Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Nat Commun ; 15(1): 5923, 2024 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-39004634

RESUMEN

Respiratory syncytial virus (RSV) is an enveloped, filamentous, negative-strand RNA virus that causes significant respiratory illness worldwide. RSV vaccines are available, however there is still significant need for research to support the development of vaccines and therapeutics against RSV and related Mononegavirales viruses. Individual virions vary in size, with an average diameter of ~130 nm and ranging from ~500 nm to over 10 µm in length. Though the general arrangement of structural proteins in virions is known, we use cryo-electron tomography and sub-tomogram averaging to determine the molecular organization of RSV structural proteins. We show that the peripheral membrane-associated RSV matrix (M) protein is arranged in a packed helical-like lattice of M-dimers. We report that RSV F glycoprotein is frequently observed as pairs of trimers oriented in an anti-parallel conformation to support potential interactions between trimers. Our sub-tomogram averages indicate the positioning of F-trimer pairs is correlated with the underlying M lattice. These results provide insight into RSV virion organization and may aid in the development of RSV vaccines and anti-viral targets.


Asunto(s)
Microscopía por Crioelectrón , Virus Sincitial Respiratorio Humano , Proteínas Virales de Fusión , Proteínas de la Matriz Viral , Proteínas Virales de Fusión/química , Proteínas Virales de Fusión/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/ultraestructura , Humanos , Virus Sincitial Respiratorio Humano/química , Multimerización de Proteína , Virión/metabolismo , Virión/ultraestructura , Virión/química , Tomografía con Microscopio Electrónico , Virus Sincitiales Respiratorios/química , Modelos Moleculares , Infecciones por Virus Sincitial Respiratorio/virología , Animales
2.
Viruses ; 13(11)2021 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-34835083

RESUMEN

Human cytomegalovirus (HCMV) tegument protein pp150 is essential for the completion of the final steps in virion maturation. Earlier studies indicated that three pp150nt (N-terminal one-third of pp150) conformers cluster on each triplex (Tri1, Tri2A and Tri2B), and extend towards small capsid proteins atop nearby major capsid proteins, forming a net-like layer of tegument densities that enmesh and stabilize HCMV capsids. Based on this atomic detail, we designed several peptides targeting pp150nt. Our data show significant reduction in virus growth upon treatment with one of these peptides (pep-CR2) with an IC50 of 1.33 µM and no significant impact on cell viability. Based on 3D modeling, pep-CR2 specifically interferes with the pp150-capsid binding interface. Cells pre-treated with pep-CR2 and infected with HCMV sequester pp150 in the nucleus, indicating a mechanistic disruption of pp150 loading onto capsids and subsequent nuclear egress. Furthermore, pep-CR2 effectively inhibits mouse cytomegalovirus (MCMV) infection in cell culture, paving the way for future animal testing. Combined, these results indicate that CR2 of pp150 is amenable to targeting by a peptide inhibitor, and can be developed into an effective antiviral.


Asunto(s)
Proteínas de la Cápside/ultraestructura , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/fisiología , Animales , Cápside , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/metabolismo , Humanos , Ratones , Muromegalovirus/metabolismo , Muromegalovirus/patogenicidad , Fosfoproteínas/ultraestructura , Proteínas de la Matriz Viral/ultraestructura , Virión , Ensamble de Virus
3.
Nat Commun ; 12(1): 5513, 2021 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-34535641

RESUMEN

Under the Baltimore nucleic acid-based virus classification scheme, the herpesvirus human cytomegalovirus (HCMV) is a Class I virus, meaning that it contains a double-stranded DNA genome-and no RNA. Here, we report sub-particle cryoEM reconstructions of HCMV virions at 2.9 Å resolution revealing structures resembling non-coding transfer RNAs (tRNAs) associated with the virion's capsid-bound tegument protein, pp150. Through deep sequencing, we show that these RNA sequences match human tRNAs, and we built atomic models using the most abundant tRNA species. Based on our models, tRNA recruitment is mediated by the electrostatic interactions between tRNA phosphate groups and the helix-loop-helix motif of HCMV pp150. The specificity of these interactions may explain the absence of such tRNA densities in murine cytomegalovirus and other human herpesviruses.


