Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
BMC Biol ; 5: 55, 2007 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-18078516

RESUMEN

BACKGROUND: The genus Cuscuta L. (Convolvulaceae), commonly known as dodders, are epiphytic vines that invade the stems of their host with haustorial feeding structures at the points of contact. Although they lack expanded leaves, some species are noticeably chlorophyllous, especially as seedlings and in maturing fruits. Some species are reported as crop pests of worldwide distribution, whereas others are extremely rare and have local distributions and apparent niche specificity. A strong phylogenetic framework for this large genus is essential to understand the interesting ecological, morphological and molecular phenomena that occur within these parasites in an evolutionary context. RESULTS: Here we present a well-supported phylogeny of Cuscuta using sequences of the nuclear ribosomal internal transcribed spacer and plastid rps2, rbcL and matK from representatives across most of the taxonomic diversity of the genus. We use the phylogeny to interpret morphological and plastid genome evolution within the genus. At least three currently recognized taxonomic sections are not monophyletic and subgenus Cuscuta is unequivocally paraphyletic. Plastid genes are extremely variable with regards to evolutionary constraint, with rbcL exhibiting even higher levels of purifying selection in Cuscuta than photosynthetic relatives. Nuclear genome size is highly variable within Cuscuta, particularly within subgenus Grammica, and in some cases may indicate the existence of cryptic species in this large clade of morphologically similar species. CONCLUSION: Some morphological characters traditionally used to define major taxonomic splits within Cuscuta are homoplastic and are of limited use in defining true evolutionary groups. Chloroplast genome evolution seems to have evolved in a punctuated fashion, with episodes of loss involving suites of genes or tRNAs followed by stabilization of gene content in major clades. Nearly all species of Cuscuta retain some photosynthetic ability, most likely for nutrient apportionment to their seeds, while complete loss of photosynthesis and possible loss of the entire chloroplast genome is limited to a single small clade of outcrossing species found primarily in western South America.


Asunto(s)
Cuscuta/genética , Evolución Molecular , Genoma de Planta/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Plastidios/genética , Clasificación/métodos , Convolvulaceae/clasificación , Convolvulaceae/genética , Cuscuta/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Filogenia , Extractos Vegetales/clasificación , Extractos Vegetales/genética , Plastidios/clasificación
2.
Planta ; 223(2): 359-68, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16136331

RESUMEN

Phosphoenolpyruvate carboxylase (PEPCase, EC 4.1.1.3) is a key enzyme of C(4) photosynthesis. It has evolved from ancestral non-photosynthetic (C(3)) isoforms and thereby changed its kinetic and regulatory properties. We are interested in understanding the molecular changes, as the C(4) PEPCases were adapted to their new function in C(4) photosynthesis and have therefore analysed the PEPCase genes of various Alternanthera species. We isolated PEPCase cDNAs from the C(4) plant Alternanthera pungens H.B.K., the C(3)/C(4) intermediate plant A. tenella Colla, and the C(3) plant A. sessilis (L.) R.Br. and investigated the kinetic properties of the corresponding recombinant PEPCase proteins and their phylogenetic relationships. The three PEPCases are most likely derived from orthologous gene classes named ppcA. The affinity constant for the substrate phosphoenolpyruvate (K (0.5) PEP) and the degree of activation by glucose-6-phosphate classified the enzyme from A. pungens (C(4)) as a C(4) PEPCase isoform. In contrast, both the PEPCases from A. sessilis (C(3)) and A. tenella (C(3)/C(4)) were found to be typical C(3) PEPCase isozymes. The C(4) characteristics of the PEPCase of A. pungens were accompanied by the presence of the C(4)-invariant serine residue at position 775 reinforcing that a serine at this position is essential for being a C(4) PEPCase (Svensson et al. 2003). Genomic Southern blot experiments and sequence analysis of the 3' untranslated regions of these genes indicated the existence of PEPCase multigene family in all three plants which can be grouped into three classes named ppcA, ppcB and ppcC.


Asunto(s)
Amaranthaceae/enzimología , Amaranthaceae/genética , Evolución Molecular , Fosfoenolpiruvato Carboxilasa/genética , Amaranthaceae/fisiología , Secuencia de Aminoácidos , Southern Blotting , Paseo de Cromosoma , ADN Complementario/metabolismo , Isoenzimas/clasificación , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Datos de Secuencia Molecular , Familia de Multigenes/genética , Fosfoenolpiruvato Carboxilasa/clasificación , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Filogenia , Hojas de la Planta/enzimología , Proteínas Recombinantes , Alineación de Secuencia , Homología de Secuencia de Aminoácido
3.
Plant Physiol ; 135(1): 587-98, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15133148

