Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS Genet ; 16(6): e1008897, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32589664

RESUMEN

The LonA (or Lon) protease is a central post-translational regulator in diverse bacterial species. In Vibrio cholerae, LonA regulates a broad range of behaviors including cell division, biofilm formation, flagellar motility, c-di-GMP levels, the type VI secretion system (T6SS), virulence gene expression, and host colonization. Despite LonA's role in cellular processes critical for V. cholerae's aquatic and infectious life cycles, relatively few LonA substrates have been identified. LonA protease substrates were therefore identified through comparison of the proteomes of wild-type and ΔlonA strains following translational inhibition. The most significantly enriched LonA-dependent protein was TfoY, a known regulator of motility and the T6SS in V. cholerae. Experiments showed that TfoY was required for LonA-mediated repression of motility and T6SS-dependent killing. In addition, TfoY was stabilized under high c-di-GMP conditions and biochemical analysis determined direct binding of c-di-GMP to LonA results in inhibition of its protease activity. The work presented here adds to the list of LonA substrates, identifies LonA as a c-di-GMP receptor, demonstrates that c-di-GMP regulates LonA activity and TfoY protein stability, and helps elucidate the mechanisms by which LonA controls important V. cholerae behaviors.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Cólera/microbiología , GMP Cíclico/análogos & derivados , Proteasa La/antagonistas & inhibidores , Vibrio cholerae/metabolismo , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/aislamiento & purificación , Proteínas Bacterianas/metabolismo , Biopelículas/crecimiento & desarrollo , GMP Cíclico/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Mutación , Proteasa La/genética , Proteasa La/aislamiento & purificación , Proteasa La/metabolismo , Procesamiento Proteico-Postraduccional , Estabilidad Proteica , Proteolisis , Proteómica , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Sistemas de Secreción Tipo VI/genética , Sistemas de Secreción Tipo VI/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/patogenicidad , Virulencia/genética
2.
ACS Chem Biol ; 14(11): 2453-2462, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31464417

RESUMEN

Lon is a widely conserved housekeeping protease found in all domains of life. Bacterial Lon is involved in recovery from various types of stress, including tolerance to fluoroquinolone antibiotics, and is linked to pathogenesis in a number of organisms. However, detailed functional studies of Lon have been limited by the lack of selective, cell-permeant inhibitors. Here, we describe the use of positional scanning libraries of hybrid peptide substrates to profile the primary sequence specificity of bacterial Lon. In addition to identifying optimal natural amino acid binding preferences, we identified several non-natural residues that were leveraged to develop optimal peptide substrates as well as a potent peptidic boronic acid inhibitor of Lon. Treatment of Escherichia coli with this inhibitor promotes UV-induced filamentation and reduces tolerance to ciprofloxacin, phenocopying established lon-deletion phenotypes. It is also nontoxic to mammalian cells due to its selectivity for Lon over the proteasome. Our results provide new insight into the primary substrate specificity of Lon and identify substrates and an inhibitor that will serve as useful tools for dissecting the diverse cellular functions of Lon.


Asunto(s)
Inhibidores Enzimáticos/química , Proteínas de Escherichia coli/antagonistas & inhibidores , Oligopéptidos/química , Biblioteca de Péptidos , Proteasa La/antagonistas & inhibidores , Secuencia de Aminoácidos , Animales , Ácidos Borónicos/química , Ciprofloxacina/metabolismo , Inhibidores Enzimáticos/metabolismo , Escherichia coli , Proteínas de Escherichia coli/genética , Humanos , Ratones , Mutación , Oligopéptidos/metabolismo , Proteasa La/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Unión Proteica , Células RAW 264.7 , Relación Estructura-Actividad , Especificidad por Sustrato
3.
PLoS Comput Biol ; 14(12): e1006634, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30589845

