Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Clin Genet ; 100(6): 722-730, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34569062

RESUMEN

Cerebellar ataxia is a genetically heterogeneous disorder. GEMIN5 encoding an RNA-binding protein of the survival of motor neuron complex, is essential for small nuclear ribonucleoprotein biogenesis, and it was recently reported that biallelic loss-of-function variants cause neurodevelopmental delay, hypotonia, and cerebellar ataxia. Here, whole-exome analysis revealed compound heterozygous GEMIN5 variants in two individuals from our cohort of 162 patients with cerebellar atrophy/hypoplasia. Three novel truncating variants and one previously reported missense variant were identified: c.2196dupA, p.(Arg733Thrfs*6) and c.1831G > A, p.(Val611Met) in individual 1, and c.3913delG, p.(Ala1305Leufs*14) and c.4496dupA, p.(Tyr1499*) in individual 2. Western blotting analysis using lymphoblastoid cell lines derived from both affected individuals showed significantly reduced levels of GEMIN5 protein. Zebrafish model for null variants p.(Arg733Thrfs*6) and p.(Ala1305Leufs*14) exhibited complete lethality at 2 weeks and recapitulated a distinct dysplastic phenotype. The phenotypes of affected individuals and the zebrafish mutant models strongly suggest that biallelic loss-of-function variants in GEMIN5 cause cerebellar atrophy/hypoplasia.


Asunto(s)
Ataxia Cerebelosa/diagnóstico , Ataxia Cerebelosa/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Mutación , Fenotipo , Proteínas del Complejo SMN/genética , Animales , Encéfalo/anomalías , Encéfalo/diagnóstico por imagen , Modelos Animales de Enfermedad , Facies , Estudios de Asociación Genética/métodos , Humanos , Mutación con Pérdida de Función , Imagen por Resonancia Magnética , Modelos Moleculares , Neuronas Motoras/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido , Linaje , Conformación Proteica , Proteínas del Complejo SMN/química , Relación Estructura-Actividad , Secuenciación del Exoma , Pez Cebra
2.
RNA Biol ; 18(sup1): 496-506, 2021 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-34424823

RESUMEN

Gemin5 is a multifaceted RNA-binding protein that comprises distinct structural domains, including a WD40 and TPR-like for which the X-ray structure is known. In addition, the protein contains a non-canonical RNA-binding domain (RBS1) towards the C-terminus. To understand the RNA binding features of the RBS1 domain, we have characterized its structural characteristics by solution NMR linked to RNA-binding activity. Here we show that a short version of the RBS1 domain that retains the ability to interact with RNA is predominantly unfolded even in the presence of RNA. Furthermore, an exhaustive mutational analysis indicates the presence of an evolutionarily conserved motif enriched in R, S, W, and H residues, necessary to promote RNA-binding via π-π interactions. The combined results of NMR and RNA-binding on wild-type and mutant proteins highlight the importance of aromatic and arginine residues for RNA recognition by RBS1, revealing that the net charge and the π-amino acid density of this region of Gemin5 are key factors for RNA recognition.


Asunto(s)
Arginina/metabolismo , Motivos de Unión al ARN , ARN/química , ARN/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Triptófano/metabolismo , Secuencia de Aminoácidos , Arginina/química , Arginina/genética , Sitios de Unión , Humanos , Modelos Moleculares , Unión Proteica , ARN/genética , Proteínas del Complejo SMN/genética , Homología de Secuencia , Triptófano/química , Triptófano/genética
3.
Nucleic Acids Res ; 49(13): 7644-7664, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-34181727

RESUMEN

Protein oligomerization is one mechanism by which homogenous solutions can separate into distinct liquid phases, enabling assembly of membraneless organelles. Survival Motor Neuron (SMN) is the eponymous component of a large macromolecular complex that chaperones biogenesis of eukaryotic ribonucleoproteins and localizes to distinct membraneless organelles in both the nucleus and cytoplasm. SMN forms the oligomeric core of this complex, and missense mutations within its YG box domain are known to cause Spinal Muscular Atrophy (SMA). The SMN YG box utilizes a unique variant of the glycine zipper motif to form dimers, but the mechanism of higher-order oligomerization remains unknown. Here, we use a combination of molecular genetic, phylogenetic, biophysical, biochemical and computational approaches to show that formation of higher-order SMN oligomers depends on a set of YG box residues that are not involved in dimerization. Mutation of key residues within this new structural motif restricts assembly of SMN to dimers and causes locomotor dysfunction and viability defects in animal models.


