Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 170
Filtrar
1.
Nat Commun ; 15(1): 4185, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38760367

RESUMEN

Bacteriophage infection, a pivotal process in microbiology, initiates with the phage's tail recognizing and binding to the bacterial cell surface, which then mediates the injection of viral DNA. Although comprehensive studies on the interaction between bacteriophage lambda and its outer membrane receptor, LamB, have provided rich information about the system's biochemical properties, the precise molecular mechanism remains undetermined. This study revealed the high-resolution cryo-electron microscopy (cryo-EM) structures of the bacteriophage lambda tail complexed with its irreversible Shigella sonnei 3070 LamB receptor and the closed central tail fiber. These structures reveal the complex processes that trigger infection and demonstrate a substantial conformational change in the phage lambda tail tip upon LamB binding. Providing detailed structures of bacteriophage lambda infection initiation, this study contributes to the expanding knowledge of lambda-bacterial interaction, which holds significance in the fields of microbiology and therapeutic development.


Asunto(s)
Bacteriófago lambda , Microscopía por Crioelectrón , Shigella sonnei , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Bacteriófago lambda/fisiología , Shigella sonnei/virología , Shigella sonnei/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/genética , Porinas/metabolismo , Porinas/química , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas de la Membrana Bacteriana Externa/química , Proteínas de la Membrana Bacteriana Externa/ultraestructura , Unión Proteica , Modelos Moleculares , Conformación Proteica , Receptores Virales
2.
Commun Biol ; 7(1): 590, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755280

RESUMEN

Infection of bacteria by phages is a complex multi-step process that includes specific recognition of the host cell, creation of a temporary breach in the host envelope, and ejection of viral DNA into the bacterial cytoplasm. These steps must be perfectly regulated to ensure efficient infection. Here we report the dual function of the tail completion protein gp16.1 of bacteriophage SPP1. First, gp16.1 has an auxiliary role in assembly of the tail interface that binds to the capsid connector. Second, gp16.1 is necessary to ensure correct routing of phage DNA to the bacterial cytoplasm. Viral particles assembled without gp16.1 are indistinguishable from wild-type virions and eject DNA normally in vitro. However, they release their DNA to the extracellular space upon interaction with the host bacterium. The study shows that a highly conserved tail completion protein has distinct functions at two essential steps of the virus life cycle in long-tailed phages.


Asunto(s)
Proteínas de la Cola de los Virus , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/genética , Bacteriófagos/genética , Bacteriófagos/fisiología , Bacteriófagos/metabolismo , ADN Viral/metabolismo , ADN Viral/genética , Virión/metabolismo
3.
Nat Commun ; 15(1): 4442, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38789435

RESUMEN

Contractile injection systems (CISs) are prokaryotic phage tail-like nanostructures loading effector proteins that mediate various biological processes. Although CIS functions have been diversified through evolution and hold the great potential as protein delivery systems, the functional characterisation of CISs and their effectors is currently limited to a few CIS lineages. Here, we show that the CISs of Streptomyces davawensis belong to a unique group of bacterial CISs distributed across distant phyla and facilitate sporogenic differentiation of this bacterium. CIS loss results in decreases in extracellular DNA release, biomass accumulation, and spore formation in S. davawensis. CISs load an effector, which is a remote homolog of phage tapemeasure proteins, and its C-terminal domain has endonuclease activity responsible for the CIS-associated phenotypes. Our findings illustrate that CISs can contribute to the reproduction of bacteria through the action of the effector and suggest an evolutionary link between CIS effectors and viral cargos.


Asunto(s)
Proteínas Bacterianas , Bacteriófagos , Esporas Bacterianas , Streptomyces , Streptomyces/virología , Bacteriófagos/genética , Bacteriófagos/fisiología , Esporas Bacterianas/metabolismo , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/genética , Filogenia , Proteínas Virales/metabolismo , Proteínas Virales/genética , Proteínas de la Cola de los Virus/metabolismo , Proteínas de la Cola de los Virus/genética
4.
Viruses ; 16(5)2024 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-38793652