Asunto(s)
Cápside/metabolismo , Citomegalovirus/ultraestructura , Fosfoproteínas/metabolismo , ARN de Transferencia/metabolismo , Proteínas de la Matriz Viral/metabolismo , Virión/ultraestructura , Anticodón/metabolismo , Secuencia de Bases , Línea Celular , Microscopía por Crioelectrón , Glutamato-ARNt Ligasa/química , Glutamato-ARNt Ligasa/metabolismo , Humanos , Modelos Moleculares , Fosfoproteínas/ultraestructura , ARN Viral/ultraestructura , Proteínas de la Matriz Viral/ultraestructura
4.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-34445789

RESUMEN

The SARS-CoV-2 pseudovirus is a commonly used strategy that mimics certain biological functions of the authentic virus by relying on biological legitimacy at the molecular level. Despite the fact that spike (S), envelope (E), and membrane (M) proteins together wrap up the SARS-CoV-2 virion, most of the reported pseudotype viruses consist of only the S protein. Here, we report that the presence of E and M increased the virion infectivity by promoting the S protein priming. The S, E, and M (SEM)-coated pseudovirion is spherical, containing crown-like spikes on the surface. Both S and SEM pseudoviruses packaged the same amounts of viral RNA, but the SEM virus bound more efficiently to cells stably expressing the viral receptor human angiotensin-converting enzyme II (hACE2) and became more infectious. Using this SEM pseudovirus, we examined the infectivity and antigenic properties of the natural SARS-CoV-2 variants. We showed that some variants have higher infectivity than the original virus and that some render the neutralizing plasma with lower potency. These studies thus revealed possible mechanisms of the dissemination advantage of these variants. Hence, the SEM pseudovirion provides a useful tool to evaluate the viral infectivity and capability of convalescent sera in neutralizing specific SARS-CoV-2 S dominant variants.


Asunto(s)
Anticuerpos Antivirales/metabolismo , COVID-19/inmunología , Proteínas de la Envoltura de Coronavirus/metabolismo , SARS-CoV-2/patogenicidad , Proteínas de la Matriz Viral/metabolismo , Enzima Convertidora de Angiotensina 2/metabolismo , Animales , Anticuerpos Antivirales/inmunología , COVID-19/sangre , COVID-19/virología , Línea Celular , Proteínas de la Envoltura de Coronavirus/genética , Proteínas de la Envoltura de Coronavirus/inmunología , Proteínas de la Envoltura de Coronavirus/ultraestructura , Cricetinae , Humanos , Microscopía Electrónica de Transmisión , Mutación , Pruebas de Neutralización , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/inmunología , Proteínas de la Matriz Viral/ultraestructura , Virión/genética , Virión/inmunología , Virión/metabolismo , Virión/ultraestructura
5.
Viruses ; 13(7)2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-34372582

RESUMEN

Ebolavirus (EBOV) is a negative-sense RNA virus that causes severe hemorrhagic fever in humans. The matrix protein VP40 facilitates viral budding by binding to lipids in the host cell plasma membrane and driving the formation of filamentous, pleomorphic virus particles. The C-terminal domain of VP40 contains two highly-conserved cysteine residues at positions 311 and 314, but their role in the viral life cycle is unknown. We therefore investigated the properties of VP40 mutants in which the conserved cysteine residues were replaced with alanine. The C311A mutation significantly increased the affinity of VP40 for membranes containing phosphatidylserine (PS), resulting in the assembly of longer virus-like particles (VLPs) compared to wild-type VP40. The C314A mutation also increased the affinity of VP40 for membranes containing PS, albeit to a lesser degree than C311A. The double mutant behaved in a similar manner to the individual mutants. Computer modeling revealed that both cysteine residues restrain a loop segment containing lysine residues that interact with the plasma membrane, but Cys311 has the dominant role. Accordingly, the C311A mutation increases the flexibility of this membrane-binding loop, changes the profile of hydrogen bonding within VP40 and therefore binds to PS with greater affinity. This is the first evidence that mutations in VP40 can increase its affinity for biological membranes and modify the length of Ebola VLPs. The Cys311 and Cys314 residues therefore play an important role in dynamic interactions at the plasma membrane by modulating the ability of VP40 to bind PS.