RESUMEN

Several key transcription factors have unusually short half-lives compared to other cellular proteins. Here, we explore the utility of active degradation in shaping how the multiple antibiotic resistance activator MarA coordinates its downstream targets. MarA controls a variety of stress response genes in Escherichia coli. We modify its half-life either by knocking down the protease that targets it via CRISPRi or by engineering MarA to protect it from degradation. Our experimental and analytical results indicate that active degradation can impact both the rate of coordination and the maximum coordination that downstream genes can achieve. In the context of multi-gene regulation, trade-offs between these properties show that perfect information fidelity and instantaneous coordination cannot coexist.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Escherichia coli/metabolismo , Biología Computacional , Proteínas de Unión al ADN/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Regulación Bacteriana de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genes Bacterianos , Semivida , Modelos Biológicos , Proteasa La/antagonistas & inhibidores , Proteasa La/genética , Proteasa La/metabolismo , Proteolisis , Procesos Estocásticos
4.
Oncotarget ; 7(47): 77457-77467, 2016 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-27764809

RESUMEN

Mitochondrial dysfunction is a hallmark of cancer biology. Tumor mitochondrial metabolism is characterized by an abnormal ability to function in scarce oxygen conditions through glycolysis (the Warburg effect), and accumulation of mitochondrial DNA defects are present in both hereditary neoplasia and sporadic cancers. Mitochondrial Lon is a major regulator of mitochondrial metabolism and the mitochondrial response to free radical damage, and plays an essential role in the maintenance and repair of mitochondrial DNA. Despite these critical cellular functions of Lon, very little has been reported regarding its role in glioma. Lon expression in gliomas and its relevance with patient survival was examined using published databases and human tissue sections. The effect of Lon in glioma biology was investigated through siRNA targeting Lon. We also tested the in vitro antitumor activity of Lon inhibitor, CC4, in the glioma cell lines D-54 and U-251. High Lon expression was associated with high glioma tumor grade and poor patient survival. While Lon expression was elevated in response to a variety of stimuli, Lon knockdown in glioma cell lines decreased cell viability under normal conditions, and dramatically impaired glioma cell survival under hypoxic conditions. Furthermore, the Lon inhibitor, CC4, efficiently prohibited glioma cell proliferation and synergistically enhanced the therapeutic efficacy of the chemotherapeutic agents, temozolomide (TMZ) and cisplatin. We demonstrate that Lon plays a key role in glioma cell hypoxic survival and mitochondrial respiration, and propose Lon as a promising therapeutic target in the treatment of malignant gliomas.


Asunto(s)
Glioma/genética , Glioma/metabolismo , Hipoxia/genética , Hipoxia/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , Proteasa La/genética , Alcaloides/farmacología , Antineoplásicos/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/genética , Supervivencia Celular/genética , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Glioma/tratamiento farmacológico , Glioma/patología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Clasificación del Tumor , Pronóstico , Proteasa La/antagonistas & inhibidores , Proteasa La/metabolismo , ARN Interferente Pequeño/genética
5.
Oncotarget ; 5(22): 11209-24, 2014 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-25526030

RESUMEN

ATP-dependent Lon protease within mitochondrial matrix contributes to the degradation of abnormal proteins. The oxidative or hypoxic stress which represents the stress phenotype of cancer leads to up-regulation of Lon. However, the role of Lon in bladder cancer remains undefined. Here, we found that Lon expression in bladder cancer tissues was significantly higher than those in noncancerous tissues; down-regulation of Lon in bladder cancer cells significantly blocked cancer cell proliferation via suppression c-Jun N-terminal kinase (JNK) phosphorylation due to decreased reactive oxygen species (ROS) production and enhanced the sensitivity of bladder cancer cells to chemotherapeutic agents by promoting apoptosis. We further found that Lon down-regulation in bladder cancer cells decreased cellular bioenergetics as determined by measuring aerobic respiration and glycolysis using extracellular flux analyzer. The tissue microarray (TMA) results showed that high expression of Lon was related to the T and TNM stage, as well as histological grade of bladder cancer patients. We also demonstrated that Lon was an independent prognostic factor for overall survival of bladder cancer. Taken together, our data suggest that Lon could serve as a potential diagnostic biomarker and therapeutic target for treatment of bladder cancer, as well as for prediction of the effectiveness of chemotherapy.