Asunto(s)
Proteínas del Complejo SMN/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Secuencia Conservada , Dimerización , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Drosophila melanogaster/fisiología , Humanos , Locomoción , Modelos Moleculares , Mutación , Mutación Puntual , Dominios Proteicos , Multimerización de Proteína , Proteínas del Complejo SMN/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética
4.
Cell ; 184(14): 3612-3625.e17, 2021 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-34115980

RESUMEN

Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.


Asunto(s)
Arginina/análogos & derivados , Condensados Biomoleculares/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Animales , Arginina/metabolismo , Núcleo Celular/metabolismo , Cuerpos Enrollados/metabolismo , Drosophila melanogaster/metabolismo , Células HEK293 , Células HeLa , Humanos , Ligandos , Metilación , Ratones , Modelos Biológicos , Células 3T3 NIH , Unión Proteica , Dominios Proteicos , Multimerización de Proteína , Ribonucleoproteínas Nucleares Pequeñas/metabolismo
5.
Nucleic Acids Res ; 49(13): 7207-7223, 2021 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-33754639

RESUMEN

The macromolecular SMN complex facilitates the formation of Sm-class ribonucleoproteins involved in mRNA processing (UsnRNPs). While biochemical studies have revealed key activities of the SMN complex, its structural investigation is lagging behind. Here we report on the identification and structural determination of the SMN complex from the lower eukaryote Schizosaccharomyces pombe, consisting of SMN, Gemin2, 6, 7, 8 and Sm proteins. The core of the SMN complex is formed by several copies of SMN tethered through its C-terminal alpha-helices arranged with alternating polarity. This creates a central platform onto which Gemin8 binds and recruits Gemins 6 and 7. The N-terminal parts of the SMN molecules extrude via flexible linkers from the core and enable binding of Gemin2 and Sm proteins. Our data identify the SMN complex as a multivalent hub where Sm proteins are collected in its periphery to allow their joining with UsnRNA.


Asunto(s)
Proteínas del Complejo SMN/química , Proteínas de Schizosaccharomyces pombe/química , Proteínas Portadoras/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Atrofia Muscular Espinal/genética , Mutación , Proteínas Nucleares/química , Unión Proteica , Proteínas del Complejo SMN/metabolismo , Dispersión del Ángulo Pequeño , Proteínas de Schizosaccharomyces pombe/metabolismo , Homología Estructural de Proteína , Difracción de Rayos X
6.
Int J Biochem Cell Biol ; 132: 105919, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33422691

RESUMEN

The AAA-ATPase NVL2 associates with an RNA helicase MTR4 and the nuclear RNA exosome in the course of ribosome biogenesis. In our proteomic screen, we had identified a ribosome biogenesis factor WDR74 as a MTR4-interacting partner, whose dissociation is stimulated by the ATP hydrolysis of NVL2. In this study, we report the identification of splicing factor 30 (SPF30), another MTR4-interacting protein with a similar regulatory mechanism. SPF30 is a pre-mRNA splicing factor harboring a Tudor domain in its central region, which regulates various cellular events by binding to dimethylarginine-modified proteins. The interaction between SPF30 and the exosome core is mediated by MTR4 and RRP6, a catalytic component of the nuclear exosome. The N- and C-terminal regions, but not the Tudor domain, of SPF30 are involved in the association with MTR4 and the exosome. The knockdown of SPF30 caused subtle delay in the 12S pre-rRNA processing to mature 5.8S rRNA, even though no obvious effect was observed on the ribosome subunit profile in the cells. Shotgun proteomic analysis to search for SPF30-interacting proteins indicated its role in ribosome biogenesis, pre-mRNA splicing, and box C/D snoRNA biogenesis. These results suggest that SPF30 collaborates with the MTR4-exosome machinery to play a functional role in multiple RNA metabolic pathways, some of which may be regulated by the ATP hydrolysis of NVL2.