RESUMEN

In plants with crassulacean acid metabolism (CAM), dark CO2 uptake is mediated by phosphoenolpyruvate carboxylase (PEPC), an enzyme that can be regulated at transcriptional and posttranslational levels. Reversible phosphorylation of PEPC is catalyzed by a dedicated PEPC kinase, which in turn is regulated at the transcriptional level over the 24-h cycle in CAM plants. PEPC kinase controls the day/night regulation of PEPC during the CAM cycle, thus facilitating plasticity for optimizing CO2 uptake under different environmental conditions. To understand the importance of PEPC kinase in relation to its target PEPC in terms of CAM performance, the expression of the genes encoding the two enzymes was investigated in four species of Clusia that have photosynthetic patterns ranging from C3 photosynthesis to constitutive CAM. By linking changes in the expression of PEPC and PEPC kinase to day/night patterns of leaf gas exchange, organic acid, and soluble sugar contents under different environmental conditions, the genetic and metabolic limitations to CAM plasticity were assessed. The results indicate that PEPC expression is a major factor underpinning the genotypic capacity for CAM and that PEPC kinase expression does not appear to limit CAM. The day/night regulation of Ppck transcript abundance was found to be a consequence of CAM and the day/night cycling of associated metabolites, rather than the primary controlling factor for the temporal separation of carboxylation processes.


Asunto(s)
Clusia/genética , Fosfoenolpiruvato Carboxilasa/genética , Proteínas Serina-Treonina Quinasas/genética , Secuencia de Aminoácidos , Clusia/enzimología , Crassulaceae/enzimología , Crassulaceae/genética , Crassulaceae/metabolismo , ADN Complementario/química , ADN Complementario/genética , Desastres , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Genotipo , Luz , Datos de Secuencia Molecular , Fenotipo , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Poliubiquitina/genética , Poliubiquitina/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Agua/farmacología
4.
Plant Biol (Stuttg) ; 6(3): 269-79, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15143435

RESUMEN

Drought and salinity are two widespread environmental conditions leading to low water availability for plants. Low water availability is considered the main environmental factor limiting photosynthesis and, consequently, plant growth and yield worldwide. There has been a long-standing controversy as to whether drought and salt stresses mainly limit photosynthesis through diffusive resistances or by metabolic impairment. Reviewing in vitro and in vivo measurements, it is concluded that salt and drought stress predominantly affect diffusion of CO(2) in the leaves through a decrease of stomatal and mesophyll conductances, but not the biochemical capacity to assimilate CO(2), at mild to rather severe stress levels. The general failure of metabolism observed at more severe stress suggests the occurrence of secondary oxidative stresses, particularly under high-light conditions. Estimates of photosynthetic limitations based on the photosynthetic response to intercellular CO(2) may lead to artefactual conclusions, even if patchy stomatal closure and the relative increase of cuticular conductance are taken into account, as decreasing mesophyll conductance can cause the CO(2) concentration in chloroplasts of stressed leaves to be considerably lower than the intercellular CO(2) concentration. Measurements based on the photosynthetic response to chloroplast CO(2) often confirm that the photosynthetic capacity is preserved but photosynthesis is limited by diffusive resistances in drought and salt-stressed leaves.


Asunto(s)
Dióxido de Carbono/farmacología , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Cloruro de Sodio/farmacología , Agua/fisiología , Dióxido de Carbono/metabolismo , Desastres , Nitrato-Reductasa , Nitrato Reductasas/metabolismo , Fotosíntesis/efectos de los fármacos , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de los fármacos , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo
5.
Ann Bot ; 93(1): 13-23, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14644912

RESUMEN

C4 photosynthesis is characterized by a division of labour between two different photosynthetic cell types, mesophyll and bundle-sheath cells. Relying on phosphoenolpyruvate carboxylase (PEPC) as the primary carboxylase in the mesophyll cells a CO2 pump is established in C4 plants that concentrates CO2 at the site of ribulose 1,5-bisphosphate carboxylase/oxygenase in the bundle-sheath cells. The C4 photosynthetic pathway evolved polyphyletically implying that the genes encoding the C4 PEPC originated from non-photosynthetic PEPC progenitor genes that were already present in the C3 ancestral species. The dicot genus Flaveria (Asteraceae) is a unique system in which to investigate the molcular changes that had to occur in order to adapt a C3 ancestral PEPC gene to the special conditions of C4 photosynthesis. Flaveria contains not only C3 and C4 species but also a large number of C3-C4 intermediates which vary to the degree in which C4 photosynthetic traits are expressed. The C4 PEPC gene of Flaveria trinervia, which is encoded by the ppcA gene class, is highly expressed but only in mesophyll cells. The encoded PEPC protein possesses the typical kinetic and regulatory features of a C4-type PEPC. The orthologous ppcA gene of the C3 species Flaveria pringlei encodes a typical non-photosynthetic, C3-type PEPC and is weakly expressed with no apparent cell or organ specificity. PEPCs of the ppcA type have been detected also in C3-C4 intermediate Flaveria species. These orthologous PEPCs have been used to determine the molecular basis for C4 enzyme characteristics and to understand their evolution. Comparative and functional analyses of the ppcA promoters from F. trinervia and F. pringlei make it possible to identity the cis-regulatory sequences for mesophyll-specific gene expression and to search for the corresponding trans-regulatory factors.