Asunto(s)
Inhibidores de Proteasas/farmacología , Proteasa La/antagonistas & inhibidores , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Anciano , Antimicina A/farmacología , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/antagonistas & inhibidores , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo , Metabolismo Energético/efectos de los fármacos , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Masculino , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Proteasa La/biosíntesis , Proteasa La/genética , Proteasa La/metabolismo , ARN Mensajero/biosíntesis , ARN Mensajero/genética , Especies Reactivas de Oxígeno/metabolismo , Neoplasias de la Vejiga Urinaria/enzimología , Neoplasias de la Vejiga Urinaria/patología
6.
Oncogene ; 33(21): 2690-9, 2014 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-23770858

RESUMEN

Although mitochondrial function is often altered in cancer, it remains essential for tumor viability. Tight control of protein homeostasis is required for the maintenance of mitochondrial function, and the mitochondrial matrix houses several coordinated protein quality control systems. These include three evolutionarily conserved proteases of the AAA+ superfamily-the Lon, ClpXP and m-AAA proteases. In humans, these proteases are proposed to degrade, process and chaperone the assembly of mitochondrial proteins in the matrix and inner membrane involved in oxidative phosphorylation, mitochondrial protein synthesis, mitochondrial network dynamics and nucleoid function. In addition, these proteases are upregulated by a variety of mitochondrial stressors, including oxidative stress, unfolded protein stress and imbalances in respiratory complex assembly. Given that tumor cells must survive and proliferate under dynamic cellular stress conditions, dysregulation of mitochondrial protein quality control systems may provide a selective advantage. The association of mitochondrial matrix AAA+ proteases with cancer and their potential for therapeutic modulation therefore warrant further consideration. Although our current knowledge of the endogenous human substrates of these proteases is limited, we highlight functional insights gained from cultured human cells, protease-deficient mouse models and other eukaryotic model organisms. We also review the consequences of disrupting mitochondrial matrix AAA+ proteases through genetic and pharmacological approaches, along with implications of these studies on the potential of these proteases as anticancer therapeutic targets.


Asunto(s)
Endopeptidasa Clp/antagonistas & inhibidores , Metaloendopeptidasas/antagonistas & inhibidores , Mitocondrias/enzimología , Neoplasias/tratamiento farmacológico , Proteasa La/antagonistas & inhibidores , Animales , Antineoplásicos/farmacología , Endopeptidasa Clp/metabolismo , Humanos , Metaloendopeptidasas/metabolismo , Terapia Molecular Dirigida , Neoplasias/enzimología , Proteasa La/metabolismo
7.
Biochimie ; 100: 38-47, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24355201

RESUMEN

ATP-dependent proteases are currently emerging as key regulators of mitochondrial functions. Among these proteolytic systems, Lon protease is involved in the control of selective protein turnover in the mitochondrial matrix. In the absence of Lon, yeast cells have been shown to accumulate electron-dense inclusion bodies in the matrix space, to loose integrity of mitochondrial genome and to be respiratory deficient. In order to address the role of Lon in mitochondrial functionality in human cells, we have set up a HeLa cell line stably transfected with a vector expressing a shRNA under the control of a promoter which is inducible with doxycycline. We have demonstrated that reduction of Lon protease results in a mild phenotype in this cell line in contrast with what have been observed in other cell types such as WI-38 fibroblasts. Nevertheless, deficiency in Lon protease led to an increase in ROS production and to an accumulation of carbonylated protein in the mitochondria. Our study suggests that Lon protease has a wide variety of targets and is likely to play different roles depending of the cell type.