RESUMEN

The genus Acinetobacter comprises both environmental and clinically relevant species associated with hospital-acquired infections. Among them, Acinetobacter baumannii is a critical priority bacterial pathogen, for which the research and development of new strategies for antimicrobial treatment are urgently needed. Acinetobacter spp. produce a variety of structurally diverse capsular polysaccharides (CPSs), which surround the bacterial cells with a thick protective layer. These surface structures are primary receptors for capsule-specific bacteriophages, that is, phages carrying tailspikes with CPS-depolymerizing/modifying activities. Phage tailspike proteins (TSPs) exhibit hydrolase, lyase, or esterase activities toward the corresponding CPSs of a certain structure. In this study, the data on all lytic capsule-specific phages infecting Acinetobacter spp. with genomes deposited in the NCBI GenBank database by January 2024 were summarized. Among the 149 identified TSPs encoded in the genomes of 143 phages, the capsular specificity (K specificity) of 46 proteins has been experimentally determined or predicted previously. The specificity of 63 TSPs toward CPSs, produced by various Acinetobacter K types, was predicted in this study using a bioinformatic analysis. A comprehensive phylogenetic analysis confirmed the prediction and revealed the possibility of the genetic exchange of gene regions corresponding to the CPS-recognizing/degrading parts of different TSPs between morphologically and taxonomically distant groups of capsule-specific Acinetobacter phages.


Asunto(s)
Acinetobacter , Cápsulas Bacterianas , Bacteriófagos , Genoma Viral , Filogenia , Bacteriófagos/genética , Bacteriófagos/enzimología , Bacteriófagos/clasificación , Acinetobacter/virología , Acinetobacter/genética , Acinetobacter/enzimología , Cápsulas Bacterianas/metabolismo , Cápsulas Bacterianas/genética , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Polisacáridos/metabolismo , Polisacáridos Bacterianos/metabolismo , Polisacáridos Bacterianos/genética , Acinetobacter baumannii/virología , Acinetobacter baumannii/genética , Acinetobacter baumannii/enzimología , Glicósido Hidrolasas
5.
Nat Microbiol ; 9(5): 1312-1324, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38565896

RESUMEN

Dormant prophages protect lysogenic cells by expressing diverse immune systems, which must avoid targeting their cognate prophages upon activation. Here we report that multiple Staphylococcus aureus prophages encode Tha (tail-activated, HEPN (higher eukaryotes and prokaryotes nucleotide-binding) domain-containing anti-phage system), a defence system activated by structural tail proteins of incoming phages. We demonstrate the function of two Tha systems, Tha-1 and Tha-2, activated by distinct tail proteins. Interestingly, Tha systems can also block reproduction of the induced tha-positive prophages. To prevent autoimmunity after prophage induction, these systems are inhibited by the product of a small overlapping antisense gene previously believed to encode an excisionase. This genetic organization, conserved in S. aureus prophages, allows Tha systems to protect prophages and their bacterial hosts against phage predation and to be turned off during prophage induction, balancing immunity and autoimmunity. Our results show that the fine regulation of these processes is essential for the correct development of prophages' life cycle.


Asunto(s)
Profagos , Staphylococcus aureus , Profagos/genética , Staphylococcus aureus/virología , Staphylococcus aureus/inmunología , Autoinmunidad , Lisogenia , Fagos de Staphylococcus/genética , Fagos de Staphylococcus/inmunología , Fagos de Staphylococcus/fisiología , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Bacteriófagos/genética , Bacteriófagos/inmunología , Bacteriófagos/fisiología
6.
PLoS Biol ; 21(12): e3002441, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38096144

RESUMEN

Siphophages have a long, flexible, and noncontractile tail that connects to the capsid through a neck. The phage tail is essential for host cell recognition and virus-host cell interactions; moreover, it serves as a channel for genome delivery during infection. However, the in situ high-resolution structure of the neck-tail complex of siphophages remains unknown. Here, we present the structure of the siphophage lambda "wild type," the most widely used, laboratory-adapted fiberless mutant. The neck-tail complex comprises a channel formed by stacked 12-fold and hexameric rings and a 3-fold symmetrical tip. The interactions among DNA and a total of 246 tail protein molecules forming the tail and neck have been characterized. Structural comparisons of the tail tips, the most diversified region across the lambda and other long-tailed phages or tail-like machines, suggest that their tail tip contains conserved domains, which facilitate tail assembly, receptor binding, cell adsorption, and DNA retaining/releasing. These domains are distributed in different tail tip proteins in different phages or tail-like machines. The side tail fibers are not required for the phage particle to orient itself vertically to the surface of the host cell during attachment.


