss of Kmt2d function. CONCLUSION: Kmt2d loss of function in Xenopus recapitulates the hypoplastic heart defects observed in Kabuki syndrome patients and shows that Kmt2d function is required for the establishment of the primary and secondary heart fields. Thus, Xenopus Kmt2d morphants can be a valuable tool to elucidate the etiology of the congenital heart defects associated with Kabuki syndrome.


Asunto(s)
Anomalías Múltiples/genética , Cara/anomalías , Corazón/crecimiento & desarrollo , Enfermedades Hematológicas/genética , N-Metiltransferasa de Histona-Lisina/fisiología , Enfermedades Vestibulares/genética , Proteínas de Xenopus/fisiología , Xenopus laevis/crecimiento & desarrollo , Animales , Cardiopatías Congénitas/genética , N-Metiltransferasa de Histona-Lisina/genética , Mutación con Pérdida de Función , Proteínas de Xenopus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...