Asunto(s)
Evolución Molecular , Flaveria/enzimología , Fosfoenolpiruvato Carboxilasa/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Secuencia de Aminoácidos , Flaveria/genética , Datos de Secuencia Molecular , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/genética , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Filogenia , Homología de Secuencia de Aminoácido
6.
J Plant Physiol ; 160(6): 627-34, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12872484

RESUMEN

In an effort to understand the mechanisms that sustain rootless atmospheric plants, the modulation of Crassulacean acid metabolism (CAM) in response to variations in irradiance and water supply was investigated in the epiphyte Tillandsia usneoides. Plants were acclimated to three light regimes, i.e. high, intermediate and low, with integrated photon flux densities (PFD) of 14.40, 8.64 and 4.32 mol m-2 d-1 equivalent to an instantaneous PFD of 200, 100, and 50 mumol m-2 s-1, respectively. Daily watering was then withdrawn from half of the plants at each PFD for 7 d prior to sampling. In response to the three PFD treatments, chlorophyll content increased in plants acclimated to lower irradiances. Light response curves using non-invasive measurements of chlorophyll fluorescence demonstrated that photosystem II efficiency (phi PSII) was maintained in high PFD acclimated plants, as they exhibited a larger capacity for non-photochemical dissipation (NPQ) of excess light energy than low PFD acclimated plants. Net CO2 uptake increased in response to higher PFD, reflecting enhanced carboxylation capacity in terms of phosphoenolpyruvate carboxylase (PEPc) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) activities. After water was withdrawn, nocturnal net CO2 uptake and accumulated levels of acidity declined in all PFD treatments, concomitant with increased respiratory recycling of malate. Examining the strategies employed by epiphytes such as T. usneodies to tolerate extreme light and water regimes has demonstrated the importance of physiological mechanisms that allow flexible carboxylation capacity and continued carbon cycling to maintain photosynthetic integrity.


Asunto(s)
Tillandsia/fisiología , Agua/farmacología , Aclimatación/efectos de los fármacos , Aclimatación/fisiología , Aclimatación/efectos de la radiación , Dióxido de Carbono/metabolismo , Clorofila/metabolismo , Luz , Malatos/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de los fármacos , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Ribulosa-Bifosfato Carboxilasa/metabolismo , Tillandsia/efectos de los fármacos , Tillandsia/efectos de la radiación
7.
Plant Cell Rep ; 21(8): 707-12, 2003 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-12789512

RESUMEN

The C(3)-C(4) intermediate species Moricandia arvensis ( Brassicaceae) and its closest C(3) relative, Moricandia moricandioides, represent model species for studying the C(3)-C(4) photosynthetic character relative to the C(3) phenotype. In order to enable transgenic analyses in these two species, optimal regeneration systems based on leaf and/or stem internode segments were developed, and genotypes suitable for in vitro tissue culture were identified. Evaluation of the regeneration capability of 30 M. arvensis genotypes and 12 M. moricandioides genotypes revealed that all could form callus. However, shoots were only produced by 40% of the M. arvensis genotypes and 8% of the M. moricandioides genotypes. The two Moricandia species showed significant genotypic differences with respect to callus formation and shoot regeneration. For the 12 regenerative M. arvensis genotypes, 29-100% of the explants developed shoots, while 71% of the explants from the single regenerable M. moricandioides genotype formed shoots. The genotype used, the choice of stem or leaf explants and the composition of the medium (i.e. concentrations of different hormones and salts) significantly affected plant regeneration (chi-square analyses, P<0.05). Whole plants could be obtained in the greenhouse after 3-3.5 months for M. arvensis genotypes and after 4-4.5 months for M. moricandioides.


Asunto(s)
Brassicaceae/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Brotes de la Planta/fisiología , Brassicaceae/efectos de los fármacos , Brassicaceae/genética , Técnicas de Cultivo , Genotipo , Fenotipo , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Reguladores del Crecimiento de las Plantas/farmacología , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/genética , Tallos de la Planta/efectos de los fármacos , Tallos de la Planta/genética , Tallos de la Planta/fisiología , Regeneración/efectos de los fármacos
8.
J Exp Bot ; 54(387): 1523-35, 2003 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-12730263