Asunto(s)
Bacteriófagos , Bacteriófagos/genética , Unión Proteica , Proteínas de la Cápside/metabolismo , ADN/metabolismo , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/metabolismo
7.
Viruses ; 14(10)2022 10 14.
Artículo en Inglés | MEDLINE | ID: mdl-36298815

RESUMEN

At the first step of phage infection, the receptor-binding proteins (RBPs) such as tail fibers are responsible for recognizing specific host surface receptors. The proper folding and assembly of tail fibers usually requires a chaperone encoded by the phage genome. Despite extensive studies on phage structures, the molecular mechanism of phage tail fiber assembly remains largely unknown. Here, using a minimal myocyanophage, termed Pam3, isolated from Lake Chaohu, we demonstrate that the chaperone gp25 forms a stable complex with the tail fiber gp24 at a stoichiometry of 3:3. The 3.1-Å cryo-electron microscopy structure of this complex revealed an elongated structure with the gp25 trimer embracing the distal moieties of gp24 trimer at the center. Each gp24 subunit consists of three domains: the N-terminal α-helical domain required for docking to the baseplate, the tumor necrosis factor (TNF)-like and glycine-rich domains responsible for recognizing the host receptor. Each gp25 subunit consists of two domains: a non-conserved N-terminal ß-sandwich domain that binds to the TNF-like and glycine-rich domains of the fiber, and a C-terminal α-helical domain that mediates trimerization/assembly of the fiber. Structural analysis enabled us to propose the assembly mechanism of phage tail fibers, in which the chaperone first protects the intertwined and repetitive distal moiety of each fiber subunit, further ensures the proper folding of these highly plastic structural elements, and eventually enables the formation of the trimeric fiber. These findings provide the structural basis for the design and engineering of phage fibers for biotechnological applications.


Asunto(s)
Bacteriófagos , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Modelos Moleculares , Bacteriófagos/metabolismo , Chaperonas Moleculares/metabolismo , Factores de Necrosis Tumoral , Glicina , Plásticos , Proteínas de la Cola de los Virus/metabolismo
8.
Sci Rep ; 12(1): 2061, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35136138

RESUMEN

Four tailspike proteins (TSP1-4) of Escherichia coli O157:H7 bacteriophage CBA120 enable infection of multiple hosts. They form a branched complex that attaches to the tail baseplate. Each TSP recognizes a different lipopolysaccharide on the membrane of a different bacterial host. The 335 N-terminal residues of TSP4 promote the assembly of the TSP complex and anchor it to the tail baseplate. The crystal structure of TSP4-N335 reveals a trimeric protein comprising four domains. The baseplate anchor domain (AD) contains an intertwined triple-stranded ß-helix. The ensuing XD1, XD2 and XD3 ß-sheet containing domains mediate the binding of TSP1-3 to TSP4. Each of the XD domains adopts the same fold as the respective XD domains of bacteriophage T4 gp10 baseplate protein, known to engage in protein-protein interactions via its XD2 and XD3 domains. The structural similarity suggests that XD2 and XD3 of TSP4 also function in protein-protein interactions. Analytical ultracentrifugation analyses of TSP4-N335 and of domain deletion proteins showed how TSP4-N335 promotes the formation of the TSP quaternary complex. TSP1 and TSP2 bind directly to TSP4 whereas TSP3 binding requires a pre-formed TSP4-N335:TSP2 complex. A 3-dimensional model of the bacteriophage CBA120 TSP complex has been developed based on the structural and ultracentrifuge information.


Asunto(s)
Bacteriófagos/genética , Bacteriófagos/metabolismo , Escherichia coli O157/virología , Genoma Viral/genética , Glicósido Hidrolasas/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Cristalografía por Rayos X , Interacciones Microbiota-Huesped/fisiología , Lipopolisacáridos/metabolismo , Modelos Moleculares , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Ultracentrifugación
9.
Virology ; 566: 9-15, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34826709

RESUMEN

Tape measure (TM) proteins are essential for the formation of long-tailed phages. TM protein assembly into tails requires the action of tail assembly chaperones (TACs). TACs (e.g. gpG and gpT of E. coli phage lambda) are usually produced in a short (TAC-N) and long form (TAC-NC) with the latter comprised of TAC-N with an additional C-terminal domain (TAC-C). TAC-NC is generally synthesized through a ribosomal frameshifting mechanism. TAC encoding genes have never been identified in the intensively studied Escherichia coli phage T4, or any related phages. Here, we have bioinformatically identified putative TAC encoding genes in diverse T4-like phage genomes. The frameshifting mechanism for producing TAC-NC appears to be conserved in several T4-like phage groups. However, the group including phage T4 itself likely employs a different strategy whereby TAC-N and TAC-NC are encoded by separate genes (26 and 51 in phage T4).