Asunto(s)
ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Exosomas/genética , ARN Helicasas/metabolismo , Factores de Empalme de ARN/química , Factores de Empalme de ARN/metabolismo , Estabilidad del ARN , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Humanos , Unión Proteica , Dominios Proteicos
7.
RNA Biol ; 17(9): 1331-1341, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32476560

RESUMEN

Regulation of protein synthesis is an essential step of gene expression. This process is under the control of cis-acting RNA elements and trans-acting factors. Gemin5 is a multifunctional RNA-binding protein organized in distinct domains. The protein bears a non-canonical RNA-binding site, designated RBS1, at the C-terminal end. Among other cellular RNAs, the RBS1 region recognizes a sequence located within the coding region of Gemin5 mRNA, termed H12. Expression of RBS1 stimulates translation of RNA reporters carrying the H12 sequence, counteracting the negative effect of Gemin5 on global protein synthesis. A computational analysis of RBS1 protein and H12 RNA variability across the evolutionary scale predicts coevolving pairs of amino acids and nucleotides. RBS1 footprint and gel-shift assays indicated a positive correlation between the identified coevolving pairs and RNA-protein interaction. The coevolving residues of RBS1 contribute to the recognition of stem-loop SL1, an RNA structural element of H12 that contains the coevolving nucleotides. Indeed, RBS1 proteins carrying substitutions on the coevolving residues P1297 or S1299S1300, drastically reduced SL1-binding. Unlike the wild type RBS1 protein, expression of these mutant proteins in cells failed to enhance translation stimulation of mRNA reporters carrying the H12 sequence. Therefore, the PXSS motif within the RBS1 domain of Gemin5 and the RNA structural motif SL1 of its mRNA appears to play a key role in fine-tuning the expression level of this essential protein.


Asunto(s)
Sitios de Unión , Motivos de Unión al ARN , Proteínas de Unión al ARN/química , ARN/química , Proteínas del Complejo SMN/química , Secuencia de Aminoácidos , Evolución Biológica , Secuencia Conservada , Conformación de Ácido Nucleico , Unión Proteica , Conformación Proteica , Dominios y Motivos de Interacción de Proteínas , ARN/genética , ARN/metabolismo , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas del Complejo SMN/metabolismo
8.
Int J Mol Sci ; 21(11)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32485878

RESUMEN

RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The disfunction of RBPs is frequently the cause of cell disorders which are incompatible with life. Furthermore, the ordered assembly of RBPs and RNAs in ribonucleoprotein (RNP) particles determines the function of biological complexes, as illustrated by the survival of the motor neuron (SMN) complex. Defects in the SMN complex assembly causes spinal muscular atrophy (SMA), an infant invalidating disease. This multi-subunit chaperone controls the assembly of small nuclear ribonucleoproteins (snRNPs), which are the critical components of the splicing machinery. However, the functional and structural characterization of individual members of the SMN complex, such as SMN, Gemin3, and Gemin5, have accumulated evidence for the additional roles of these proteins, unveiling their participation in other RNA-mediated events. In particular, Gemin5 is a multidomain protein that comprises tryptophan-aspartic acid (WD) repeat motifs at the N-terminal region, a dimerization domain at the middle region, and a non-canonical RNA-binding domain at the C-terminal end of the protein. Beyond small nuclear RNA (snRNA) recognition, Gemin5 interacts with a selective group of mRNA targets in the cell environment and plays a key role in reprogramming translation depending on the RNA partner and the cellular conditions. Here, we review recent studies on the SMN complex, with emphasis on the individual components regarding their involvement in cellular processes critical for cell survival.