RESUMEN

The glycine-serine interconversion, catalysed by glycine decarboxylase and serine hydroxymethyltransferase, is an important reaction of primary metabolism in all organisms including plants, by providing one-carbon units for many biosynthetic reactions. In plants, in addition, it is an integral part of the photorespiratory metabolic pathway and produces large amounts of photorespiratory CO(2) within mitochondria. Although controversial, there is significant evidence that this process, by the relocation of glycine decarboxylase within the leaves from the mesophyll to the bundle-sheath, contributed to the evolution of C(4) photosynthesis. In this review, some aspects of current knowledge about glycine decarboxylase and serine hydroxymethyltransferase and the role of these enzymes in metabolism, about the corresponding genes and their expression as well as about mutants and anti-sense plants related to these genes or processes will be summarized and discussed. From a comparison of the available information about the number and organization of GDC and SHMT genes in the genomes of Arabidopsis thaliana and Oryza sativa it appears that these and, possibly, other genes related to photorespiration, are similarly organized even in only very distantly related angiosperms.


Asunto(s)
Aminoácido Oxidorreductasas/genética , Glicina Hidroximetiltransferasa/genética , Glicina/metabolismo , Aminoácido Oxidorreductasas/metabolismo , Arabidopsis/genética , Glicina-Deshidrogenasa (Descarboxilante) , Glicina Hidroximetiltransferasa/metabolismo , Hordeum/genética , Mutación , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Serina/biosíntesis
9.
J Exp Bot ; 54(388): 1761-9, 2003 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-12773522

RESUMEN

The detection of 12CO2 emission from leaves in air containing 13CO2 allows simple and fast determination of the CO2 emitted by different sources, which are separated on the basis of their labelling velocity. This technique was exploited to investigate the controversial effect of CO2 concentration on mitochondrial respiration. The 12CO2 emission was measured in illuminated and darkened leaves of one C4 plant and three C3 plants maintained at low (30-50 ppm), atmospheric (350-400 ppm) and elevated (700-800 ppm) CO2 concentration. In C3 leaves, the 12CO2 emission in the light (Rd) was low at ambient CO2 and was further quenched in elevated CO2, when it was often only 20-30% of the 12CO2 emission in the dark, interpreted as the mitochondrial respiration in the dark (Rn). Rn was also reduced in elevated CO2. At low CO2, Rd was often 70-80% of Rn, and a burst of 12CO2 was observed on darkening leaves of Mentha sativa and Phragmites australis after exposure for 4 min to 13CO2 in the light. The burst was partially removed at low oxygen and was never observed in C4 leaves, suggesting that it may be caused by incomplete labelling of the photorespiratory pool at low CO2. This pool may be low in sclerophyllous leaves, as in Quercus ilex where no burst was observed. Rd was inversely associated with photosynthesis, suggesting that the Rd/Rn ratio reflects the refixation of respiratory CO2 by photosynthesizing leaves rather than the inhibition of mitochondrial respiration in the light, and that CO2 produced by mitochondrial respiration in the light is mostly emitted at low CO2, and mostly refixed at elevated CO2. In the leaves of the C4 species Zea mays, the 12CO2 emission in the light also remained low at low CO2, suggesting efficient CO2 refixation associated with sustained photosynthesis in non-photorespiratory conditions. However, Rn was inhibited in CO2-free air, and the velocity of 12CO2 emission after darkening was inversely associated with the CO2 concentration. The emission may be modulated by the presence of post-illumination CO2 uptake deriving from temporary imbalance between C3 and C4 metabolism. These experiments suggest that this uptake lasts longer at low CO2 and that the imbalance is persistent once it has been generated by exposure to low CO2.


Asunto(s)
Dióxido de Carbono/farmacología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Isótopos de Carbono , Radioisótopos de Carbono/metabolismo , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/efectos de la radiación , Luz , Mitocondrias/fisiología , Consumo de Oxígeno/efectos de los fármacos , Consumo de Oxígeno/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/fisiología , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Plantas/efectos de los fármacos , Plantas/efectos de la radiación
10.
J Exp Bot ; 54(386): 1471-9, 2003 May.
Artículo en Inglés | MEDLINE | ID: mdl-12709493

RESUMEN

During the endogenous circadian rhythm of carbon dioxide uptake in continuous light by a Crassula cean acid metabolism plant, Kalanchoë daigremontiana, the two carboxylating enzymes, phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5 bisphosphate carboxylase/oxygenase (Rubisco), are active simultaneously, although, until now, only the role of PEPC in generating the rhythm has been acknowledged. According to the established model, the rhythm is primarily regulated at the PEPC activity level, modulated by periodic compartmentation of its inhibitor, malate, in the vacuole and controlled by tension/relaxation of the tonoplast. However, the circadian accumulation of malic acid (the main indicator of PEPC activity) dampened significantly within the first few periods without affecting the rhythm's amplitude. Moreover, the amount of malate accumulated during a free-running oscillation was several-fold lower than the amount expected if PEPC were the key carboxylating enzyme, based on a 1:1 stoichiometry of CO(2) and malate. Together with the observation that rates of CO(2) uptake under continuous light were higher than in darkness, the evidence shows that C(3) carboxylation greatly contributes to the generation of rhythmic CO(2) uptake in continuous light in this 'obligate' CAM plant. Because the shift from predominantly CAM to predominantly C(3) carboxylation is smooth and does not distort the trajectory of the rhythm, its control probably arises from a robust network of oscillators, perhaps also involving stomata.


Asunto(s)
Dióxido de Carbono/metabolismo , Ritmo Circadiano/fisiología , Kalanchoe/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Oscuridad , Luz , Malatos/metabolismo , Fotoperiodo , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación
11.
Planta ; 216(5): 789-97, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12624766

RESUMEN

The diel (24-h) Crassulacean acid metabolism (CAM) cycle in Mesembryanthemum crystallinum (L.) requires rhythmic patterns of transitory starch degradation to produce carbon skeletons for phospho enolpyruvate (PEP) synthesis during the nocturnal Phase I, when PEP carboxylase (PEPc) mediates CO(2) fixation. Under a normal light-dark cycle, nocturnal malate accumulation and nocturnal CO(2) uptake were observed for CAM-induced, but not C(3), M. crystallinum. In both C(3) and CAM plants, transcripts encoding beta-amylase and starch phosphorylase accumulated during the afternoon and declined nocturnally. Under a continuous light regime, ribulose-1,5-bisphosphate carboxylase/oxygenase activity remained co-ordinated with the CAM phases, and circadian abundance patterns were observed for transcripts encoding starch degradative enzymes. Despite circadian PEPc kinase expression, the accumulation of vacuolar malate ceased under continuous light. Exposure to CO(2)-free air for 24 h inhibited starch accumulation over the photoperiod, but re-fixation of respiratory CO(2) resulted in the overnight accumulation of malate to levels comparable to those of control plants. Upon return to normal air, the depleted starch concentration led to stoichiometric decreases in Phase-I CO(2) uptake and malate accumulation. The up-regulation of PEPc kinase transcripts under these conditions was ineffective at sustaining Phase-I CO(2) uptake under starch-limited conditions. We conclude that starch turnover regulates and limits carbon flux through the diel CAM cycle.


Asunto(s)
Ritmo Circadiano/fisiología , Crassulaceae/metabolismo , Mesembryanthemum/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Almidón/metabolismo , Dióxido de Carbono/metabolismo , Crassulaceae/genética , Crassulaceae/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Malatos/metabolismo , Mesembryanthemum/genética , Mesembryanthemum/efectos de la radiación , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotoperiodo , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Hojas de la Planta/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo , Almidón Fosforilasa/metabolismo , beta-Amilasa/metabolismo
12.
Trends Plant Sci ; 8(3): 105-9, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12663219

RESUMEN

Plants emit a substantial amount of biogenic volatile organic compounds (BVOCs) into the atmosphere. These BVOCs represent a large carbon loss and can be up to approximately 10% of that fixed by photosynthesis under stressful conditions and up to 100gCm(-2) per year in some tropical ecosystems. Among a variety of proven and unproven BVOC functions in plants and roles in atmospheric processes, recent data intriguingly link emission of these compounds to climate. Ongoing research demonstrates that BVOCs could protect plants against high temperatures. BVOC emissions are probably increasing with warming and with other factors associated to global change, including changes in land cover. These increases in BVOC emissions could contribute in a significant way (via negative and positive feedback) to the complex processes associated with global warming.


Asunto(s)
Aclimatación/fisiología , Clima , Efecto Invernadero , Metano/metabolismo , Ozono/metabolismo , Gases/metabolismo , Consumo de Oxígeno/fisiología , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Volatilización
13.
J Exp Bot ; 54(384): 961-9, 2003 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-12598567

RESUMEN

Phosphoenolpyruvate carboxylase (PEPC), which catalyses the carboxylation of phosphoenolpyruvate using HCO(3)(-) to generate oxaloacetic acid, is an important enzyme in the primary metabolism of plants. Although the PEPC genes (ppc) comprise only a small gene family, the function of each gene is not clear, except for roles in C(4) photosynthesis and CAM. Three PEPC genes (Nsppc1-3) from the C(3) plant Nicotiana sylvestris were used to investigate their roles and regulation in a C(3) plant, and their regulation by phosphorus depletion in particular. First, the induction of PEPC by phosphorus depletion was confirmed. Next, Nsppc1 was determined to be mainly responsive to phosphorus deficiency at the transcriptional level. Further studies using transgenic tobacco harbouring a chimeric gene consisting of the 2.0 kb promoter region of Nsppc1 and the beta-glucuronidase (GUS) reporter showed that PEPC is transcriptionally induced. It was also found that sucrose had a synergistic effect on the induction of PEPC by phosphorus deficiency. A series of transgenic tobacco containing 5'-deletion mutants of Nsppc1 promoter::GUS fusion revealed that the -539 to -442 bp Nsppc1 promoter region, relative to the translation start site, was necessary for the response to phosphorus deficiency. Gain-of-function analysis using a construct containing three tandem repeats of the -539 to -442 bp region confirmed that this region was sufficient to induce the phosphorus-deficiency response in tobacco.


Asunto(s)
Nicotiana/enzimología , Fosfoenolpiruvato Carboxilasa/genética , Fósforo/farmacología , Secuencia de Bases , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Glucuronidasa/genética , Glucuronidasa/metabolismo , Datos de Secuencia Molecular , Fosfoenolpiruvato Carboxilasa/metabolismo , Fósforo/deficiencia , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Nicotiana/genética , Activación Transcripcional/efectos de los fármacos , Activación Transcripcional/genética
14.
Planta ; 216(4): 648-55, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12569407

RESUMEN

C(4) phosphoenolpyruvate carboxylase (PEPCase: EC 4.1.1.31) is subjected to in vivo regulatory phosphorylation by a light up-regulated, calcium-independent protein kinase. Salt stress greatly enhanced phosphoenolpyruvate carboxylase-kinase (PEPCase-k) activity in leaves of Sorghum. The increase in PEPCase-k anticipated the time course of proline accumulation thereby suggesting that water stress was not involved in the kinase response to salt. Moreover, osmotic stress seemed not to be the main factor implicated, as demonstrated by the lack of effect when water availability was restricted by mannitol. In contrast, LiCl (at a concentration of 10 mM in short-term treatment of both excised leaves and whole plants) mimicked the effects of 172 mM NaCl salt-acclimation, indicating that the rise in PEPCase-k activity resulted primarily from the ionic stress. Both NaCl and LiCl treatments increased the activity of a Ca(2+)-independent, 35 kDa kinase, as demonstrated by an in-gel phosphorylation experiment. Short-term treatment of excised leaves with NaCl or LiCl partially reproduces the effects of whole plant treatments. Finally, salinization also increased PEPCase-k activity and the phosphorylation state of PEPCase in darkened Sorghum leaves. This fact, together with increased malate production during the dark period, suggests a shift towards mixed C(4) and crassulacean acid metabolism types of photosynthesis in response to salt stress.


Asunto(s)
Adaptación Fisiológica/efectos de los fármacos , Fosfoenolpiruvato Carboxiquinasa (ATP)/metabolismo , Fosfoenolpiruvato Carboxilasa/metabolismo , Poaceae/enzimología , Cloruro de Sodio/farmacología , Adaptación Fisiológica/efectos de la radiación , Oscuridad , Luz , Cloruro de Litio/farmacología , Malatos/metabolismo , Fosforilación/efectos de los fármacos , Fosforilación/efectos de la radiación , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de los fármacos , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/efectos de la radiación , Transpiración de Plantas/efectos de los fármacos , Transpiración de Plantas/efectos de la radiación , Poaceae/efectos de los fármacos , Poaceae/efectos de la radiación
15.
J Exp Bot ; 54(383): 707-14, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12554714

RESUMEN

Temperature caused phenomenal modulation of phosphoenolpyruvate carboxylase (PEPC, EC 4.1.1.31) in leaf discs of Amaranthus hypochondriacus (NAD-ME type C(4) species), compared to the pattern in Pisum sativum (a C(3) plant). The optimal incubation temperature for PEPC in A. hypochondriacus (C(4)) was 45 degrees C compared to 30 degrees C in P. sativum (C(3)). A. hypochondriacus (C(4)) lost nearly 70% of PEPC activity on exposure to a low temperature of 15 degrees C, compared to only about a 35% loss in the case of P. sativum (C(3)). Thus, the C(4) enzyme was less sensitive to supra-optimal temperature and more sensitive to sub-optimal temperature than that of the C(3) species. As the temperature was raised from 15 degrees C to 50 degrees C, there was a sharp decrease in malate sensitivity of PEPC. The extent of such a decrease in C(4) plants (45%) was more than that in C(3) species (30%). The maintenance of high enzyme activity at warm temperatures, together with a sharp decrease in the malate sensitivity of PEPC was also noticed in other C(4) plants. The temperature-induced changes in PEPC of both A. hypochondriacus (C(4)) and P. sativum (C(3)) were reversible to a large extent. There was no difference in the extent of phosphorylation of PEPC in leaves of A. hypochondriacus on exposure to varying temperatures, unlike the marked increase in the phosphorylation of enzyme on illumination of the leaves. These results demonstrate that (i) there are marked differences in the temperature sensitivity of PEPC in C(3) and C(4) plants, (ii) the temperature induced changes are reversible, and (iii) these changes are not related to the phosphorylation state of the enzyme. The inclusion of PEG-6000, during the assay, dampened the modulation by temperature of malate sensitivity of PEPC in A. hypochondriacus. It is suggested that the variation in temperature may cause significant conformational changes in C(4)-PEPC.


Asunto(s)
Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Hojas de la Planta/enzimología , Plantas/enzimología , Amaranthus/enzimología , Malatos/farmacología , Pisum sativum/enzimología , Fosfoenolpiruvato Carboxilasa/antagonistas & inhibidores , Fosforilación/efectos de los fármacos , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Polietilenglicoles/farmacología , Temperatura
16.
J Exp Bot ; 54(383): 861-5, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12554729

RESUMEN

Significant night-time stomatal conductance and transpiration were found for 11 out of 17 species with a range of life histories (herbaceous annual, perennial grass, shrub, tree), photosynthetic pathways (C(3), C(4)), and habitats in the western United States. Across species and habitats, higher night-time conductance and transpiration were associated with higher daytime values. The prevalence, mechanisms and ecological implications of substantial night-time water loss deserve further investigation.


Asunto(s)
Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Desarrollo de la Planta , Transpiración de Plantas/fisiología , Agua/metabolismo , Luz , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Transpiración de Plantas/efectos de la radiación , Plantas/metabolismo , Plantas/efectos de la radiación
17.
Biochemistry ; 42(1): 2-10, 2003 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-12515534

RESUMEN

For single-cell and multicellular systems to survive, they must accurately sense and respond to their cellular and extracellular environment. Light is a nearly ubiquitous environmental factor, and many species have evolved the capability to respond to this extracellular stimulus. Numerous photoreceptors underlie the activation of light-sensitive signal transduction cascades controlling these responses. Here, we review the properties of the light, oxygen, or voltage (LOV) family of blue-light photoreceptor domains, a subset of the Per-ARNT-Sim (PAS) superfamily. These flavin-binding domains, first identified in the higher-plant phototropins, are now shown to be present in plants, fungi, and bacteria. Notably, LOV domains are coupled to a wide array of other domains, including kinases, phosphodiesterases, F-box domains, STAS domains, and zinc fingers, which suggests that the absorption of blue light by LOV domains regulates the activity of these structurally and functionally diverse domains. LOV domains contain a conserved molecular volume extending from the flavin cofactor, which is the locus for light-driven structural change, to the molecular surface. We discuss the role of this conserved volume of structure in LOV-regulated processes.


Asunto(s)
Proteínas de Drosophila , Proteínas del Ojo , Flavoproteínas/química , Flavoproteínas/fisiología , Células Fotorreceptoras de Invertebrados , Proteínas del Complejo del Centro de Reacción Fotosintética/química , Proteínas de Plantas/química , Proteínas de Plantas/fisiología , Transducción de Señal/fisiología , Secuencia de Aminoácidos , Secuencia Conservada , Criptocromos , Flavoproteínas/clasificación , Luz , Datos de Secuencia Molecular , Familia de Multigenes , Oxígeno/química , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas de Plantas/clasificación , Estructura Terciaria de Proteína/fisiología , Receptores Acoplados a Proteínas G
18.
Plant Cell Physiol ; 44(12): 1330-40, 2003 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-14701928

RESUMEN

The leaf of the NADP-malic enzyme type C(4) grass, Arundinella hirta, has not only mesophyll cells (MCs) and bundle sheath cells (BSCs, usual Kranz cells) but also another type of Kranz cells (distinctive cells; DCs) that are not associated with vascular bundles. We investigated photosynthetic enzyme accumulation along the base-to-tip maturation gradient of developing leaves by immunogold electron microscopy. In mature leaves, phosphoenolpyruvate carboxylase (PEPC) and ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) were detected in the MC cytosol and in the BSC and DC chloroplasts, respectively. Pyruvate, P(i) dikinase (PPDK) was present in the chloroplasts of all photosynthetic cells but with higher levels in the MCs. Rubisco was first detected in the basal region of emerging leaf blades where the BSCs and DCs became discernable. Subsequently, the accumulation of PEPC and PPDK was initiated in the region where the granal proliferation in the chloroplasts was conspicuous; and, suberized lamellae were formed in the cell walls of the Kranz cells. There was no difference in the patterns of cellular development and enzyme accumulation between the BSCs and DCs or between the MCs adjacent to each type of Kranz cells. These results demonstrate that, although the DCs are not associated with veins, they behaved like BSCs with respect to enzyme induction and cellular differentiation.


Asunto(s)
Enzimas/metabolismo , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Hojas de la Planta/enzimología , Poaceae/enzimología , Transporte Biológico/fisiología , Pared Celular/metabolismo , Cloroplastos/enzimología , Cloroplastos/fisiología , Cloroplastos/ultraestructura , Microscopía Electrónica , Fosfoenolpiruvato Carboxilasa/metabolismo , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Hojas de la Planta/crecimiento & desarrollo , Hojas de la Planta/ultraestructura , Poaceae/crecimiento & desarrollo , Poaceae/ultraestructura , Piruvato Ortofosfato Diquinasa/metabolismo , Ribulosa-Bifosfato Carboxilasa/metabolismo
19.
Plant Cell Physiol ; 43(11): 1293-301, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12461129

RESUMEN

We have studied source-sink relationships with a model consisting of single-rooted leaves without petioles. We previously reported that the rate of photosynthesis decreased when C4 model plants prepared from Amaranthus cruentus leaves were subjected to sink-limited conditions by exposure to continuous light for a few days. It was suggested that the inhibition is due to a coordinated decrease in the activity of ribulose-1,5-bisphosphate carboxylase (RuBPcase) and phosphoenol-pyruvate carboxylase (PEPcase), both essential enzymes for photosynthesis in C4 plants. We further investigated the mechanisms behind the decreased activity of RuBPcase, PEPcase, NAD-malic enzyme and NAD-malate dehydrogenase. The results suggested that (1) the initial activity of RuBPcase is suppressed by a lowering of the P(i) level in chloroplasts, (2) the inhibition of PEPcase is due to dephosphorylation of the enzyme via the inhibition of PEPcase kinase and PEPcase phosphatase, (3) the inhibition of NAD-malic enzyme and NAD-malate dehydrogenase is derived from the oxidation of these enzymes, and (4) some proteinous factor(s) may be involved in the inhibition of the activity of these latter three enzymes. The significance of a coordinated decrease in these enzymes in response to a change in the source-sink balance is discussed.


Asunto(s)
Amaranthus/fisiología , Fotosíntesis/fisiología , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Hojas de la Planta/fisiología , Adenosina Trifosfato/farmacología , Amaranthus/enzimología , Amaranthus/genética , Dióxido de Carbono/farmacología , Oscuridad , Ditiotreitol/farmacología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Regulación Enzimológica de la Expresión Génica/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Malato Deshidrogenasa/genética , Malato Deshidrogenasa/metabolismo , Fosfatos/farmacología , Fosfoenolpiruvato Carboxilasa/genética , Fosfoenolpiruvato Carboxilasa/metabolismo , Fotosíntesis/efectos de los fármacos , Fotosíntesis/efectos de la radiación , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/efectos de la radiación , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Reacción en Cadena de la Polimerasa , Ribulosa-Bifosfato Carboxilasa/genética , Ribulosa-Bifosfato Carboxilasa/metabolismo , Almidón/metabolismo , Sacarosa/metabolismo
20.
Plant Physiol ; 130(4): 1992-8, 2002 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-12481082

RESUMEN

CO(2) transfer conductance from the intercellular airspaces of the leaf into the chloroplast, defined as mesophyll conductance (g(m)), is finite. Therefore, it will limit photosynthesis when CO(2) is not saturating, as in C3 leaves in the present atmosphere. Little is known about the processes that determine the magnitude of g(m). The process dominating g(m) is uncertain, though carbonic anhydrase, aquaporins, and the diffusivity of CO(2) in water have all been suggested. The response of g(m) to temperature (10 degrees C-40 degrees C) in mature leaves of tobacco (Nicotiana tabacum L. cv W38) was determined using measurements of leaf carbon dioxide and water vapor exchange, coupled with modulated chlorophyll fluorescence. These measurements revealed a temperature coefficient (Q(10)) of approximately 2.2 for g(m), suggesting control by a protein-facilitated process because the Q(10) for diffusion of CO(2) in water is about 1.25. Further, g(m) values are maximal at 35 degrees C to 37.5 degrees C, again suggesting a protein-facilitated process, but with a lower energy of deactivation than Rubisco. Using the temperature response of g(m) to calculate CO(2) at Rubisco, the kinetic parameters of Rubisco were calculated in vivo from 10 degrees C to 40 degrees C. Using these parameters, we determined the limitation imposed on photosynthesis by g(m). Despite an exponential rise with temperature, g(m) does not keep pace with increased capacity for CO(2) uptake at the site of Rubisco. The fraction of the total limitations to CO(2) uptake within the leaf attributable to g(m) rose from 0.10 at 10 degrees C to 0.22 at 40 degrees C. This shows that transfer of CO(2) from the intercellular air space to Rubisco is a very substantial limitation on photosynthesis, especially at high temperature.


Asunto(s)
Dióxido de Carbono/metabolismo , Nicotiana/fisiología , Fotosíntesis/fisiología , Hojas de la Planta/fisiología , Ribulosa-Bifosfato Carboxilasa/metabolismo , Algoritmos , Fluorescencia , Complejos de Proteína Captadores de Luz , Modelos Biológicos , Proteínas del Complejo del Centro de Reacción Fotosintética/clasificación , Proteínas del Complejo del Centro de Reacción Fotosintética/metabolismo , Temperatura , Conductividad Térmica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...