Asunto(s)
Ebolavirus/genética , Proteínas de la Matriz Viral/genética , Animales , Células COS , Membrana Celular/metabolismo , Chlorocebus aethiops , Cisteína/genética , Ebolavirus/metabolismo , Humanos , Lípidos/fisiología , Simulación de Dinámica Molecular , Fosfatidilserinas/metabolismo , Polimorfismo de Nucleótido Simple/genética , Unión Proteica , Multimerización de Proteína , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/ultraestructura , Virión/metabolismo , Ensamble de Virus/genética , Liberación del Virus/genética
6.
J Biol Chem ; 296: 100316, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33516724

RESUMEN

A central role for the influenza matrix protein 1 (M1) is to form a polymeric coat on the inner leaflet of the host membrane that ultimately provides shape and stability to the virion. M1 polymerizes upon binding membranes, but triggers for conversion of M1 from a water-soluble component of the nucleus and cytosol into an oligomer at the membrane surface are unknown. While full-length M1 is required for virus viability, the N-terminal domain (M1NT) retains membrane binding and pH-dependent oligomerization. We studied the structural plasticity and oligomerization of M1NT in solution using NMR spectroscopy. We show that the isolated domain can be induced by sterol-containing compounds to undergo a conformational change and self-associate in a pH-dependent manner consistent with the stacked dimer oligomeric interface. Surface-exposed residues at one of the stacked dimer interfaces are most sensitive to sterols. Several perturbed residues are at the interface between the N-terminal subdomains and are also perturbed by changes in pH. The effects of sterols appear to be indirect and most likely mediated by reduction in water activity. The local changes are centered on strictly conserved residues and consistent with a priming of the N-terminal domain for polymerization. We hypothesize that M1NT is sensitive to changes in the aqueous environment and that this sensitivity is part of a mechanism for restricting polymerization to the membrane surface. Structural models combined with information from chemical shift perturbations indicate mechanisms by which conformational changes can be transmitted from one polymerization interface to the other.


Asunto(s)
Virus de la Influenza A/genética , Gripe Humana/genética , Conformación Proteica , Proteínas de la Matriz Viral/genética , Humanos , Virus de la Influenza A/patogenicidad , Virus de la Influenza A/ultraestructura , Gripe Humana/virología , Multimerización de Proteína/genética , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/ultraestructura
7.
J Biol Chem ; 296: 100321, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33485964

RESUMEN

During the late phase of HIV-1 infection, viral Gag polyproteins are targeted to the plasma membrane (PM) for assembly. Gag localization at the PM is a prerequisite for the incorporation of the envelope protein (Env) into budding particles. Gag assembly and Env incorporation are mediated by the N-terminal myristoylated matrix (MA) domain of Gag. Nonconservative mutations in the trimer interface of MA (A45E, T70R, and L75G) were found to impair Env incorporation and infectivity, leading to the hypothesis that MA trimerization is an obligatory step for Env incorporation. Conversely, Env incorporation can be rescued by a compensatory mutation in the MA trimer interface (Q63R). The impact of these MA mutations on the structure and trimerization properties of MA is not known. In this study, we employed NMR spectroscopy, X-ray crystallography, and sedimentation techniques to characterize the structure and trimerization properties of HIV-1 MA A45E, Q63R, T70R, and L75G mutant proteins. NMR data revealed that these point mutations did not alter the overall structure and folding of MA but caused minor structural perturbations in the trimer interface. Analytical ultracentrifugation data indicated that mutations had a minimal effect on the MA monomer-trimer equilibrium. The high-resolution X-ray structure of the unmyristoylated MA Q63R protein revealed hydrogen bonding between the side chains of adjacent Arg-63 and Ser-67 on neighboring MA molecules, providing the first structural evidence for an additional intermolecular interaction in the trimer interface. These findings advance our knowledge of the interplay of MA trimerization and Env incorporation into HIV-1 particles.