Asunto(s)
Mitocondrias/genética , Proteínas Mitocondriales/genética , Proteasa La/genética , Línea Celular , Doxiciclina/farmacología , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Células HeLa , Humanos , Mitocondrias/metabolismo , Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Especificidad de Órganos , Oxidación-Reducción , Fosforilación Oxidativa , Fenotipo , Regiones Promotoras Genéticas/efectos de los fármacos , Proteasa La/antagonistas & inhibidores , Proteasa La/metabolismo , Carbonilación Proteica/efectos de los fármacos , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
Acta Crystallogr D Biol Crystallogr ; 69(Pt 8): 1395-402, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23897463

RESUMEN

The Lon proteases are a unique family of chambered proteases with a built-in AAA+ (ATPases associated with diverse cellular activities) module. Here, crystal structures of a unique member of the Lon family with no intrinsic ATPase activity in the proteolytically active form are reported both alone and in complexes with three covalent inhibitors: two peptidomimetics and one derived from a natural product. This work reveals the unique architectural features of an ATP-independent Lon that selectively degrades unfolded protein substrates. Importantly, these results provide mechanistic insights into the recognition of inhibitors and polypeptide substrates within the conserved proteolytic chamber, which may aid the development of specific Lon-protease inhibitors.


Asunto(s)
Adenosina Trifosfato/metabolismo , Inhibidores de Proteasas/química , Proteasa La/antagonistas & inhibidores , Proteasa La/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Ácidos Borónicos/química , Ácidos Borónicos/metabolismo , Bortezomib , Dominio Catalítico , Cristalografía por Rayos X , Deinococcus/enzimología , Lactonas/química , Lactonas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Inhibidores de Proteasas/metabolismo , Proteasa La/metabolismo , Conformación Proteica , Pirazinas/química , Pirazinas/metabolismo
9.
Mol Cell ; 49(1): 121-32, 2013 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-23201127

RESUMEN

Human mitochondrial transcription factor A (TFAM) is a high-mobility group (HMG) protein at the nexus of mitochondrial DNA (mtDNA) replication, transcription, and inheritance. Little is known about the mechanisms underlying its posttranslational regulation. Here, we demonstrate that TFAM is phosphorylated within its HMG box 1 (HMG1) by cAMP-dependent protein kinase in mitochondria. HMG1 phosphorylation impairs the ability of TFAM to bind DNA and to activate transcription. We show that only DNA-free TFAM is degraded by the Lon protease, which is inhibited by the anticancer drug bortezomib. In cells with normal mtDNA levels, HMG1-phosphorylated TFAM is degraded by Lon. However, in cells with severe mtDNA deficits, nonphosphorylated TFAM is also degraded, as it is DNA free. Depleting Lon in these cells increases levels of TFAM and upregulates mtDNA content, albeit transiently. Phosphorylation and proteolysis thus provide mechanisms for rapid fine-tuning of TFAM function and abundance in mitochondria, which are crucial for maintaining and expressing mtDNA.


Asunto(s)
ADN Mitocondrial/metabolismo , Proteínas de Unión al ADN/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Proteasa La/metabolismo , Procesamiento Proteico-Postraduccional , Factores de Transcripción/metabolismo , Sustitución de Aminoácidos , Secuencia de Bases , Sitios de Unión , Ácidos Borónicos/farmacología , Bortezomib , Proteínas Quinasas Dependientes de AMP Cíclico/química , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/genética , Técnicas de Silenciamiento del Gen , Genoma Mitocondrial , Células HEK293 , Células HeLa , Humanos , Mitocondrias/enzimología , Proteínas Mitocondriales/química , Proteínas Mitocondriales/genética , Modelos Moleculares , Fosforilación , Proteasa La/antagonistas & inhibidores , Proteasa La/genética , Unión Proteica , Estructura Terciaria de Proteína , Proteolisis , Pirazinas/farmacología , Interferencia de ARN , Factores de Transcripción/química , Factores de Transcripción/genética , Activación Transcripcional
10.
Blood ; 119(14): 3321-9, 2012 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-22323447