Asunto(s)
Neuronas Motoras/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/metabolismo , Animales , Humanos , Neuronas Motoras/patología , Biosíntesis de Proteínas , Multimerización de Proteína , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Ribosomas/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/genética
9.
Nucleic Acids Res ; 48(2): 788-801, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31799608

RESUMEN

In all organisms, a selected type of proteins accomplishes critical roles in cellular processes that govern gene expression. The multifunctional protein Gemin5 cooperates in translation control and ribosome binding, besides acting as the RNA-binding protein of the survival of motor neuron (SMN) complex. While these functions reside on distinct domains located at each end of the protein, the structure and function of the middle region remained unknown. Here, we solved the crystal structure of an extended tetratricopeptide (TPR)-like domain in human Gemin5 that self-assembles into a previously unknown canoe-shaped dimer. We further show that the dimerization module is functional in living cells driving the interaction between the viral-induced cleavage fragment p85 and the full-length Gemin5, which anchors splicing and translation members. Disruption of the dimerization surface by a point mutation in the TPR-like domain prevents this interaction and also abrogates translation enhancement induced by p85. The characterization of this unanticipated dimerization domain provides the structural basis for a role of the middle region of Gemin5 as a central hub for protein-protein interactions.


Asunto(s)
Biosíntesis de Proteínas , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN/genética , Humanos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/genética , Multimerización de Proteína/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas del Complejo SMN/química
10.
Nucleic Acids Res ; 48(2): 895-911, 2020 01 24.
Artículo en Inglés | MEDLINE | ID: mdl-31799625

RESUMEN

The assembly of snRNP cores, in which seven Sm proteins, D1/D2/F/E/G/D3/B, form a ring around the nonameric Sm site of snRNAs, is the early step of spliceosome formation and essential to eukaryotes. It is mediated by the PMRT5 and SMN complexes sequentially in vivo. SMN deficiency causes neurodegenerative disease spinal muscular atrophy (SMA). How the SMN complex assembles snRNP cores is largely unknown, especially how the SMN complex achieves high RNA assembly specificity and how it is released. Here we show, using crystallographic and biochemical approaches, that Gemin2 of the SMN complex enhances RNA specificity of SmD1/D2/F/E/G via a negative cooperativity between Gemin2 and RNA in binding SmD1/D2/F/E/G. Gemin2, independent of its N-tail, constrains the horseshoe-shaped SmD1/D2/F/E/G from outside in a physiologically relevant, narrow state, enabling high RNA specificity. Moreover, the assembly of RNAs inside widens SmD1/D2/F/E/G, causes the release of Gemin2/SMN allosterically and allows SmD3/B to join. The assembly of SmD3/B further facilitates the release of Gemin2/SMN. This is the first to show negative cooperativity in snRNP assembly, which provides insights into RNA selection and the SMN complex's release. These findings reveal a basic mechanism of snRNP core assembly and facilitate pathogenesis studies of SMA.


Asunto(s)
Proteínas del Tejido Nervioso/química , Proteínas de Unión al ARN/química , ARN/química , Empalmosomas/química , Proteínas Nucleares snRNP/química , Cristalografía por Rayos X , Humanos , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/patología , Proteínas del Tejido Nervioso/genética , Conformación Proteica , ARN/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteínas Nucleares Pequeñas/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/genética , Empalmosomas/genética , Proteínas Nucleares snRNP/genética
11.
Bioessays ; 41(4): e1800241, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30919488

RESUMEN

The fate of cellular RNAs is largely dependent on their structural conformation, which determines the assembly of ribonucleoprotein (RNP) complexes. Consequently, RNA-binding proteins (RBPs) play a pivotal role in the lifespan of RNAs. The advent of highly sensitive in cellulo approaches for studying RNPs reveals the presence of unprecedented RNA-binding domains (RBDs). Likewise, the diversity of the RNA targets associated with a given RBP increases the code of RNA-protein interactions. Increasing evidence highlights the biological relevance of RNA conformation for recognition by specific RBPs and how this mutual interaction affects translation control. In particular, noncanonical RBDs present in proteins such as Gemin5, Roquin-1, Staufen, and eIF3 eventually determine translation of selective targets. Collectively, recent studies on RBPs interacting with RNA in a structure-dependent manner unveil new pathways for gene expression regulation, reinforcing the pivotal role of RNP complexes in genome decoding.