Asunto(s)
Productos del Gen gag/genética , Infecciones por VIH/genética , VIH-1/genética , Proteínas de la Matriz Viral/genética , Membrana Celular/genética , Membrana Celular/ultraestructura , Membrana Celular/virología , Productos del Gen gag/ultraestructura , Infecciones por VIH/virología , VIH-1/patogenicidad , Humanos , Mutación/genética , Unión Proteica/genética , Multimerización de Proteína/genética , Proteínas de la Matriz Viral/ultraestructura , Virión/genética , Virión/ultraestructura , Ensamble de Virus/genética , Replicación Viral/genética
8.
Viruses ; 12(9)2020 08 29.
Artículo en Inglés | MEDLINE | ID: mdl-32872471

RESUMEN

Rhabdoviruses, as single-stranded, negative-sense RNA viruses within the order Mononegavirales, are characterised by bullet-shaped or bacteroid particles that contain a helical ribonucleoprotein complex (RNP). Here, we review the components of the RNP and its higher-order structural assembly.


Asunto(s)
Rhabdoviridae/química , Ribonucleoproteínas/química , Proteínas Virales/química , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/ultraestructura , Conformación Proteica , Rhabdoviridae/genética , Ribonucleoproteínas/ultraestructura , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/ultraestructura , Proteínas Virales/ultraestructura , Proteinas del Complejo de Replicasa Viral/química , Proteinas del Complejo de Replicasa Viral/ultraestructura , Virión/química
9.
Nature ; 587(7834): 495-498, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32908308

RESUMEN

Influenza A virus causes millions of severe cases of disease during annual epidemics. The most abundant protein in influenza virions is matrix protein 1 (M1), which mediates virus assembly by forming an endoskeleton beneath the virus membrane1. The structure of full-length M1, and how it oligomerizes to mediate the assembly of virions, is unknown. Here we determine the complete structure of assembled M1 within intact virus particles, as well as the structure of M1 oligomers reconstituted in vitro. We find that the C-terminal domain of M1 is disordered in solution but can fold and bind in trans to the N-terminal domain of another M1 monomer, thus polymerizing M1 into linear strands that coat the interior surface of the membrane of the assembling virion. In the M1 polymer, five histidine residues-contributed by three different monomers of M1-form a cluster that can serve as the pH-sensitive disassembly switch after entry into a target cell. These structures therefore reveal mechanisms of influenza virus assembly and disassembly.


Asunto(s)
Microscopía por Crioelectrón , Subtipo H3N2 del Virus de la Influenza A/química , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/ultraestructura , Animales , Perros , Células HEK293 , Histidina , Humanos , Concentración de Iones de Hidrógeno , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/ultraestructura , Células de Riñón Canino Madin Darby , Modelos Moleculares , Proteínas de la Matriz Viral/metabolismo , Virión/química , Virión/metabolismo , Virión/ultraestructura
10.
Biochemistry ; 59(4): 627-634, 2020 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-31894969