Asunto(s)
Bacteriófago T4/genética , Escherichia coli/virología , Genoma Viral , Chaperonas Moleculares/genética , Proteínas de la Cola de los Virus/química , Virión/genética , Secuencia de Aminoácidos , Bacterias/virología , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestructura , Biología Computacional/métodos , Secuencia Conservada , Sistema de Lectura Ribosómico , Chaperonas Moleculares/clasificación , Chaperonas Moleculares/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Proteínas de la Cola de los Virus/clasificación , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Virión/metabolismo , Virión/ultraestructura , Ensamble de Virus/genética
10.
Viruses ; 13(10)2021 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-34696524

RESUMEN

Phage G is recognized as having a remarkably large genome and capsid size among isolated, propagated phages. Negative stain electron microscopy of the host-phage G interaction reveals tail sheaths that are contracted towards the distal tip and decoupled from the head-neck region. This is different from the typical myophage tail contraction, where the sheath contracts upward, while being linked to the head-neck region. Our cryo-EM structures of the non-contracted and contracted tail sheath show that: (1) The protein fold of the sheath protein is very similar to its counterpart in smaller, contractile phages such as T4 and phi812; (2) Phage G's sheath structure in the non-contracted and contracted states are similar to phage T4's sheath structure. Similarity to other myophages is confirmed by a comparison-based study of the tail sheath's helical symmetry, the sheath protein's evolutionary timetree, and the organization of genes involved in tail morphogenesis. Atypical phase G tail contraction could be due to a missing anchor point at the upper end of the tail sheath that allows the decoupling of the sheath from the head-neck region. Explaining the atypical tail contraction requires further investigation of the phage G sheath anchor points.


Asunto(s)
Myoviridae/ultraestructura , Proteínas de la Cola de los Virus/ultraestructura , Bacteriófagos/metabolismo , Bacteriófagos/ultraestructura , Cápside/metabolismo , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Myoviridae/genética , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Virión/metabolismo , Virión/ultraestructura
11.
J Mol Biol ; 433(18): 167112, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34153288

RESUMEN

Siphoviruses are main killers of bacteria. They use a long non-contractile tail to recognize the host cell and to deliver the genome from the viral capsid to the bacterial cytoplasm. Here, we define the molecular organization of the Bacillus subtilis bacteriophage SPP1 ~ 6.8 MDa tail and uncover its biogenesis mechanisms. A complex between gp21 and the tail distal protein (Dit) gp19.1 is assembled first to build the tail cap (gp19.1-gp21Nter) connected by a flexible hinge to the tail fiber (gp21Cter). The tip of the gp21Cter fiber is loosely associated to gp22. The cap provides a platform where tail tube proteins (TTPs) initiate polymerization around the tape measure protein gp18 (TMP), a reaction dependent on the non-structural tail assembly chaperones gp17.5 and gp17.5* (TACs). Gp17.5 is essential for stability of gp18 in the cell. Helical polymerization stops at a precise tube length followed by binding of proteins gp16.1 (TCP) and gp17 (THJP) to build the tail interface for attachment to the capsid portal system. This finding uncovers the function of the extensively conserved gp16.1-homologs in assembly of long tails. All SPP1 tail components, apart from gp22, share homology to conserved proteins whose coding genes' synteny is broadly maintained in siphoviruses. They conceivably represent the minimal essential protein set necessary to build functional long tails. Proteins homologous to SPP1 tail building blocks feature a variety of add-on modules that diversify extensively the tail core structure, expanding its capability to bind host cells and to deliver the viral genome to the bacterial cytoplasm.