Asunto(s)
Biosíntesis de Proteínas , ARN/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Animales , Regulación de la Expresión Génica , Humanos , Modelos Biológicos , Dominios Proteicos , ARN/química
12.
G3 (Bethesda) ; 9(2): 491-503, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30563832

RESUMEN

Spinal Muscular Atrophy (SMA) is caused by homozygous mutations in the human survival motor neuron 1 (SMN1) gene. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. SMN is part of an oligomeric complex with core binding partners, collectively called Gemins. Biochemical and cell biological studies demonstrate that certain Gemins are required for proper snRNP assembly and transport. However, the precise functions of most Gemins are unknown. To gain a deeper understanding of the SMN complex in the context of metazoan evolution, we investigated its composition in Drosophila melanogaster Using transgenic flies that exclusively express Flag-tagged SMN from its native promoter, we previously found that Gemin2, Gemin3, Gemin5, and all nine classical Sm proteins, including Lsm10 and Lsm11, co-purify with SMN. Here, we show that CG2941 is also highly enriched in the pulldown. Reciprocal co-immunoprecipitation reveals that epitope-tagged CG2941 interacts with endogenous SMN in Schneider2 cells. Bioinformatic comparisons show that CG2941 shares sequence and structural similarity with metazoan Gemin4. Additional analysis shows that three other genes (CG14164, CG31950 and CG2371) are not orthologous to Gemins 6-7-8, respectively, as previously suggested. In D.melanogaster, CG2941 is located within an evolutionarily recent genomic triplication with two other nearly identical paralogous genes (CG32783 and CG32786). RNAi-mediated knockdown of CG2941 and its two close paralogs reveals that Gemin4 is essential for organismal viability.


Asunto(s)
Proteínas de Drosophila/genética , Proteínas del Complejo SMN/genética , Animales , Sitios de Unión , Proteínas de Drosophila/química , Proteínas de Drosophila/metabolismo , Drosophila melanogaster , Evolución Molecular , Unión Proteica , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo
13.
Hum Mol Genet ; 27(19): 3404-3416, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29982416

RESUMEN

Spinal muscular atrophy (SMA) is caused by reduced levels of full-length SMN (FL-SMN). In SMA patients with one or two copies of the Survival Motor Neuron 2 (SMN2) gene there are a number of SMN missense mutations that result in milder-than-predicted SMA phenotypes. These mild SMN missense mutation alleles are often assumed to have partial function. However, it is important to consider the contribution of FL-SMN as these missense alleles never occur in the absence of SMN2. We propose that these patients contain a partially functional oligomeric SMN complex consisting of FL-SMN from SMN2 and mutant SMN protein produced from the missense allele. Here we show that mild SMN missense mutations SMND44V, SMNT74I or SMNQ282A alone do not rescue mice lacking wild-type FL-SMN. Thus, missense mutations are not functional in the absence of FL-SMN. In contrast, when the same mild SMN missense mutations are expressed in a mouse containing two SMN2 copies, functional SMN complexes are formed with the small amount of wild-type FL-SMN produced by SMN2 and the SMA phenotype is completely rescued. This contrasts with SMN missense alleles when studied in C. elegans, Drosophila and zebrafish. Here we demonstrate that the heteromeric SMN complex formed with FL-SMN is functional and sufficient to rescue small nuclear ribonucleoprotein assembly, motor neuron function and rescue the SMA mice. We conclude that mild SMN missense alleles are not partially functional but rather they are completely non-functional in the absence of wild-type SMN in mammals.