RESUMEN

The V27A mutation confers adamantane resistance on the influenza A matrix 2 (M2) proton channel and is becoming more prevalent in circulating populations of influenza A virus. We have used X-ray crystallography to determine structures of a spiro-adamantyl amine inhibitor bound to M2(22-46) V27A and also to M2(21-61) V27A in the Inwardclosed conformation. The spiro-adamantyl amine binding site is nearly identical for the two crystal structures. Compared to the M2 "wild type" (WT) with valine at position 27, we observe that the channel pore is wider at its N-terminus as a result of the V27A mutation and that this removes V27 side chain hydrophobic interactions that are important for binding of amantadine and rimantadine. The spiro-adamantyl amine inhibitor blocks proton conductance in the WT and V27A mutant channels by shifting its binding site in the pore depending on which residue is present at position 27. Additionally, in the structure of the M2(21-61) V27A construct, the C-terminus of the channel is tightly packed relative to that of the M2(22-46) construct. We observe that residues Asp44, Arg45, and Phe48 face the center of the channel pore and would be well-positioned to interact with protons exiting the M2 channel after passing through the His37 gate. A 300 ns molecular dynamics simulation of the M2(22-46) V27A-spiro-adamantyl amine complex predicts with accuracy the position of the ligands and waters inside the pore in the X-ray crystal structure of the M2(22-46) V27A complex.


Asunto(s)
Adamantano/química , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/ultraestructura , Adamantano/análogos & derivados , Adamantano/farmacología , Aminas/metabolismo , Antivirales/farmacología , Sitios de Unión/genética , Cristalografía por Rayos X/métodos , Farmacorresistencia Bacteriana/genética , Farmacorresistencia Viral/efectos de los fármacos , Humanos , Virus de la Influenza A/genética , Gripe Humana/tratamiento farmacológico , Gripe Humana/metabolismo , Ligandos , Simulación de Dinámica Molecular , Mutación/genética , Radiografía/métodos , Proteínas de la Matriz Viral/genética
11.
Viruses ; 11(10)2019 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-31623281

RESUMEN

Ultrastructural studies revealing morphological differences between intact and photodynamically inactivated virions can point to inactivation mechanisms and molecular targets. Using influenza as a model system, we show that photodynamic virus inactivation is possible without total virion destruction. Indeed, irradiation with a relatively low concentration of the photosensitizer (octacationic octakis(cholinyl) zinc phthalocyanine) inactivated viral particles (the virus titer was determined in Madin Darby Canine Kidney (MDCK) cells) but did not destroy them. Transmission electron microscopy (TEM) revealed that virion membranes kept structural integrity but lost their surface glycoproteins. Such structures are known as "bald" virions, which were first described as a result of protease treatment. At a higher photosensitizer concentration, the lipid membranes were also destroyed. Therefore, photodynamic inactivation of influenza virus initially results from surface protein removal, followed by complete virion destruction. This study suggests that photodynamic treatment can be used to manufacture "bald" virions for experimental purposes. Photodynamic inactivation is based on the production of reactive oxygen species which attack and destroy biomolecules. Thus, the results of this study can potentially apply to other enveloped viruses and sources of singlet oxygen.


Asunto(s)
Subtipo H5N8 del Virus de la Influenza A/efectos de la radiación , Subtipo H5N8 del Virus de la Influenza A/ultraestructura , Fármacos Fotosensibilizantes/farmacología , Virión/ultraestructura , Inactivación de Virus/efectos de la radiación , Animales , Perros , Glicoproteínas , Células de Riñón Canino Madin Darby , Microscopía Electrónica de Transmisión , Especies Reactivas de Oxígeno/metabolismo , Proteínas de la Matriz Viral/ultraestructura , Virión/efectos de la radiación
12.
Mol Biol Rep ; 46(3): 3315-3324, 2019 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-30982214

RESUMEN

Ebola virus is a virulent pathogen that causes highly lethal hemorrhagic fever in human and non-human species. The rapid growth of this virus infection has made the scenario increasingly complicated to control the disease. Receptor viral matrix protein (VP40) is highly responsible for the replication and budding of progeny virus. The binding of RNA to VP40 could be the crucial factor for the successful lifecycle of the Ebola virus. In this study, we aimed to identify the potential drug that could inhibit VP40. Sugar alcohols were enrich with antiviral properties used to inhibit VP40. Virtual screening analysis was perform for the 48 sugar alcohol compounds, of which the following three compounds show the best binding affinity: Sorbitol, Mannitol and Galactitol. To understand the perfect binding orientation and the strength of non-bonded interactions, individual molecular docking studies were perform for the best hits. Further molecular dynamics studies were conduct to analyze the efficacy between the protein-ligand complexes and it was identify that Sorbitol obtains the highest efficacy. The best-screened compounds obtained drug-like property and were less toxic, which could be use as a potential lead compound to develop anti-Ebola drugs.