Asunto(s)
Bacillus subtilis/virología , Cápside/metabolismo , Genoma Viral , Siphoviridae/fisiología , Proteínas de la Cola de los Virus/metabolismo , Virión/fisiología , Ensamble de Virus , Chaperonas Moleculares , Siphoviridae/química , Siphoviridae/genética , Proteínas de la Cola de los Virus/genética
12.
mBio ; 12(3)2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33947754

RESUMEN

The high specificity of bacteriophages is driven by their receptor-binding proteins (RBPs). Many Klebsiella bacteriophages target the capsular exopolysaccharide as the receptor and encode RBPs with depolymerase activity. The modular structure of these RBPs with an N-terminal structural module to attach the RBP to the phage tail, and a C-terminal specificity module for exopolysaccharide degradation, supports horizontal transfer as a major evolutionary driver for Klebsiella phage RBPs. We mimicked this natural evolutionary process by the construction of modular RBP chimeras, exchanging N-terminal structural modules and C-terminal specificity modules. All chimeras strictly follow the capsular serotype specificity of the C-terminal module. Transplanting chimeras with a K11 N-terminal structural RBP module in a Klebsiella phage K11 scaffold results in a capsular serotype switch and corresponding host range modification of the synthetic phages, demonstrating that horizontal transfer of C-terminal specificity modules offers Klebsiella phages an evolutionary highway for rapid adaptation to new capsular serotypes.IMPORTANCE The antimicrobial resistance crisis has rekindled interest in bacteriophage therapy. Phages have been studied over a century as therapeutics to treat bacterial infections, but one of the biggest challenges for the use of phages in therapeutic interventions remains their high specificity. In particular, many Klebsiella phages have a narrow spectrum constrained by the high diversity of exopolysaccharide capsules that shield access to the cells. In this work, we have elaborated how Klebsiella phages deal with this high diversity by exchanging building blocks of their receptor-binding proteins.


Asunto(s)
Bacteriófagos/genética , Klebsiella/virología , Serogrupo , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Cápsulas Bacterianas , Bacteriófagos/química , Bacteriófagos/metabolismo , Proteínas Portadoras/metabolismo , Genoma Viral , Unión Proteica , Proteínas de la Cola de los Virus/química
13.
J Bacteriol ; 203(13): e0014121, 2021 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-33875544

RESUMEN

ICP2 is a virulent bacteriophage (phage) that preys on Vibrio cholerae. ICP2 was first isolated from cholera patient stool samples. Some of these stools also contained ICP2-resistant isogenic V. cholerae strains harboring missense mutations in the trimeric outer membrane porin protein OmpU, identifying it as the ICP2 receptor. In this study, we identify the ICP2 proteins that mediate interactions with OmpU by selecting for ICP2 host range mutants within infant rabbits infected with a mixture of wild-type and OmpU mutant strains. ICP2 host range mutants that can now infect OmpU mutant strains have missense mutations in the putative tail fiber gene gp25 and the putative adhesin gene gp23. Using site-specific mutagenesis, we show that single or double mutations in gp25 are sufficient to generate the host range mutant phenotype. However, at least one additional mutation in gp23 is required for robust plaque formation on specific OmpU mutants. Mutations in gp23 alone were insufficient to produce a host range mutant phenotype. All ICP2 host range mutants retained the ability to form plaques on wild-type V. cholerae cells. The strength of binding of host range mutants to V. cholerae correlated with plaque morphology, indicating that the selected mutations in gp25 and gp23 restore molecular interactions with the receptor. We propose that ICP2 host range mutants evolve by a two-step process. First, gp25 mutations are selected for their broad host range, albeit accompanied by low-level phage adsorption. Subsequent selection occurs for gp23 mutations that further increase productive binding to specific OmpU alleles, allowing for near-wild-type efficiencies of adsorption and subsequent phage multiplication. IMPORTANCE Concern over multidrug-resistant bacterial pathogens, including Vibrio cholerae, has led to renewed interest in phage biology and the potential for phage therapy. ICP2 is a genetically unique virulent phage isolated from cholera patient stool samples. It is also one of three phages in a prophylactic cocktail that have been shown to be effective in animal models of infection and the only one of the three that requires a protein receptor (OmpU). This study identifies an ICP2 tail fiber and a receptor binding protein and examines how ICP2 responds to the selective pressures of phage-resistant OmpU mutants. We found that this particular coevolutionary arms race presents fitness costs to both ICP2 and V. cholerae.