Asunto(s)
Atrofia Muscular Espinal/genética , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN/genética , Alelos , Animales , Caenorhabditis elegans/genética , Línea Celular , Modelos Animales de Enfermedad , Drosophila melanogaster/genética , Exones/genética , Humanos , Ratones , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Atrofia Muscular Espinal/metabolismo , Atrofia Muscular Espinal/patología , Mutación Missense , Ribonucleoproteínas Nucleares Pequeñas/química , Proteínas del Complejo SMN/química , Proteína 2 para la Supervivencia de la Neurona Motora/química , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Pez Cebra/genética
14.
Mol Biosyst ; 13(8): 1448-1457, 2017 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-28612854

RESUMEN

G quadruplex structures have been predicted by bioinformatics to form in the 5'- and 3'-untranslated regions (UTRs) of several thousand mature mRNAs and are believed to play a role in translation regulation. Elucidation of these roles has primarily been focused on the 3'-UTR, with limited focus on characterizing the G quadruplex structures and functions in the 5'-UTR. Investigation of the affinity and specificity of RNA binding proteins for 5'-UTR G quadruplexes and the resulting regulatory effects have also been limited. Among the mRNAs predicted to form a G quadruplex structure within the 5'-UTR is the survival motor neuron domain containing 1 (SMNDC1) mRNA, encoding a protein that is critical to the spliceosome. Additionally, this mRNA has been identified as a potential target of the fragile X mental retardation protein (FMRP), whose loss of expression leads to fragile X syndrome. FMRP is an RNA binding protein involved in translation regulation that has been shown to bind mRNA targets that form G quadruplex structures. In this study we have used biophysical methods to investigate G quadruplex formation in the 5'-UTR of SMNDC1 mRNA and analyzed its interactions with FMRP. Our results show that SMNDC1 mRNA 5'-UTR forms an intramolecular, parallel G quadruplex structure comprised of three G quartet planes, which is bound specifically by FMRP both in vitro and in mouse brain lysates. These findings suggest a model by which FMRP might regulate the translation of a subset of its mRNA targets by recognizing the G quadruplex structure present in their 5'-UTR, and affecting their accessibility by the protein synthesis machinery.


Asunto(s)
Regiones no Traducidas 5' , Química Encefálica , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/química , G-Cuádruplex , Factores de Empalme de ARN/química , Proteínas del Complejo SMN/química , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Sitios de Unión , Encéfalo/metabolismo , Encéfalo/patología , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/patología , Expresión Génica , Regulación de la Expresión Génica , Humanos , Ratones , Unión Proteica , Biosíntesis de Proteínas , Dominios y Motivos de Interacción de Proteínas , Factores de Empalme de ARN/genética , Factores de Empalme de ARN/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas del Complejo SMN/genética , Proteínas del Complejo SMN/metabolismo , Empalmosomas/genética , Empalmosomas/metabolismo , Termodinámica , Transcripción Genética
15.
Genes Dev ; 30(21): 2341-2344, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881598

RESUMEN

Macromolecular complexes, rather than individual biopolymers, perform many cellular activities. Faithful assembly of these complexes in vivo is therefore a vital challenge of all cells, and its failure can have fatal consequences. To form functional complexes, cells use elaborate measures to select the "right" components and combine them into working entities. How assembly is achieved at the molecular level is unclear in many cases. Three groups (Jin and colleagues, pp. 2391-2403; Xu and colleagues, pp. 2376-2390; and Tang and colleagues in Cell Research) have now provided insights into how an assembly factor specifically recognizes substrate RNA molecules and enables their usage for assembly of Sm-class uridine-rich small nuclear RNA-protein complexes.


Asunto(s)
Modelos Moleculares , Complejos Multiproteicos/biosíntesis , ARN Nuclear Pequeño/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Secuencia de Bases , Complejos Multiproteicos/química , Unión Proteica , Dominios Proteicos , Estructura Terciaria de Proteína , ARN Nuclear Pequeño/química , Alineación de Secuencia
16.
Genes Dev ; 30(21): 2376-2390, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881600