Asunto(s)
Antivirales/farmacología , Ebolavirus/metabolismo , Alcoholes del Azúcar/farmacología , Proteínas de la Matriz Viral/antagonistas & inhibidores , Antivirales/química , Simulación por Computador , Galactitol/farmacología , Células HEK293 , Fiebre Hemorrágica Ebola/tratamiento farmacológico , Fiebre Hemorrágica Ebola/metabolismo , Fiebre Hemorrágica Ebola/virología , Humanos , Ligandos , Manitol/farmacología , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Unión Proteica , Sorbitol/farmacología , Alcoholes del Azúcar/metabolismo , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/ultraestructura
13.
PLoS Pathog ; 15(2): e1007615, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30779794

RESUMEN

Cytomegalovirus (CMV) infection causes birth defects and life-threatening complications in immunosuppressed patients. Lack of vaccine and need for more effective drugs have driven widespread ongoing therapeutic development efforts against human CMV (HCMV), mostly using murine CMV (MCMV) as the model system for preclinical animal tests. The recent publication (Yu et al., 2017, DOI: 10.1126/science.aam6892) of an atomic model for HCMV capsid with associated tegument protein pp150 has infused impetus for rational design of novel vaccines and drugs, but the absence of high-resolution structural data on MCMV remains a significant knowledge gap in such development efforts. Here, by cryoEM with sub-particle reconstruction method, we have obtained the first atomic structure of MCMV capsid with associated pp150. Surprisingly, the capsid-binding patterns of pp150 differ between HCMV and MCMV despite their highly similar capsid structures. In MCMV, pp150 is absent on triplex Tc and exists as a "Λ"-shaped dimer on other triplexes, leading to only 260 groups of two pp150 subunits per capsid in contrast to 320 groups of three pp150 subunits each in a "Δ"-shaped fortifying configuration. Many more amino acids contribute to pp150-pp150 interactions in MCMV than in HCMV, making MCMV pp150 dimer inflexible thus incompatible to instigate triplex Tc-binding as observed in HCMV. While pp150 is essential in HCMV, our pp150-deletion mutant of MCMV remained viable though with attenuated infectivity and exhibiting defects in retaining viral genome. These results thus invalidate targeting pp150, but lend support to targeting capsid proteins, when using MCMV as a model for HCMV pathogenesis and therapeutic studies.


Asunto(s)
Proteínas de la Cápside/ultraestructura , Fosfoproteínas/metabolismo , Fosfoproteínas/fisiología , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/fisiología , Animales , Cápside , Proteínas de la Cápside/metabolismo , Microscopía por Crioelectrón/métodos , Citomegalovirus/genética , Citomegalovirus/metabolismo , Citomegalovirus/patogenicidad , Infecciones por Citomegalovirus/metabolismo , Genoma Viral/genética , Humanos , Ratones , Muromegalovirus/metabolismo , Muromegalovirus/patogenicidad , Fosfoproteínas/ultraestructura , Eliminación de Secuencia/genética , Proteínas de la Matriz Viral/ultraestructura , Virión , Ensamble de Virus
14.
Nat Commun ; 9(1): 3050, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-30076303

RESUMEN

Understanding virus assembly mechanisms is important for developing therapeutic interventions. Nipah virus (NiV) is of interest because of its high mortality rate and efficient human-human transmissions. The current model for most enveloped viruses suggests that matrix proteins (M) recruit attachment glycoproteins (G) and fusion glycoproteins (F) to the assembly site at the plasma membrane. Here we report an assembly model that differs in many aspects from the current one. Examining NiV proteins on the cell plasma membrane using super-resolution microscopy reveals that clusters of F and G are randomly distributed on the plasma membrane regardless of the presence or absence of M. Our data suggests a model in which the M molecules assemble at the plasma membrane to form virus-like particles (VLPs), while the incorporation of F and G into the nascent VLPs is stochastic.