Asunto(s)
Bacteriófagos/fisiología , Interacciones Microbiota-Huesped/fisiología , Fosfatos de Inositol/metabolismo , Vibrio cholerae/virología , Proteínas de la Cola de los Virus/metabolismo , Adhesinas Bacterianas , Alelos , Animales , Antígenos Bacterianos/química , Antígenos Bacterianos/genética , Bacteriófagos/genética , Proteínas de la Cápside/genética , Cólera , Interacciones Microbiota-Huesped/genética , Especificidad del Huésped , Humanos , Fosfatos de Inositol/química , Fosfatos de Inositol/genética , Modelos Animales , Mutación , Mutación Missense , Fenotipo , Porinas/química , Porinas/genética , Porinas/metabolismo , Conejos , Vibrio cholerae/genética , Proteínas de la Cola de los Virus/química , Proteínas de la Cola de los Virus/genética
14.
mBio ; 12(1)2021 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-33563833

RESUMEN

The human gastrointestinal mucosal surface consists of a eukaryotic epithelium, a prokaryotic microbiota, and a carbohydrate-rich interface that separates them. In the gastrointestinal tract, the interaction of bacteriophages (phages) and their prokaryotic hosts influences the health of the mammalian host, especially colonization with invasive pathobionts. Antibiotics may be used, but they also kill protective commensals. Here, we report a novel phage whose lytic cycle is enhanced in intestinal environments. The tail fiber gene, whose protein product binds human heparan sulfated proteoglycans and localizes the phage to the epithelial cell surface, positions it near its bacterial host, a type of locational targeting mechanism. This finding offers the prospect of developing mucosal targeting phage to selectively remove invasive pathobiont species from mucosal surfaces.IMPORTANCE Invasive pathobionts or microbes capable of causing disease can reside deep within the mucosal epithelium of our gastrointestinal tract. Targeted effective antibacterial therapies are needed to combat these disease-causing organisms, many of which may be multidrug resistant. Here, we isolated a lytic bacteriophage (phage) that can localize to the epithelial surface by binding heparan sulfated glycans, positioning it near its host, Escherichia coli This targeted therapy can be used to selectively remove invasive pathobionts from the gastrointestinal tract, preventing the development of disease.


Asunto(s)
Bacteriófagos/metabolismo , Mucosa Gástrica/citología , Tracto Gastrointestinal/virología , Proteoglicanos de Heparán Sulfato/metabolismo , Interacciones Microbianas , Polisacáridos/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Animales , Bacteriófagos/genética , Bacteriófagos/aislamiento & purificación , Bacteriófagos/patogenicidad , Técnicas de Cultivo de Célula , Escherichia coli/metabolismo , Femenino , Mucosa Gástrica/virología , Tracto Gastrointestinal/fisiología , Humanos , Masculino , Ratones Endogámicos BALB C , Microbiota , Organoides/citología , Organoides/virología , Organismos Libres de Patógenos Específicos , Simbiosis , Proteínas de la Cola de los Virus/genética
15.
J Biol Chem ; 296: 100286, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33450228

RESUMEN

Pathogenic microorganisms often reside in glycan-based biofilms. Concentration and chain length distribution of these mostly anionic exopolysaccharides (EPS) determine the overall biophysical properties of a biofilm and result in a highly viscous environment. Bacterial communities regulate this biofilm state via intracellular small-molecule signaling to initiate EPS synthesis. Reorganization or degradation of this glycan matrix, however, requires the action of extracellular glycosidases. So far, these were mainly described for bacteriophages that must degrade biofilms for gaining access to host bacteria. The plant pathogen Pantoea stewartii (P. stewartii) encodes the protein WceF within its EPS synthesis cluster. WceF has homologs in various biofilm forming plant pathogens of the Erwinia family. In this work, we show that WceF is a glycosidase active on stewartan, the main P. stewartii EPS biofilm component. WceF has remarkable structural similarity with bacteriophage tailspike proteins (TSPs). Crystal structure analysis showed a native trimer of right-handed parallel ß-helices. Despite its similar fold, WceF lacks the high stability found in bacteriophage TSPs. WceF is a stewartan hydrolase and produces oligosaccharides, corresponding to single stewartan repeat units. However, compared with a stewartan-specific glycan hydrolase of bacteriophage origin, WceF showed lectin-like autoagglutination with stewartan, resulting in notably slower EPS cleavage velocities. This emphasizes that the bacterial enzyme WceF has a role in P. stewartii biofilm glycan matrix reorganization clearly different from that of a bacteriophage exopolysaccharide depolymerase.