RESUMEN

In cytoplasm, the survival of motor neuron (SMN) complex delivers pre-small nuclear RNAs (pre-snRNAs) to the heptameric Sm ring for the assembly of the ring complex on pre-snRNAs at the conserved Sm site [A(U)4-6G]. Gemin5, a WD40 protein component of the SMN complex, is responsible for recognizing pre-snRNAs. In addition, Gemin5 has been reported to specifically bind to the m7G cap. In this study, we show that the WD40 domain of Gemin5 is both necessary and sufficient for binding the Sm site of pre-snRNAs by isothermal titration calorimetry (ITC) and mutagenesis assays. We further determined the crystal structures of the WD40 domain of Gemin5 in complex with the Sm site or m7G cap of pre-snRNA, which reveal that the WD40 domain of Gemin5 recognizes the Sm site and m7G cap of pre-snRNAs via two distinct binding sites by respective base-specific interactions. In addition, we also uncovered a novel role of Gemin5 in escorting the truncated forms of U1 pre-snRNAs for proper disposal. Overall, the elucidated Gemin5 structures will contribute to a better understanding of Gemin5 in small nuclear ribonucleic protein (snRNP) biogenesis as well as, potentially, other cellular activities.


Asunto(s)
Modelos Moleculares , Precursores del ARN/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Sitios de Unión , Línea Celular , Cristalización , Células HEK293 , Humanos , Mutación Puntual , Unión Proteica , Dominios Proteicos/genética , Estructura Terciaria de Proteína , Transporte de Proteínas , Precursores del ARN/química , Ribonucleoproteínas Nucleares Pequeñas/biosíntesis , Proteínas del Complejo SMN/genética
17.
Genes Dev ; 30(21): 2391-2403, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27881601

RESUMEN

Assembly of the spliceosomal small nuclear ribonucleoparticle (snRNP) core requires the participation of the multisubunit SMN (survival of motor neuron) complex, which contains SMN and several Gemin proteins. The SMN and Gemin2 subunits directly bind Sm proteins, and Gemin5 is required for snRNP biogenesis and has been implicated in snRNA recognition. The RNA sequence required for snRNP assembly includes the Sm site and an adjacent 3' stem-loop, but a precise understanding of Gemin5's RNA-binding specificity is lacking. Here we show that the N-terminal half of Gemin5, which is composed of two juxtaposed seven-bladed WD40 repeat domains, recognizes the Sm site. The tandem WD40 repeat domains are rigidly held together to form a contiguous RNA-binding surface. RNA-contacting residues are located mostly on loops between ß strands on the apical surface of the WD40 domains. Structural and biochemical analyses show that base-stacking interactions involving four aromatic residues and hydrogen bonding by a pair of arginines are crucial for specific recognition of the Sm sequence. We also show that an adenine immediately 5' to the Sm site is required for efficient binding and that Gemin5 can bind short RNA oligos in an alternative mode. Our results provide mechanistic understandings of Gemin5's snRNA-binding specificity as well as valuable insights into the molecular mechanism of RNA binding by WD40 repeat proteins in general.


Asunto(s)
Modelos Moleculares , ARN Nuclear Pequeño/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/metabolismo , Repeticiones WD40/fisiología , Cristalización , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Unión Proteica , Estructura Terciaria de Proteína , ARN Nuclear Pequeño/química
18.
Biomolecules ; 5(2): 528-44, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25898402

RESUMEN

Gemin5 is a RNA-binding protein (RBP) that was first identified as a peripheral component of the survival of motor neurons (SMN) complex. This predominantly cytoplasmic protein recognises the small nuclear RNAs (snRNAs) through its WD repeat domains, allowing assembly of the SMN complex into small nuclear ribonucleoproteins (snRNPs). Additionally, the amino-terminal end of the protein has been reported to possess cap-binding capacity and to interact with the eukaryotic initiation factor 4E (eIF4E). Gemin5 was also shown to downregulate translation, to be a substrate of the picornavirus L protease and to interact with viral internal ribosome entry site (IRES) elements via a bipartite non-canonical RNA-binding site located at its carboxy-terminal end. These features link Gemin5 with translation control events. Thus, beyond its role in snRNPs biogenesis, Gemin5 appears to be a multitasking protein cooperating in various RNA-guided processes. In this review, we will summarise current knowledge of Gemin5 functions. We will discuss the involvement of the protein on translation control and propose a model to explain how the proteolysis fragments of this RBP in picornavirus-infected cells could modulate protein synthesis.