RESUMEN

Synthetic triterpenoids are multitarget compounds exhibiting promise as preventative and therapeutic agents for cancer. Their proposed mechanism of action is by forming Michael adducts with reactive nucleophilic groups on target proteins. Our previous work demonstrates that the 2-cyano-3,12-dioxooleana-1,9-dien-28-oic acid (CDDO) and its derivatives promote B-lymphoid cell apoptosis through a mitochondria-mediated pathway linked to mitochondrial protein aggregation. As one function of the Lon protease is to eliminate abnormal mitochondrial proteins, we hypothesized that CDDO-induced protein aggregation and lymphoma apoptosis occur by inactivating this enzyme. Here, we show that CDDO and its derivatives directly and selectively inhibit Lon. CDDO blocks Lon-mediated proteolysis in biochemical and cellular assays, but does not inhibit the 20S proteasome. Furthermore, a biotinylated-CDDO conjugate modifies mitochondrial Lon. A striking common phenotype of CDDO-treated lymphoma cells and Lon-knockdown cells is the accumulation of electron-dense aggregates within mitochondria. We also show that Lon protein levels are substantially elevated in malignant lymphoma cells, compared with resting or activated B cells. Finally, we demonstrate that Lon knockdown leads to lymphoma cell death. Together, these findings suggest that Lon inhibition plays a contributory role in CDDO-induced lymphoma cell death, and support the concept that mitochondrial Lon is a novel anticancer drug target.


Asunto(s)
Linfoma/enzimología , Mitocondrias/enzimología , Ácido Oleanólico/análogos & derivados , Proteasa La/metabolismo , Línea Celular , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Activación Enzimática/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Humanos , Cuerpos de Inclusión/efectos de los fármacos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/ultraestructura , Linfoma/genética , Linfoma de Células B/genética , Linfoma de Células B/metabolismo , Mitocondrias/efectos de los fármacos , Mitocondrias/ultraestructura , Ácido Oleanólico/síntesis química , Ácido Oleanólico/metabolismo , Ácido Oleanólico/farmacología , Proteasa La/antagonistas & inhibidores , Proteasa La/genética , Complejo de la Endopetidasa Proteasomal/efectos de los fármacos , Unión Proteica , Regulación hacia Arriba
11.
ACS Chem Biol ; 6(8): 781-8, 2011 Aug 19.
Artículo en Inglés | MEDLINE | ID: mdl-21520912

RESUMEN

Lon and ClpXP are the only soluble ATP-dependent proteases within the mammalian mitochondria matrix, which function in protein quality control by selectively degrading misfolded, misassembled, or damaged proteins. Chemical tools to study these proteases in biological samples have not been identified, thereby hindering a clear understanding of their respective functions in normal and disease states. In this study, we applied a proteolytic site-directed approach to identify a peptide reporter substrate and a peptide inhibitor that are selective for Lon but not ClpXP. These chemical tools permit quantitative measurements that distinguish Lon-mediated proteolysis from that of ClpXP in biochemical assays with purified proteases, as well as in intact mitochondria and mitochondrial lysates. This chemical biology approach provides needed tools to further our understanding of mitochondrial ATP-dependent proteolysis and contributes to the future development of diagnostic and pharmacological agents for treating diseases associated with defects in mitochondrial protein quality.