Asunto(s)
Proteínas Bacterianas/química , Biopelículas/crecimiento & desarrollo , Glicósido Hidrolasas/química , Pantoea/enzimología , Polisacáridos Bacterianos/química , Proteínas de la Cola de los Virus/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bacteriófagos/química , Bacteriófagos/enzimología , Sitios de Unión , Secuencia de Carbohidratos , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Escherichia coli/metabolismo , Expresión Génica , Vectores Genéticos/química , Vectores Genéticos/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/metabolismo , Modelos Moleculares , Oligosacáridos/química , Oligosacáridos/metabolismo , Pantoea/genética , Plantas/microbiología , Polisacáridos Bacterianos/metabolismo , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo
16.
Biochemistry ; 59(51): 4845-4855, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33326210

RESUMEN

The P22 tailspike endorhamnosidase confers the high specificity of bacteriophage P22 for some serogroups of Salmonella differing only slightly in their O-antigen polysaccharide. We used several biophysical methods to study the binding and hydrolysis of O-antigen fragments of different lengths by P22 tailspike protein. O-Antigen saccharides of defined length labeled with fluorophors could be purified with higher resolution than previously possible. Small amounts of naturally occurring variations of O-antigen fragments missing the nonreducing terminal galactose could be used to determine the contribution of this part to the free energy of binding to be ∼7 kJ/mol. We were able to show via several independent lines of evidence that an unproductive binding mode is highly favored in binding over all other possible binding modes leading to hydrolysis. This is true even under circumstances under which the O-antigen fragment is long enough to be cleaved efficiently by the enzyme. The high-affinity unproductive binding mode results in a strong self-competitive inhibition in addition to product inhibition observed for this system. Self-competitive inhibition is observed for all substrates that have a free reducing end rhamnose. Naturally occurring O-antigen, while still attached to the bacterial outer membrane, does not have a free reducing end and therefore does not perform self-competitive inhibition.


Asunto(s)
Bacteriófago P22/enzimología , Glicósido Hidrolasas/metabolismo , Antígenos O/metabolismo , Oligosacáridos/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Dominio Catalítico , Colorantes Fluorescentes/química , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/química , Hidrólisis , Antígenos O/química , Oligosacáridos/química , Unión Proteica , Salmonella enterica/química , Proteínas de la Cola de los Virus/antagonistas & inhibidores , Proteínas de la Cola de los Virus/química
17.
J Am Chem Soc ; 142(46): 19446-19450, 2020 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-33166120

RESUMEN

Pseudaminic acid (Pse), a unique carbohydrate in surface-associated glycans of pathogenic bacteria, has pivotal roles in virulence. Owing to its significant antigenicity and absence in mammals, Pse is considered an attractive target for vaccination or antibody-based therapies against bacterial infections. However, a specific and universal probe for Pse, which could also be used in immunotherapy, has not been reported. In a prior study, we used a tail spike protein from a bacteriophage (ΦAB6TSP) that digests Pse-containing exopolysaccharide (EPS) from Acinetobacter baumannii strain 54149 (Ab-54149) to form a glycoconjugate for preparing anti-Ab-54149 EPS serum. We report here that a catalytically inactive ΦAB6TSP (I-ΦAB6TSP) retains binding ability toward Pse. In addition, an I-ΦAB6TSP-DyLight-650 conjugate (Dy-I-ΦAB6TSP) was more sensitive in detecting Ab-54149 than an antibody purified from anti- Ab-54149 EPS serum. Dy-I-ΦAB6TSP also cross-reacted with other pathogenic bacteria containing Pse on their surface polysaccharides (e.g., Helicobacter pylori and Enterobacter cloacae), revealing it to be a promising probe for detecting Pse across bacterial species. We also developed a detection method that employs I-ΦAB6TSP immobilized on microtiter plate. These results suggested that the anti-Ab-54149 EPS serum would exhibit cross-reactivity to Pse on other organisms. When this was tested, this serum facilitated complement-mediated killing of H. pylori and E. cloacae, indicating its potential as a cross-species antibacterial agent. This work opens new avenues for diagnosis and treatment of multidrug resistant (MDR) bacterial infections.