Asunto(s)
Microscopía/métodos , Virus Nipah/fisiología , Virus Nipah/ultraestructura , Ensamble de Virus , Animales , Línea Celular , Membrana Celular/virología , Glicoproteínas/metabolismo , Células HeLa , Humanos , Transfección , Proteínas del Envoltorio Viral/metabolismo , Proteínas Virales de Fusión/metabolismo , Proteínas Virales de Fusión/ultraestructura , Proteínas de la Matriz Viral/metabolismo , Proteínas de la Matriz Viral/ultraestructura , Virión/metabolismo
15.
Nat Commun ; 9(1): 1736, 2018 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-29712906

RESUMEN

Measles virus (MeV) remains a major human pathogen, but there are presently no licensed antivirals to treat MeV or other paramyxoviruses. Here, we use cryo-electron tomography (cryo-ET) to elucidate the principles governing paramyxovirus assembly in MeV-infected human cells. The three-dimensional (3D) arrangement of the MeV structural proteins including the surface glycoproteins (F and H), matrix protein (M), and the ribonucleoprotein complex (RNP) are characterized at stages of virus assembly and budding, and in released virus particles. The M protein is observed as an organized two-dimensional (2D) paracrystalline array associated with the membrane. A two-layered F-M lattice is revealed suggesting that interactions between F and M may coordinate processes essential for MeV assembly. The RNP complex remains associated with and in close proximity to the M lattice. In this model, the M lattice facilitates the well-ordered incorporation and concentration of the surface glycoproteins and the RNP at sites of virus assembly.


Asunto(s)
Hemaglutininas Virales/ultraestructura , Virus del Sarampión/ultraestructura , Ribonucleoproteínas/ultraestructura , Proteínas Virales de Fusión/ultraestructura , Proteínas de la Matriz Viral/ultraestructura , Virión/ultraestructura , Línea Celular , Microscopía por Crioelectrón , Fibroblastos/ultraestructura , Fibroblastos/virología , Células HeLa , Hemaglutininas Virales/metabolismo , Humanos , Virus del Sarampión/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas Virales de Fusión/metabolismo , Proteínas de la Matriz Viral/metabolismo , Virión/metabolismo , Ensamble de Virus , Liberación del Virus
16.
Biochem Biophys Res Commun ; 493(1): 176-181, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28917841

RESUMEN

Ebola virus infections cause hemorrhagic fever that often results in very high fatality rates. In addition to exploring vaccines, development of drugs is also essential for treating the disease and preventing the spread of the infection. The Ebola virus matrix protein VP40 exists in various conformational and oligomeric forms and is a potential pharmacological target for disrupting the virus life-cycle. Here we explored graphene-VP40 interactions using molecular dynamics simulations and graphene pelleting assays. We found that graphene sheets associate strongly with VP40 at various interfaces. We also found that the graphene is able to disrupt the C-terminal domain (CTD-CTD) interface of VP40 hexamers. This VP40 hexamer-hexamer interface is crucial in forming the Ebola viral matrix and disruption of this interface may provide a method to use graphene or similar nanoparticle based solutions as a disinfectant that can significantly reduce the spread of the disease and prevent an Ebola epidemic.


Asunto(s)
Grafito/química , Nucleoproteínas/química , Nucleoproteínas/ultraestructura , Proteínas del Núcleo Viral/química , Proteínas del Núcleo Viral/ultraestructura , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/ultraestructura , Sitios de Unión , Simulación de Dinámica Molecular , Unión Proteica , Conformación Proteica , Multimerización de Proteína
17.
Proc Natl Acad Sci U S A ; 114(32): 8550-8555, 2017 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-28739952

RESUMEN

Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.