Asunto(s)
Proteínas Mitocondriales/antagonistas & inhibidores , Proteínas Mitocondriales/metabolismo , Péptidos/metabolismo , Proteasa La/antagonistas & inhibidores , Proteasa La/metabolismo , Adenosina Trifosfato/metabolismo , Dominio Catalítico , Endopeptidasa Clp/antagonistas & inhibidores , Endopeptidasa Clp/metabolismo , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/metabolismo , Colorantes Fluorescentes/análisis , Colorantes Fluorescentes/metabolismo , Células HeLa , Humanos , Mitocondrias/metabolismo , Péptidos/análisis , Proteolisis
12.
J Biochem ; 149(5): 519-27, 2011 May.
Artículo en Inglés | MEDLINE | ID: mdl-21436141

RESUMEN

Lon is an ATP-dependent serine protease that plays a significant role in the quality control of proteins in cells, degrading misfolded proteins and certain short-lived regulatory proteins under stresses as such heat-shock and UV irradiation. It is known that some polymers containing phosphate groups regulate enzymatic activity by binding with Lon. We focused on the phospholipids of biological membrane components such as phosphatidylethanolamine, phosphatidylcholine, phosphatidylglycerol and cardiolipin (CL), and examined whether or not liposomes containing these phospholipids regulate the enzymatic activity of Lon. CL-containing liposomes specifically inhibited both the proteolytic and ATPase activities of Lon in a dose-dependent manner. In addition, on pull-down assay, we found that CL-containing liposomes selectively bound to Lon. The interaction between CL-containing liposomes and Lon changed with the order of addition of Mg(2+)/ATP. When CL-containing liposomes were added after the addition of Mg(2+)/ATP to Lon, the binding of CL-containing liposomes to Lon was significantly decreased as compared with the reversed order. In fact, we found that CL-containing liposomes bound to Lon, resulting in inhibition of the enzymatic activity of Lon. These results suggest that Lon interacts with CL in biological membranes, which may regulate the functions of Lon as a protein-degrading centre in accordance with environmental changes inside cells.


Asunto(s)
Cardiolipinas/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteasa La/metabolismo , Cardiolipinas/genética , Caseínas/metabolismo , Relación Dosis-Respuesta a Droga , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Liposomas/química , Liposomas/metabolismo , Liposomas/farmacología , Fosfolípidos/química , Fosfolípidos/metabolismo , Proteasa La/antagonistas & inhibidores , Proteasa La/química , Proteasa La/genética
13.
Proc Natl Acad Sci U S A ; 107(43): 18410-5, 2010 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-20930118

RESUMEN

Lon is the major protease in the mitochondrial matrix in eukaryotes, and is well conserved among species. Although a role for Lon in mitochondrial biogenesis has been proposed, the mechanistic basis is unclear. Here, we demonstrate a role for Lon in mtDNA metabolism. An RNA interference (RNAi) construct was designed that reduces Lon to less than 10% of its normal level in Drosophila Schneider cells. RNAi knockdown of Lon results in increased abundance of mitochondrial transcription factor A (TFAM) and mtDNA copy number. In a corollary manner, overexpression of Lon reduces TFAM levels and mtDNA copy number. Notably, induction of mtDNA depletion in Lon knockdown cells does not result in degradation of TFAM, thereby causing a dramatic increase in the TFAMmtDNA ratio. The increased TFAMmtDNA ratio in turn causes inhibition of mitochondrial transcription. We conclude that Lon regulates mitochondrial transcription by stabilizing the mitochondrial TFAMmtDNA ratio via selective degradation of TFAM.


Asunto(s)
ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Proteínas de Drosophila/metabolismo , Proteasa La/metabolismo , Factores de Transcripción/metabolismo , Animales , Secuencia de Bases , Línea Celular , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/antagonistas & inhibidores , Proteínas de Drosophila/genética , Dosificación de Gen , Técnicas de Silenciamiento del Gen , Genes de Insecto , Mitocondrias/metabolismo , Proteasa La/antagonistas & inhibidores , Proteasa La/genética , Interferencia de ARN , Transcripción Genética
14.
Neurochem Int ; 53(3-4): 95-101, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18598728

RESUMEN

The accumulation of oxidatively modified proteins has been shown to be a characteristic feature of many neurodegenerative disorders and its regulation requires efficient proteolytic processing. One component of the mitochondrial proteolytic system is Lon, an ATP-dependent protease that has been shown to degrade oxidatively modified aconitase in vitro and may thus play a role in defending against the accumulation of oxidized matrix proteins in mitochondria. Using an assay system that allowed us to distinguish between basal and ATP-stimulated Lon protease activity, we have shown in isolated non-synaptic rat brain mitochondria that Lon protease is highly susceptible to oxidative inactivation by peroxynitrite (ONOO(-)). This susceptibility was more pronounced with regard to ATP-stimulated activity, which was inhibited by 75% in the presence of a bolus addition of 1mM ONOO(-), whereas basal unstimulated activity was inhibited by 45%. Treatment of mitochondria with a range of peroxynitrite concentrations (10-1000 microM) revealed that a decline in Lon protease activity preceded electron transport chain (ETC) dysfunction (complex I, II-III and IV) and that ATP-stimulated activity was approximately fivefold more sensitive than basal Lon protease activity. Furthermore, supplementation of mitochondrial matrix extracts with reduced glutathione, following ONOO(-) exposure, resulted in partial restoration of basal and ATP-stimulated activity, thus suggesting possible redox regulation of this enzyme complex. Taken together these findings suggest that Lon protease may be particularly vulnerable to inactivation in conditions associated with GSH depletion and elevated oxidative stress.


Asunto(s)
Encéfalo/enzimología , Mitocondrias/enzimología , Enfermedades Mitocondriales/enzimología , Estrés Oxidativo/fisiología , Ácido Peroxinitroso/farmacología , Proteasa La/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Bioensayo , Encéfalo/fisiopatología , Relación Dosis-Respuesta a Droga , Proteínas del Complejo de Cadena de Transporte de Electrón/efectos de los fármacos , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Metabolismo Energético/efectos de los fármacos , Metabolismo Energético/fisiología , Glutatión/farmacología , Masculino , Mitocondrias/efectos de los fármacos , Enfermedades Mitocondriales/fisiopatología , Estrés Oxidativo/efectos de los fármacos , Proteasa La/antagonistas & inhibidores , Ratas , Ratas Wistar , Factores de Tiempo
15.
Biochemistry ; 46(22): 6647-57, 2007 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-17497890

RESUMEN

Lon is a homo-oligomeric ATP-dependent serine protease that functions in the degradation of damaged and certain regulatory proteins. This enzyme has emerged as a novel target in the development of antibiotics because of its importance in conferring bacterial virulence. In this study, we explored the mechanism by which the proteasome inhibitor MG262, a peptidyl boronate, inhibits the peptide hydrolysis activity of Salmonella enterica serovar Typhimurium Lon. In addition, we synthesized a fluorescent peptidyl boronate inhibitor based upon the amino acid sequence of a product of peptide hydrolysis by the enzyme. Using steady-state kinetic techniques, we have shown that two peptidyl boronate variants are competitive inhibitors of the peptide hydrolysis activity of Lon and follow the same two-step, time-dependent inhibition mechanism. The first step is rapid and involves binding of the inhibitor and formation of a covalent adduct with the active site serine. This is followed by a second slow step in which Lon undergoes a conformational change or isomerization to increase the interaction of the inhibitor with the proteolytic active site to yield an overall inhibition constant of 5-20 nM. Although inhibition of serine and threonine proteases by peptidyl boronates has been detected previously, Lon is the first protease that has required the binding of ATP in order to observe inhibition.