Asunto(s)
Antibacterianos/química , Infecciones Bacterianas/terapia , Bacteriófagos/química , Azúcares Ácidos/química , Proteínas de la Cola de los Virus/química , Acinetobacter baumannii/química , Antibacterianos/farmacología , Anticuerpos/química , Farmacorresistencia Bacteriana Múltiple , Enterobacter cloacae/virología , Glicoconjugados/química , Glicósido Hidrolasas , Helicobacter pylori/virología , Polisacáridos/química , Suero/química , Azúcares Ácidos/metabolismo , Azúcares Ácidos/uso terapéutico , Proteínas de la Cola de los Virus/metabolismo
18.
Curr Opin Virol ; 45: 65-74, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33142120

RESUMEN

Productive virus infection depends upon delivery of viral genomic material into the host cell cytoplasm. The tails of bacteriophages recognize host cells and mediate host cell wall and membrane penetration. Recent cryo-electron microscopy studies have revealed near atomic-resolutions structures of the entire or almost entire bacteriophage particles of model systems including phi29, P22, P68, and T4. These structures allow comparisons between not only different states of the same phage but also between distantly related phages. In this review, we summarize the findings from recent structural studies of the bacteriophages that target Gram-positive bacteria, for a better understanding of the interactions between host cells and bacteriophages.


Asunto(s)
Bacteriófagos/química , Bacterias Grampositivas/virología , Proteínas de la Cola de los Virus/química , Bacteriófagos/genética , Bacteriófagos/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Genoma Viral , Proteínas de la Cola de los Virus/metabolismo
19.
Viruses ; 12(10)2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-33036312

RESUMEN

Infecting bacteriophage T4 uses a contractile tail structure to breach the envelope of the Escherichia coli host cell. During contraction, the tail tube headed with the "central spike complex" is thought to mechanically puncture the outer membrane. We show here that a purified tip fragment of the central spike complex interacts with periplasmic chaperone PpiD, which is anchored to the cytoplasmic membrane. PpiD may be involved in the penetration of the inner membrane by the T4 injection machinery, resulting in a DNA-conducting channel to translocate the phage DNA into the interior of the cell. Host cells with the ppiD gene deleted showed partial reduction in the plating efficiency of T4, suggesting a supporting role of PpiD to improve the efficiency of the infection process.


Asunto(s)
Bacteriófago T4/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/virología , Isomerasa de Peptidilprolil/metabolismo , Proteínas de la Cola de los Virus/metabolismo , Membrana Celular/metabolismo , Proteínas de Escherichia coli/genética , Glicósido Hidrolasas , Isomerasa de Peptidilprolil/genética , Periplasma/virología , Proteínas del Envoltorio Viral/metabolismo , Acoplamiento Viral , Internalización del Virus
20.
Sci Rep ; 10(1): 15402, 2020 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-32958885

RESUMEN

The genome of Escherichia coli O157:H7 bacteriophage vB_EcoM_CBA120 encodes four distinct tailspike proteins (TSPs). The four TSPs, TSP1-4, attach to the phage baseplate forming a branched structure. We report the 1.9 Å resolution crystal structure of TSP2 (ORF211), the TSP that confers phage specificity towards E. coli O157:H7. The structure shows that the N-terminal 168 residues involved in TSPs complex assembly are disordered in the absence of partner proteins. The ensuing head domain contains only the first of two fold modules seen in other phage vB_EcoM_CBA120 TSPs. The catalytic site resides in a cleft at the interface between adjacent trimer subunits, where Asp506, Glu568, and Asp571 are located in close proximity. Replacement of Asp506 and Asp571 for alanine residues abolishes enzyme activity, thus identifying the acid/base catalytic machinery. However, activity remains intact when Asp506 and Asp571 are mutated into asparagine residues. Analysis of additional site-directed mutants in the background of the D506N:D571N mutant suggests engagement of an alternative catalytic apparatus comprising Glu568 and Tyr623. Finally, we demonstrate the catalytic role of two interacting glutamate residues of TSP1, located in a cleft between two trimer subunits, Glu456 and Glu483, underscoring the diversity of the catalytic apparatus employed by phage vB_EcoM_CBA120 TSPs.


Asunto(s)
Bacteriófagos/genética , Escherichia coli O157/genética , Proteínas de la Cola de los Virus/ultraestructura , Bacteriófagos/metabolismo , Bacteriófagos/patogenicidad , Dominio Catalítico , Escherichia coli O157/metabolismo , Glicósido Hidrolasas , Especificidad de la Especie , Proteínas de la Cola de los Virus/genética , Proteínas de la Cola de los Virus/metabolismo , Virión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...