Asunto(s)
Biosíntesis de Proteínas , Proteínas del Complejo SMN/metabolismo , Secuencia de Aminoácidos , Animales , Humanos , Datos de Secuencia Molecular , Infecciones por Picornaviridae/metabolismo , Proteínas del Complejo SMN/química , Proteínas del Complejo SMN/genética
19.
Hum Mol Genet ; 24(8): 2138-46, 2015 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-25561692

RESUMEN

The spliceosome plays a fundamental role in RNA metabolism by facilitating pre-RNA splicing. To understand how this essential complex is formed, we have used protein crystallography to determine the first complete structures of the key assembler protein, SMN, and the truncated isoform, SMNΔ7, which is found in patients with the disease spinal muscular atrophy (SMA). Comparison of the structures of SMN and SMNΔ7 shows many similar features, including the presence of two Tudor domains, but significant differences are observed in the C-terminal domain, including 12 additional amino acid residues encoded by exon 7 in SMN compared with SMNΔ7. Mapping of missense point mutations found in some SMA patients reveals clustering around three spatial locations, with the largest cluster found in the C-terminal domain. We propose a structural model of SMN binding with the Gemin2 protein and a heptameric Sm ring, revealing a critical assembly role of the residues 260-294, with the differences at the C-terminus of SMNΔ7 compared with SMN likely leading to loss of small nuclear ribonucleoprotein (snRNP) assembly. The SMN complex is proposed to form a dimer driven by formation of a glycine zipper involving α helix formed by amino acid residues 263-294. These results explain how structural changes of SMN give rise to loss of SMN-mediated snRNP assembly and support the hypothesis that this loss results in atrophy of neurons in SMA.


Asunto(s)
Atrofia Muscular Espinal/metabolismo , Ribonucleoproteínas Nucleares Pequeñas/metabolismo , Proteínas del Complejo SMN/química , Secuencias de Aminoácidos , Dimerización , Humanos , Modelos Moleculares , Complejos Multiproteicos/química , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Atrofia Muscular Espinal/genética , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN/genética , Proteínas del Complejo SMN/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/química , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
20.
PLoS Genet ; 10(8): e1004489, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25144193

RESUMEN

Mutations in the human survival motor neuron 1 (SMN) gene are the primary cause of spinal muscular atrophy (SMA), a devastating neuromuscular disorder. SMN protein has a well-characterized role in the biogenesis of small nuclear ribonucleoproteins (snRNPs), core components of the spliceosome. Additional tissue-specific and global functions have been ascribed to SMN; however, their relevance to SMA pathology is poorly understood and controversial. Using Drosophila as a model system, we created an allelic series of twelve Smn missense mutations, originally identified in human SMA patients. We show that animals expressing these SMA-causing mutations display a broad range of phenotypic severities, similar to the human disease. Furthermore, specific interactions with other proteins known to be important for SMN's role in RNP assembly are conserved. Intragenic complementation analyses revealed that the three most severe mutations, all of which map to the YG box self-oligomerization domain of SMN, display a stronger phenotype than the null allele and behave in a dominant fashion. In support of this finding, the severe YG box mutants are defective in self-interaction assays, yet maintain their ability to heterodimerize with wild-type SMN. When expressed at high levels, wild-type SMN is able to suppress the activity of the mutant protein. These results suggest that certain SMN mutants can sequester the wild-type protein into inactive complexes. Molecular modeling of the SMN YG box dimer provides a structural basis for this dominant phenotype. These data demonstrate that important structural and functional features of the SMN YG box are conserved between vertebrates and invertebrates, emphasizing the importance of self-interaction to the proper functioning of SMN.


Asunto(s)
Proteínas de Drosophila/genética , Drosophila/genética , Atrofia Muscular Espinal/genética , Proteínas de Unión al ARN/genética , Proteínas del Complejo SMN/genética , Animales , Modelos Animales de Enfermedad , Proteínas de Drosophila/química , Humanos , Neuronas Motoras/patología , Atrofia Muscular Espinal/patología , Mutación Missense/genética , Fenotipo , Multimerización de Proteína/genética , Proteínas de Unión al ARN/química , Ribonucleoproteínas Nucleares Pequeñas/genética , Proteínas del Complejo SMN/química , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...