Asunto(s)
Proteasas ATP-Dependientes/antagonistas & inhibidores , Ácidos Borónicos/farmacología , Proteasa La/antagonistas & inhibidores , Salmonella enterica/enzimología , Serina Endopeptidasas/metabolismo , Proteasas ATP-Dependientes/química , Unión Competitiva , Clonación Molecular , Concentración 50 Inhibidora , Isomerismo , Péptidos/química , Péptidos/metabolismo , Proteasa La/química , Conformación Proteica , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Serina Endopeptidasas/genética
16.
Biochemistry ; 45(27): 8264-74, 2006 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-16819825

RESUMEN

Lon is a homo-oligomeric ATP-dependent serine protease which functions in the degradation of damaged and certain regulatory proteins. The importance of Lon activity in bacterial pathogenicity has led to its emergence as a target in the development of novel antibiotics. As no potent inhibitors of Lon activity have been reported to date, we sought to identify an inhibitor which could serve as a lead compound in the development of a potent Lon-specific inhibitor. To determine whether a nucleotide- or peptide-based inhibitor would be more effective, we evaluated the steady-state kinetic parameters associated with both ATP and peptide hydrolysis by human and Salmonella enterica serovar Typhimurium Lon. Although the ATP hydrolysis activities of both homologues are kinetically indistinguishable, they display marked differences in peptide substrate specificity. This suggests that a peptide-based inhibitor could be developed which would target bacterial Lon, thereby decreasing side-effects due to cross-reactivity with human Lon. Using Salmonella enterica serovar Typhimurium Lon as a model, we evaluated the IC50 values of a series of commercially available peptide-based inhibitors. Those inhibitors which behave as transition state analogues were the most useful in inhibiting Lon activity. The peptidyl boronate, MG262, was the most potent inhibitor tested (IC50 = 122 +/- 9 nM) and required binding, but not hydrolysis, of ATP to initiate inhibition. We hope to use MG262 as a lead compound in the development of future Lon-specific inhibitors.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Ácidos Borónicos/farmacología , Inhibidores de Cisteína Proteinasa/farmacología , Proteasa La/antagonistas & inhibidores , Salmonella enterica/enzimología , Adenosina Trifosfato/química , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Ácidos Borónicos/química , Clonación Molecular , Inhibidores de Cisteína Proteinasa/química , Diseño de Fármacos , Humanos , Concentración 50 Inhibidora , Proteasa La/química , Proteasa La/genética , Inhibidores de Proteasoma , Proteínas Recombinantes/antagonistas & inhibidores , Proteínas Recombinantes/química , Proteínas Recombinantes/genética
17.
J Mol Biol ; 357(3): 718-31, 2006 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-16460757

RESUMEN

When Escherichia coli encounter redox-cycling compounds that endogenously generate superoxide, the cell's defense response is initiated by the de novo synthesis of SoxS, which then activates transcription of the genes of the SoxRS regulon. Recently, we showed that after the oxidative stress is relieved, the SoxRS system resets by an active process wherein SoxS synthesis ceases and the intrinsically unstable SoxS protein is rapidly degraded, primarily by Lon protease. Here, we use deletion mutants and a library of alanine-stretch mutants of the entire protein to identify the SoxS features responsible for Lon-dependent proteolysis in vivo. We found that the 17 amino acid residues at the SoxS N terminus play the primary role in protease recognition and that the addition of the N-terminal 21 residues of SoxS to the otherwise stable green fluorescent protein is sufficient to signal the chimera for Lon-dependent degradation. With a minimal in vitro degradation system, we confirm the intrinsic instability of SoxS and the sequence requirements for Lon-dependent degradation. Lastly, we demonstrate that the addition of a peptide comprised of the 21 N-terminal amino acid residues of SoxS is able to inhibit specifically the in vitro proteolysis of SoxS.


Asunto(s)
Secuencia de Aminoácidos , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Proteasa La/química , Proteasa La/metabolismo , Transactivadores/química , Transactivadores/metabolismo , Alanina/genética , Secuencia de Aminoácidos/genética , Sustitución de Aminoácidos/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/antagonistas & inhibidores , Proteínas de Escherichia coli/genética , Fragmentos de Péptidos/química , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/metabolismo , Proteasa La/antagonistas & inhibidores , Eliminación de Secuencia , Transactivadores/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...