Asunto(s)
Orthomyxoviridae/metabolismo , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/ultraestructura , Cristalografía por Rayos X , Virus de la Influenza A/química , Proteínas de la Membrana/metabolismo , Membranas/metabolismo , Orthomyxoviridae/fisiología , Polimerizacion , Proteínas Virales/metabolismo , Virión/metabolismo , Liberación del Virus/fisiología
18.
Sci Rep ; 7: 44695, 2017 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-28317901

RESUMEN

Membrane scission is a crucial step in all budding processes, from endocytosis to viral budding. Many proteins have been associated with scission, though the underlying molecular details of how scission is accomplished often remain unknown. Here, we investigate the process of M2-mediated membrane scission during the budding of influenza viruses. Residues 50-61 of the viral M2 protein bind membrane and form an amphipathic α-helix (AH). Membrane binding requires hydrophobic interactions with the lipid tails but not charged interactions with the lipid headgroups. Upon binding, the M2AH induces membrane curvature and lipid ordering, constricting and destabilizing the membrane neck, causing scission. We further show that AHs in the cellular proteins Arf1 and Epsin1 behave in a similar manner. Together, they represent a class of membrane-induced AH domains that alter membrane curvature and fluidity, mediating the scission of constricted membrane necks in multiple biological pathways.


Asunto(s)
Membranas Artificiales , Proteínas de la Matriz Viral/química , Secuencia de Aminoácidos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Péptidos/química , Unión Proteica , Estructura Secundaria de Proteína , Proteínas de la Matriz Viral/ultraestructura
19.
Science ; 352(6284): 467-70, 2016 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-27033547

RESUMEN

The recent rapid spread of Zika virus and its unexpected linkage to birth defects and an autoimmune neurological syndrome have generated worldwide concern. Zika virus is a flavivirus like the dengue, yellow fever, and West Nile viruses. We present the 3.8 angstrom resolution structure of mature Zika virus, determined by cryo-electron microscopy (cryo-EM). The structure of Zika virus is similar to other known flavivirus structures, except for the ~10 amino acids that surround the Asn(154) glycosylation site in each of the 180 envelope glycoproteins that make up the icosahedral shell. The carbohydrate moiety associated with this residue, which is recognizable in the cryo-EM electron density, may function as an attachment site of the virus to host cells. This region varies not only among Zika virus strains but also in other flaviviruses, which suggests that differences in this region may influence virus transmission and disease.


Asunto(s)
Virus Zika/química , Virus Zika/ultraestructura , Secuencia de Aminoácidos , Microscopía por Crioelectrón , Glicosilación , Humanos , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas del Envoltorio Viral/química , Proteínas del Envoltorio Viral/ultraestructura , Proteínas de la Matriz Viral/química , Proteínas de la Matriz Viral/ultraestructura
20.
Curr Opin Virol ; 5: 111-9, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24799302

RESUMEN

Cryo electron microscopy (cryoEM) has emerged as an excellent tool for resolving high-resolution three-dimensional structures of membrane proteins in a lipid-containing environment with interacting partners. The near atomic resolution structures of Venezuelan equine encephalitis virus and dengue virus revealed transmembrane helices in lipid bilayers, receptor-binding glycosylation moieties, and functionally important interactions between their fusion protein and membrane-anchored chaperone protein. For pleomorphic enveloped viruses, such as human immunodeficiency virus, glycoprotein complexes can be imaged in isolation to reveal molecular interactions at different states. These high-resolution cryoEM structures have clarified important domains not previously resolved by crystallography and illustrate exciting opportunities to visualize viral membrane proteins in their native and possibly transiently stable functional states, thus uncovering mechanisms of action and informing anti-viral strategies.


Asunto(s)
Membrana Celular/virología , Proteínas de la Matriz Viral/ultraestructura , Virosis/virología , Virus/metabolismo , Virus/ultraestructura , Animales , Membrana Celular/química , Membrana Celular/ultraestructura , Microscopía por Crioelectrón , Humanos , Proteínas de la Matriz Viral/genética , Proteínas de la Matriz Viral/metabolismo , Virus/química , Virus/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA