Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.576
Filtrar
1.
J Prev Alzheimers Dis ; 11(3): 701-709, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38706286

RESUMEN

BACKGROUND: The polygenic risk score (PRS) aggregates the effects of numerous genetic variants associated with a condition across the human genome and may help to predict late-onset Alzheimer's disease (LOAD). Most of the current PRS studies on Alzheimer's disease (AD) have been conducted in Caucasian ancestry populations, while it is less studied in Chinese. OBJECTIVE: To establish and examine the validity of Chinese PRS, and explore its racial heterogeneity. DESIGN: We constructed a PRS using both discovery (N = 2012) and independent validation samples (N = 1008) from Chinese population. The associations between PRS and age at onset of LOAD or cerebrospinal fluid (CSF) biomarkers were assessed. We also replicated the PRS in an independent replication cohort with CSF data and constructed an alternative PRS using European weights. SETTING: Multi-center genetics study. PARTICIPANTS: A total of 3020 subjects were included in the study. MEASUREMENTS: PRS was calculated using genome-wide association studies data and evaluated the performance alone (PRSnoAPOE) and with other predictors (full model: LOAD ~ PRSnoAPOE + APOE+ sex + age) by measuring the area under the receiver operating curve (AUC). RESULTS: PRS of the full model achieved the highest AUC of 84.0% (95% CI = 81.4-86.5) with pT< 0.5, compared with the model containing APOE alone (61.0%). The AUC of PRS with pT<5e-8 was 77.8% in the PRSnoAPOE model, 81.5% in the full model, and only ranged from 67.5% to 75.1% in the PRS with the European weights model. A higher PRS was significantly associated with an earlier age at onset (P <0.001). The PRS also performed well in the replication cohort of the full model (AUC=83.1%, 95% CI = 74.3-92.0). The CSF biomarkers of Aß42 and the ratio of Aß42/Aß40 were significantly inversely associated with the PRS, while p-Tau181 showed a positive association. CONCLUSIONS: This finding suggests that PRS reveal genetic heterogeneity and higher prediction accuracy of the PRS for AD can be achieved using a base dataset and validation within the same ethnicity. The effective PRS model has the clinical potential to predict individuals at risk of developing LOAD at a given age and with abnormal levels of CSF biomarkers in the Chinese population.


Asunto(s)
Enfermedad de Alzheimer , Pueblos del Este de Asia , Estudio de Asociación del Genoma Completo , Herencia Multifactorial , Población Blanca , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Edad de Inicio , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/líquido cefalorraquídeo , Biomarcadores/líquido cefalorraquídeo , China/epidemiología , Pueblos del Este de Asia/genética , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Puntuación de Riesgo Genético , Factores de Riesgo , Proteínas tau/líquido cefalorraquídeo , Proteínas tau/genética , Población Blanca/genética
2.
Sci Rep ; 14(1): 9970, 2024 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-38693203

RESUMEN

Alzheimer's disease (AD) shows a high pathological and symptomatological heterogeneity. To study this heterogeneity, we have developed a patient stratification technique based on one of the most significant risk factors for the development of AD: genetics. We addressed this challenge by including network biology concepts, mapping genetic variants data into a brain-specific protein-protein interaction (PPI) network, and obtaining individualized PPI scores that we then used as input for a clustering technique. We then phenotyped each obtained cluster regarding genetics, sociodemographics, biomarkers, fluorodeoxyglucose-positron emission tomography (FDG-PET) imaging, and neurocognitive assessments. We found three clusters defined mainly by genetic variants found in MAPT, APP, and APOE, considering known variants associated with AD and other neurodegenerative disease genetic architectures. Profiling of these clusters revealed minimal variation in AD symptoms and pathology, suggesting different biological mechanisms may activate the neurodegeneration and pathobiological patterns behind AD and result in similar clinical and pathological presentations, even a shared disease diagnosis. Lastly, our research highlighted MAPT, APP, and APOE as key genes where these genetic distinctions manifest, suggesting them as potential targets for personalized drug development strategies to address each AD subgroup individually.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E , Tomografía de Emisión de Positrones , Proteínas tau , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/diagnóstico por imagen , Humanos , Proteínas tau/genética , Apolipoproteínas E/genética , Masculino , Femenino , Anciano , Predisposición Genética a la Enfermedad , Precursor de Proteína beta-Amiloide/genética , Mapas de Interacción de Proteínas/genética , Biomarcadores , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Encéfalo/metabolismo
3.
Biomolecules ; 14(4)2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38672412

RESUMEN

Alzheimer's disease (AD) is a neurodegenerative olfactory disorder affecting millions of people worldwide. Alterations in the hexosamine- or glucose-related pathways have been described through AD progression. Specifically, an alteration in glucosamine 6 phosphate isomerase 2 (GNPDA2) protein levels has been observed in olfactory areas of AD subjects. However, the biological role of GNPDA2 in neurodegeneration remains unknown. Using mass spectrometry, multiple GNPDA2 interactors were identified in human nasal epithelial cells (NECs) mainly involved in intraciliary transport. Moreover, GNPDA2 overexpression induced an increment in NEC proliferation rates, accompanied by transcriptomic alterations in Type II interferon signaling or cellular stress responses. In contrast, the presence of beta-amyloid or mutated Tau-P301L in GNPDA2-overexpressing NECs induced a slowdown in the proliferative capacity in parallel with a disruption in protein processing. The proteomic characterization of Tau-P301L transgenic zebrafish embryos demonstrated that GNPDA2 overexpression interfered with collagen biosynthesis and RNA/protein processing, without inducing additional changes in axonal outgrowth defects or neuronal cell death. In humans, a significant increase in serum GNPDA2 levels was observed across multiple neurological proteinopathies (AD, Lewy body dementia, progressive supranuclear palsy, mixed dementia and amyotrophic lateral sclerosis) (n = 215). These data shed new light on GNPDA2-dependent mechanisms associated with the neurodegenerative process beyond the hexosamine route.


Asunto(s)
Isomerasas Aldosa-Cetosa , Enfermedad de Alzheimer , Péptidos beta-Amiloides , Pez Cebra , Proteínas tau , Animales , Humanos , Isomerasas Aldosa-Cetosa/metabolismo , Isomerasas Aldosa-Cetosa/genética , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Animales Modificados Genéticamente , Proliferación Celular , Células Epiteliales/metabolismo , Proteómica , Proteínas tau/metabolismo , Proteínas tau/genética , Pez Cebra/metabolismo
4.
Alzheimers Dement ; 20(5): 3525-3542, 2024 May.
Artículo en Italiano | MEDLINE | ID: mdl-38623902

RESUMEN

INTRODUCTION: Effective longitudinal biomarkers that track disease progression are needed to characterize the presymptomatic phase of genetic frontotemporal dementia (FTD). We investigate the utility of cerebral perfusion as one such biomarker in presymptomatic FTD mutation carriers. METHODS: We investigated longitudinal profiles of cerebral perfusion using arterial spin labeling magnetic resonance imaging in 42 C9orf72, 70 GRN, and 31 MAPT presymptomatic carriers and 158 non-carrier controls. Linear mixed effects models assessed perfusion up to 5 years after baseline assessment. RESULTS: Perfusion decline was evident in all three presymptomatic groups in global gray matter. Each group also featured its own regional pattern of hypoperfusion over time, with the left thalamus common to all groups. Frontal lobe regions featured lower perfusion in those who symptomatically converted versus asymptomatic carriers past their expected age of disease onset. DISCUSSION: Cerebral perfusion is a potential biomarker for assessing genetic FTD and its genetic subgroups prior to symptom onset. HIGHLIGHTS: Gray matter perfusion declines in at-risk genetic frontotemporal dementia (FTD). Regional perfusion decline differs between at-risk genetic FTD subgroups . Hypoperfusion in the left thalamus is common across all presymptomatic groups. Converters exhibit greater right frontal hypoperfusion than non-converters past their expected conversion date. Cerebral hypoperfusion is a potential early biomarker of genetic FTD.


Asunto(s)
Proteína C9orf72 , Circulación Cerebrovascular , Demencia Frontotemporal , Imagen por Resonancia Magnética , Proteínas tau , Humanos , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Demencia Frontotemporal/diagnóstico por imagen , Femenino , Masculino , Persona de Mediana Edad , Estudios Longitudinales , Circulación Cerebrovascular/fisiología , Circulación Cerebrovascular/genética , Proteína C9orf72/genética , Proteínas tau/genética , Sustancia Gris/diagnóstico por imagen , Sustancia Gris/patología , Progranulinas/genética , Biomarcadores , Progresión de la Enfermedad , Encéfalo/diagnóstico por imagen , Heterocigoto , Mutación , Anciano , Marcadores de Spin , Adulto
5.
Sheng Li Xue Bao ; 76(2): 257-265, 2024 Apr 25.
Artículo en Chino | MEDLINE | ID: mdl-38658375

RESUMEN

The present study aims to observe the change in expression of heat shock protein 90 (HSP90) along with amyloid-ß (Aß) and phosphorylated Tau (p-Tau) protein levels in the hippocampus tissue of Alzheimer's disease (AD) transgenic animal model with age. APP/PS1 transgenic mice at age of 6-, 9- and 12-month and C57BL/6J mice of the same age were used. The cognitive abilities of these animals were evaluated using a Morris water maze. Western blot or immunohistochemistry was used to detect the expressions of HSP90 and Aß1-42, as well as the phosphorylation levels of Tau protein in the hippocampus. The hsp90 mRNA levels and the morphology and number of cells in the hippocampus were detected with real-time quantitative polymerase chain reaction (qRT-PCR) and Nissl staining, respectively. The results showed that compared with C57BL/6J mice of the same age, HSP90 and hsp90 mRNA expression were decreased (P < 0.05 or P < 0.01), while Aß1-42 and p-Tau protein levels were increased (P < 0.05 or P < 0.01) in the hippocampal tissue of APP/PS1 transgenic mice. Meanwhile, the decrease in HSP90 and hsp90 mRNA expression (P < 0.05 or P < 0.01), the increase in Aß1-42 and p-Tau levels (P < 0.01 or P < 0.05) in hippocampal tissue and the reduction in behavioral ability showed a progressive development with the advancing of age in the APP/PS1 transgenic mice. In conclusion, in the hippocampal tissue of APP/PS1 mice, the decrease in HSP90 expression and the increase in Aß1-42 and p-Tau levels together with the decline of their cognitive ability are age-dependent.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Precursor de Proteína beta-Amiloide , Proteínas HSP90 de Choque Térmico , Hipocampo , Ratones Endogámicos C57BL , Ratones Transgénicos , Proteínas tau , Animales , Proteínas HSP90 de Choque Térmico/metabolismo , Proteínas HSP90 de Choque Térmico/genética , Hipocampo/metabolismo , Ratones , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Proteínas tau/metabolismo , Proteínas tau/genética , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Masculino , Modelos Animales de Enfermedad , Fosforilación , Factores de Edad , Envejecimiento/metabolismo , ARN Mensajero/metabolismo , ARN Mensajero/genética , Fragmentos de Péptidos/metabolismo , Fragmentos de Péptidos/genética , Presenilina-1/genética , Presenilina-1/metabolismo
6.
Alzheimers Res Ther ; 16(1): 70, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575959

RESUMEN

BACKGROUND: Cathepsin D (CatD) is a lysosomal protease that degrades both the amyloid-ß protein (Aß) and the microtubule-associated protein, tau, which accumulate pathognomonically in Alzheimer disease (AD), but few studies have examined the role of CatD in the development of Aß pathology and tauopathy in vivo. METHODS: CatD knockout (KO) mice were crossed to human amyloid precursor protein (hAPP) transgenic mice, and amyloid burden was quantified by ELISA and immunohistochemistry (IHC). Tauopathy in CatD-KO mice, as initially suggested by Gallyas silver staining, was further characterized by extensive IHC and biochemical analyses. Controls included human tau transgenic mice (JNPL3) and another mouse model of a disease (Krabbe A) characterized by pronounced lysosomal dysfunction. Additional experiments examined the effects of CatD inhibition on tau catabolism in vitro and in cultured neuroblastoma cells with inducible expression of human tau. RESULTS: Deletion of CatD in hAPP transgenic mice triggers large increases in cerebral Aß, manifesting as intense, exclusively intracellular aggregates; extracellular Aß deposition, by contrast, is neither triggered by CatD deletion, nor affected in older, haploinsufficient mice. Unexpectedly, CatD-KO mice were found to develop prominent tauopathy by just ∼ 3 weeks of age, accumulating sarkosyl-insoluble, hyperphosphorylated tau exceeding the pathology present in aged JNPL3 mice. CatD-KO mice exhibit pronounced perinuclear Gallyas silver staining reminiscent of mature neurofibrillary tangles in human AD, together with widespread phospho-tau immunoreactivity. Striking increases in sarkosyl-insoluble phospho-tau (∼ 1250%) are present in CatD-KO mice but notably absent from Krabbe A mice collected at an identical antemortem interval. In vitro and in cultured cells, we show that tau catabolism is slowed by blockade of CatD proteolytic activity, including via competitive inhibition by Aß42. CONCLUSIONS: Our findings support a major role for CatD in the proteostasis of both Aß and tau in vivo. To our knowledge, the CatD-KO mouse line is the only model to develop detectable Aß accumulation and profound tauopathy in the absence of overexpression of hAPP or human tau with disease-associated mutations. Given that tauopathy emerges from disruption of CatD, which can itself be potently inhibited by Aß42, our findings suggest that impaired CatD activity may represent a key mechanism linking amyloid accumulation and tauopathy in AD.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Anciano , Animales , Humanos , Ratones , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Catepsina D , Modelos Animales de Enfermedad , Ratones Noqueados , Ratones Transgénicos , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatías/genética , Tauopatías/metabolismo
7.
Acta Neuropathol ; 147(1): 65, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38557897

RESUMEN

Human microglia are critically involved in Alzheimer's disease (AD) progression, as shown by genetic and molecular studies. However, their role in tau pathology progression in human brain has not been well described. Here, we characterized 32 human donors along progression of AD pathology, both in time-from early to late pathology-and in space-from entorhinal cortex (EC), inferior temporal gyrus (ITG), prefrontal cortex (PFC) to visual cortex (V2 and V1)-with biochemistry, immunohistochemistry, and single nuclei-RNA-sequencing, profiling a total of 337,512 brain myeloid cells, including microglia. While the majority of microglia are similar across brain regions, we identified a specific subset unique to EC which may contribute to the early tau pathology present in this region. We calculated conversion of microglia subtypes to diseased states and compared conversion patterns to those from AD animal models. Targeting genes implicated in this conversion, or their upstream/downstream pathways, could halt gene programs initiated by early tau progression. We used expression patterns of early tau progression to identify genes whose expression is reversed along spreading of spatial tau pathology (EC > ITG > PFC > V2 > V1) and identified their potential involvement in microglia subtype conversion to a diseased state. This study provides a data resource that builds on our knowledge of myeloid cell contribution to AD by defining the heterogeneity of microglia and brain macrophages during both temporal and regional pathology aspects of AD progression at an unprecedented resolution.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Enfermedad de Alzheimer/patología , Proteínas tau/genética , Proteínas tau/metabolismo , Transcriptoma , Encéfalo/patología , Células Mieloides/patología , Microglía/patología , Péptidos beta-Amiloides/metabolismo
8.
Transl Psychiatry ; 14(1): 184, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38600070

RESUMEN

The prevalence of Alzheimer's disease (AD) is increasing as the population ages, and patients with AD have a poor prognosis. However, knowledge on factors for predicting the survival of AD remains sparse. Here, we aimed to systematically explore predictors of AD survival. We searched the PubMed, Embase and Cochrane databases for relevant literature from inception to December 2022. Cohort and case-control studies were selected, and multivariable adjusted relative risks (RRs) were pooled by random-effects models. A total of 40,784 reports were identified, among which 64 studies involving 297,279 AD patients were included in the meta-analysis after filtering based on predetermined criteria. Four aspects, including demographic features (n = 7), clinical features or comorbidities (n = 13), rating scales (n = 3) and biomarkers (n = 3), were explored and 26 probable prognostic factors were finally investigated for AD survival. We observed that AD patients who had hyperlipidaemia (RR: 0.69) were at a lower risk of death. In contrast, male sex (RR: 1.53), movement disorders (including extrapyramidal signs) (RR: 1.60) and cancer (RR: 2.07) were detrimental to AD patient survival. However, our results did not support the involvement of education, hypertension, APOE genotype, Aß42 and t-tau in AD survival. Our study comprehensively summarized risk factors affecting survival in patients with AD, provided a better understanding on the role of different factors in the survival of AD from four dimensions, and paved the way for further research.


Asunto(s)
Enfermedad de Alzheimer , Humanos , Masculino , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Biomarcadores , Estudios de Casos y Controles , Genotipo , Factores de Riesgo , Proteínas tau/genética
9.
Stem Cell Res Ther ; 15(1): 118, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38659053

RESUMEN

BACKGROUND: Cerebral organoids (COs) are the most advanced in vitro models that resemble the human brain. The use of COs as a model for Alzheimer's disease (AD), as well as other brain diseases, has recently gained attention. This study aimed to develop a human AD CO model using normal human pluripotent stem cells (hPSCs) that recapitulates the pathological phenotypes of AD and to determine the usefulness of this model for drug screening. METHODS: We established AD hPSC lines from normal hPSCs by introducing genes that harbor familial AD mutations, and the COs were generated using these hPSC lines. The pathological features of AD, including extensive amyloid-ß (Aß) accumulation, tauopathy, and neurodegeneration, were analyzed using enzyme-linked immunosorbent assay, Amylo-Glo staining, thioflavin-S staining, immunohistochemistry, Bielschowsky's staining, and western blot analysis. RESULTS: The AD COs exhibited extensive Aß accumulation. The levels of paired helical filament tau and neurofibrillary tangle-like silver deposits were highly increased in the AD COs. The number of cells immunoreactive for cleaved caspase-3 was significantly increased in the AD COs. In addition, treatment of AD COs with BACE1 inhibitor IV, a ß-secretase inhibitor, and compound E, a γ-secretase inhibitor, significantly attenuated the AD pathological features. CONCLUSION: Our model effectively recapitulates AD pathology. Hence, it is a valuable platform for understanding the mechanisms underlying AD pathogenesis and can be used to test the efficacy of anti-AD drugs.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Organoides , Células Madre Pluripotentes , Humanos , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/genética , Organoides/metabolismo , Organoides/patología , Células Madre Pluripotentes/metabolismo , Péptidos beta-Amiloides/metabolismo , Péptidos beta-Amiloides/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/antagonistas & inhibidores , Proteínas tau/metabolismo , Proteínas tau/genética , Ácido Aspártico Endopeptidasas/metabolismo , Ácido Aspártico Endopeptidasas/genética , Encéfalo/metabolismo , Encéfalo/patología , Modelos Biológicos
10.
J Phys Chem B ; 128(18): 4325-4335, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38676652

RESUMEN

The Microtubule-binding repeat region (MTBR) of Tau has been studied extensively due to its pathological implications in neurodegenerative diseases like Alzheimer's disease. The pathological property of MTBR is mainly due to the R3 repeat's high propensity for self-aggregation, highlighting the critical molecular grammar of the repeat. Utilizing the R1R3 construct (WT) and its G326E mutant (EE), we determine the distinct characteristics of various peptide segments that modulate the aggregation propensity of the R3 repeat using NMR spectroscopy. Through time-dependent experiments, we have identified 317KVTSKCGS324 in R3 repeat as the aggregation initiating motif (AIM) due to its role at the initial stages of aggregation. The G326E mutation induces changes in conformation and dynamics at the AIM, thereby effectively abrogating the aggregation propensity of the R1R3 construct. We further corroborate our findings through MD simulations and propose that AIM is a robust site of interest for tauopathy drug design.


Asunto(s)
Simulación de Dinámica Molecular , Agregado de Proteínas , Proteínas tau , Proteínas tau/química , Proteínas tau/metabolismo , Proteínas tau/genética , Humanos , Resonancia Magnética Nuclear Biomolecular , Mutación , Secuencia de Aminoácidos
11.
Neurobiol Aging ; 139: 11-19, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38582070

RESUMEN

The apolipoprotein-E4 (APOE*4) and apolipoprotein-E2 (APOE*2) alleles are more common in African American versus non-Hispanic white populations, but relationships of both alleles with Alzheimer's disease (AD) pathology among African American individuals are unclear. We measured APOE allele and ß-amyloid (Aß) and tau using blood samples and positron emission tomography (PET) images, respectively. Individual regression models tested associations of each APOE allele with Aß or tau PET overall, stratified by racialized group, and with a racialized group interaction. We included 358 older adults (42% African American) with Aß PET, 134 (29% African American) of whom had tau PET. APOE*4 was associated with higher Aß in non-Hispanic white (P < 0.0001), but not African American (P = 0.64) participants; racialized group modified the association between APOE*4 and Aß (P < 0.0001). There were no other racialized group differences. These results suggest that the association of APOE*4 and Aß differs between African American and non-Hispanic white populations. Other drivers of AD pathology in African American populations should be identified as potential therapeutic targets.


Asunto(s)
Enfermedad de Alzheimer , Péptidos beta-Amiloides , Negro o Afroamericano , Tomografía de Emisión de Positrones , Proteínas tau , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Masculino , Alelos , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/metabolismo , Apolipoproteína E4/genética , Apolipoproteínas E/genética , Negro o Afroamericano/genética , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Estudios de Asociación Genética , Proteínas tau/genética , Blanco
12.
Alzheimers Dement ; 20(5): 3157-3166, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38477490

RESUMEN

INTRODUCTION: We aimed to investigate the effect of apolipoprotein E4 (APOE) ε4 on synaptic density in cognitively impaired (CI) participants. METHODS: One hundred ten CI participants underwent amyloid positron emission tomography (PET) with 18F-florbetapir and synaptic density PET with 18F-SynVesT-1. We evaluated the influence of APOE ε4 allele on synaptic density and investigated the effects of ε4 genotype on the associations of synaptic density with Alzheimer's disease (AD) biomarkers. The mediation effects of AD biomarkers on ε4-associated synaptic density loss were analyzed. RESULTS: Compared with non-carriers, APOE ε4 allele carriers exhibited significant synaptic loss in the medial temporal lobe. Amyloid beta (Aß) and tau pathology mediated the effects of APOE ε4 on synaptic density to different extents. The associations between synaptic density and tau pathology were regulated by the APOE ε4 genotype. DISCUSSION: The APOE ε4 allele was associated with decreased synaptic density in CI individuals and may be driven by AD biomarkers.


Asunto(s)
Péptidos beta-Amiloides , Apolipoproteína E4 , Disfunción Cognitiva , Tomografía de Emisión de Positrones , Sinapsis , Humanos , Masculino , Femenino , Apolipoproteína E4/genética , Anciano , Disfunción Cognitiva/genética , Disfunción Cognitiva/patología , Sinapsis/patología , Sinapsis/metabolismo , Péptidos beta-Amiloides/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Genotipo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/diagnóstico por imagen , Biomarcadores , Persona de Mediana Edad , Alelos , Anciano de 80 o más Años , Encéfalo/patología , Encéfalo/diagnóstico por imagen
13.
Clin Transl Med ; 14(3): e1623, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38488468

RESUMEN

BACKGROUND: Alzheimer's disease (AD) and related Tauopathies are characterised by the pathologically hyperphosphorylated and aggregated microtubule-associated protein Tau, which is accompanied by neuroinflammation mediated by activated microglia. However, the role of Tau pathology in microglia activation or their causal relationship remains largely elusive. METHODS: The levels of nucleotide-binding oligomerisation domain (NOD)-like receptor pyrin domain containing 3 (NLRP3) acetylation and inflammasome activation in multiple cell models with Tau proteins treatment, transgenic mice with Tauopathy, and AD patients were measured by Western blotting and enzyme-linked immunosorbent assay. In addition, the acetyltransferase activity of Tau and NLRP3 acetylation sites were confirmed using the test-tube acetylation assay, co-immunoprecipitation, immunofluorescence (IF) staining, mass spectrometry and molecular docking. The Tau-overexpressing mouse model was established by overexpression of human Tau proteins in mouse hippocampal CA1 neurons through the adeno-associated virus injection. The cognitive functions of Tau-overexpressing mice were assessed in various behavioural tests, and microglia activation was analysed by Iba-1 IF staining and [18F]-DPA-714 positron emission tomography/computed tomography imaging. A peptide that blocks the interaction between Tau and NLRP3 was synthesised to determine the in vitro and in vivo effects of Tau-NLRP3 interaction blockade on NLRP3 acetylation, inflammasome activation, microglia activation and cognitive function. RESULTS: Excessively elevated NLRP3 acetylation and inflammasome activation were observed in 3xTg-AD mice, microtubule-associated protein Tau P301S (PS19) mice and AD patients. It was further confirmed that mimics of 'early' phosphorylated-Tau proteins which increase at the initial stage of diseases with Tauopathy, including TauT181E, TauS199E, TauT217E and TauS262E, significantly promoted Tau-K18 domain acetyltransferase activity-dependent NLRP3 acetylation and inflammasome activation in HEK293T and BV-2 microglial cells. In addition, Tau protein could directly acetylate NLRP3 at the K21, K22 and K24 sites at its PYD domain and thereby induce inflammasome activation in vitro. Overexpression of human Tau proteins in mouse hippocampal CA1 neurons resulted in impaired cognitive function, Tau transmission to microglia and microgliosis with NLRP3 acetylation and inflammasome activation. As a targeted intervention, competitive binding of a designed Tau-NLRP3-binding blocking (TNB) peptide to block the interaction of Tau protein with NLRP3 inhibited the NLRP3 acetylation and downstream inflammasome activation in microglia, thereby alleviating microglia activation and cognitive impairment in mice. CONCLUSIONS: In conclusion, our findings provide evidence for a novel role of Tau in the regulation of microglia activation through acetylating NLRP3, which has potential implications for early intervention and personalised treatment of AD and related Tauopathies.


Asunto(s)
Enfermedad de Alzheimer , Inflamasomas , Humanos , Ratones , Animales , Inflamasomas/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Células HEK293 , Simulación del Acoplamiento Molecular , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Ratones Transgénicos , Acetiltransferasas
14.
Methods Mol Biol ; 2754: 131-146, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512665

RESUMEN

Tau protein was extensively studied using nuclear magnetic resonance spectroscopy, providing a powerful way to determine interaction sites between Tau and partner proteins. Here we used this analytical tool to describe the epitopes of Tau-specific VHHs (variable domain of the heavy chain of the heavy chain-only antibodies, aka nanobodies) selected from a synthetic library. An in vitro Tau aggregation assay was subsequently used as a functional screen to check VHH efficacy as aggregation inhibitors. We have observed a correlation between the targeted epitope and the aggregation-inhibition capacity of a series of Tau-specific VHHs.


Asunto(s)
Anticuerpos de Dominio Único , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/química , Proteínas tau/genética , Epítopos , Cadenas Pesadas de Inmunoglobulina/química , Biblioteca de Genes
15.
Methods Mol Biol ; 2754: 221-235, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512670

RESUMEN

Tauopathies including Alzheimer's disease (AD) are neurodegenerative disorders accompanied by the conversion of functional forms of the microtubule associated protein Tau into non-functional aggregates. A variety of post-translational modifications (PTMs) on Tau precede or accompany the conversion, placing them in position to modulate Tau function as well as its propensity to aggregate. Although Tau PTMs can be characterized by their sites of modification, their total stoichiometry when summed over all sites also is an important metric of their potential impact on function. Here we provide a protocol for rapidly producing recombinant Tau with enzyme-specific PTMs at high stoichiometry in vitro and demonstrate its utility in the context of hyperphosphorylation. Additionally, protocols for estimating phosphorylation and methylation stoichiometry on Tau proteins isolated from any source are presented. Together these methods support experimentation on Tau PTM function over a wide range of experimental conditions.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Humanos , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Tauopatías/metabolismo , Metilación
16.
Methods Mol Biol ; 2754: 361-385, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512677

RESUMEN

Alzheimer's disease (AD), most tauopathies, and other neurodegenerative diseases are highly associated to impaired neurotrophin regulation and imbalanced neurotrophin transport and distribution. Neurotrophins are crucial for the survival and maintenance of distinct neuronal population therefore their supply is essential for a healthy brain. Tau phosphorylation occurs at different sites of the tau protein and some phospho-epitopes are highly associated to AD (e.g., abnormally phosphorylated tau at Thr212/Ser214). Though the importance of neurotrophins is well known, their analysis in tissue is not trivial and needs careful consideration. Here a detailed protocol is presented, which combines in situ hybridization (ISH) with immunohistochemistry (IHC) to analyze neurotrophin mRNA expression during tau neuropathology and the results were confirmed by immunological methods.With this protocol, it was demonstrated that Brain-Derived Neurotrophic Factor (BDNF) and its receptor Tropomyosin receptor kinase B (TrkB) were significantly decreased in tau-transgenic mice compared to their age-matched littermates. Neurotrophin-3 (NT-3) and its receptor TrkC were not altered with statistical significance, but a tendency for decreased NT-3 and slightly increased TrkC expression was observed in tau transgenic mice. The loss of BDNF-ISH signal was predominantly observed in hippocampus (CA1 and CA3) and cortex (layer II-VI) and verified by BDNF-immunoreactivity. Decreased BDNF and TrkB mRNA was negatively correlated with abnormal tau phosphorylation at Thr212/Ser214 in cortical neurons in transgenic mice. Strikingly, no correlation was observed with age-related phospho-epitopes such as Ser202/Thr205. Interestingly, both, the mRNA and protein levels of Nerve Growth Factor (NGF) were significantly increased in hippocampal neurons in the tau models as demonstrated by ISH, immunofluorescence, and Western Blotting. Here, some co-localization of NGF mRNA and phospho-tau (Thr212/Ser214) was observed but was a rare event. Since there is growing evidence for the relevance of neurotrophic factor distribution in the pathogenesis of neurodegeneration, this technique is a useful tool to investigate the underlying mechanisms and potential therapeutic intervention.


Asunto(s)
Enfermedad de Alzheimer , Factor Neurotrófico Derivado del Encéfalo , Ratones , Animales , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/genética , Inmunohistoquímica , Ratones Transgénicos , Factor de Crecimiento Nervioso , ARN Mensajero/genética , ARN Mensajero/metabolismo , Epítopos , Hibridación in Situ
17.
Methods Mol Biol ; 2754: 411-433, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512679

RESUMEN

Mutation of MAPT has been observed in patients with parkinsonism, progressive supranuclear palsy, and corticobasal degeneration and is a significant cause of frontotemporal dementia. In this chapter, we discuss considerations for next-generation sequencing analysis to identify MAPT mutations in patient genomic DNA and describe the validation of these mutations by Sanger sequencing. One of the most common effects of MAPT mutations is differential splicing of exon 10, which leads to an imbalance in the proportion of 3-repeat and 4-repeat tau isoforms. We describe how to investigate the effect of novel DNA variants on the splicing efficiency of this exon in vitro using the exon-trapping technique, also known as the splicing reporter minigene assay.


Asunto(s)
Demencia Frontotemporal , Proteínas tau , Humanos , Proteínas tau/genética , Demencia Frontotemporal/genética , Mutación , Empalme del ARN , Exones , ADN
18.
Methods Mol Biol ; 2754: 323-341, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512674

RESUMEN

The intracellular accumulation of microtubule-associated protein tau is a characteristic feature of tauopathies, a group of neurodegenerative diseases including Alzheimer's disease. Formation of insoluble tau aggregates is initiated by the abnormal hyperphosphorylation and oligomerization of tau. Over the past decades, multiple transgenic rodent models mimicking tauopathies have been develop, showcasing this neuropathological hallmark. The biochemical analysis of insoluble tau in these models has served as a valuable tool to understand the progression of tau-related pathology. In this chapter, we provide a comprehensive review of the two primary methods for isolating insoluble tau, namely, sarkosyl and formic acid extraction (and their variants), which are employed for biochemical analysis in transgenic mouse models of tauopathy. We also analyze the strengths and limitations of these methods.


Asunto(s)
Enfermedad de Alzheimer , Tauopatías , Ratones , Animales , Roedores/metabolismo , Modelos Animales de Enfermedad , Tauopatías/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Enfermedad de Alzheimer/metabolismo , Ratones Transgénicos , Encéfalo/metabolismo
19.
Methods Mol Biol ; 2754: 483-498, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512684

RESUMEN

Drosophila is a powerful model to study human diseases thanks to its genetic tools and ease of screening. Human genes can be expressed in targeted organs and their toxicity assessed on easily scorable external phenotypes that can be used as readouts to perform genetic screens of toxicity modifiers. In this chapter, I describe how to express human Tau protein in the Drosophila eye, assess protein expression by Western blot, assess Tau toxicity by quantifying the size of the Tau-induced rough eye, and perform a genetic screen of modifiers of Tau toxicity in the Drosophila eye.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Drosophila/genética , Drosophila/metabolismo , Proteínas tau/genética , Proteínas tau/toxicidad , Proteínas tau/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Procesamiento Proteico-Postraduccional , Pruebas Genéticas , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ojo/metabolismo , Modelos Animales de Enfermedad
20.
Methods Mol Biol ; 2754: 551-560, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38512689

RESUMEN

The study of Tau protein in disease-relevant neuronal cells in culture requires efficient delivery systems for transfection of exogenous Tau and also modulators and interactors of Tau. Transfection of cultivated cells using calcium phosphate precipitation is a simple and cost-effective approach, also for difficult-to-transfect and sensitive cells such as primary neurons. Because of its low cell toxicity and ease of use, the Ca2+-phosphate transfection method is one of the most widely used gene transfer procedures in neuroscience. However, Ca2+-phosphate transfection efficacy in neurons is poor, often in the range of 1-5%, limiting its use in functional investigations. Here, we outline our improved Ca2+-phosphate transfection methodology for human iPSC-derived neurons that yields a reasonable efficiency (20-30% for bright volume markers) without apparent effects on cell health. We have used it to introduce wild-type and mutant human Tau with and without co-transfection of a volume marker (used here: tdTomato). In sum, our procedure can deliver neuronal genes (e.g., MAPT) using typical eukaryotic expression vectors (e.g., using CMV promoter) and is optimized for transfection of human iPSC-derived neurons.


Asunto(s)
Células Madre Pluripotentes Inducidas , Proteína Fluorescente Roja , Proteínas tau , Humanos , Proteínas tau/genética , Proteínas tau/metabolismo , Calcio/metabolismo , Transfección , Fosfatos de Calcio , Fosfatos/metabolismo , Neuronas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...