Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Biol Pharm Bull ; 47(5): 965-966, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38763750

RESUMEN

The emergence of coronavirus disease 2019 (COVID-19), a novel identified pneumonia resulting from the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus, has significantly impacted and posed significant challenges to human society. The papain-like protease (PLpro) found in the nonstructural protein 3 of SARS-CoV-2 plays a vital role in viral replication. Moreover, PLpro disrupts the host immune response by cleaving ubiquitin and interferon-stimulated gene 15 from host proteins. Consequently, PLpro has emerged as a promising drug target against SARS-CoV-2 infection. Computational studies have reported that ciclesonide can bind to SARS-CoV-2 PLpro. However, the inhibitory effects of ciclenoside on the PLpro have not been experimentally evaluated. Here, we evaluated the inhibitory effects of synthetic glucocorticoids (sGCs), including ciclesonide, on SARS-CoV-2 PLpro in vitro assay. Ciclesonide significantly inhibited the enzymatic activity of PLpro, compared with other sGCs and its IC50 was 18.4 ± 1.89 µM. These findings provide insights into the development of PLpro inhibitors.


Asunto(s)
Pregnenodionas , SARS-CoV-2 , Pregnenodionas/farmacología , SARS-CoV-2/efectos de los fármacos , Humanos , Tratamiento Farmacológico de COVID-19 , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Antivirales/farmacología , Simulación del Acoplamiento Molecular , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Glucocorticoides/farmacología , COVID-19/virología
2.
J Virol ; 98(4): e0157523, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38483167

RESUMEN

As for all single-stranded, positive-sense RNA (+RNA) viruses, intracellular RNA synthesis relies on extensive remodeling of host cell membranes that leads to the formation of specialized structures. In the case of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus causing COVID-19, endoplasmic reticulum membranes are modified, resulting in the formation of double-membrane vesicles (DMVs), which contain the viral dsRNA intermediate and constitute membrane-bound replication organelles. The non-structural and transmembrane protein nsp3 is a key player in the biogenesis of DMVs and, therefore, represents an interesting antiviral target. However, as an integral transmembrane protein, it is challenging to express for structural biology. The C-terminus of nsp3 encompasses all the membrane-spanning, -interacting, and -remodeling elements. By using a cell-free expression system, we successfully produced the C-terminal region of nsp3 (nsp3C) and reconstituted purified nsp3C into phospholipid nanodiscs, opening the way for structural studies. Negative-stain transmission electron microscopy revealed the presence of nsp3C oligomers very similar to the region abutting and spanning the membrane on the cytosolic side of DMVs in a recent subtomogram average of the SARS-CoV-2 nsp3-4 pore (1). AlphaFold-predicted structural models fit particularly well with our experimental data and support a pore-forming hexameric assembly. Altogether, our data give unprecedented clues to understand the structural organization of nsp3, the principal component that shapes the molecular pore that spans the DMVs and is required for the export of RNA in vivo. IMPORTANCE: Membrane remodeling is at the heart of intracellular replication for single-stranded, positive-sense RNA viruses. In the case of coronaviruses, including severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), this leads to the formation of a network of double-membrane vesicles (DMVs). Targeting DMV biogenesis offers promising prospects for antiviral therapies. This requires a better understanding of the molecular mechanisms and proteins involved. Three non-structural proteins (nsp3, nsp4, and nsp6) direct the intracellular membrane rearrangements upon SARS-CoV-2 infection. All of them contain transmembrane helices. The nsp3 component, the largest and multi-functional protein of the virus, plays an essential role in this process. Aiming to understand its structural organization, we used a cell-free protein synthesis assay to produce and reconstitute the C-terminal part of nsp3 (nsp3C) including transmembrane domains into phospholipid nanodiscs. Our work reveals the oligomeric organization of one key player in the biogenesis of SARS-CoV-2 DMVs, providing basis for the design of future antiviral strategies.


Asunto(s)
COVID-19 , ARN Viral , SARS-CoV-2 , Proteínas no Estructurales Virales , Humanos , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , COVID-19/virología , Retículo Endoplásmico/metabolismo , Fosfolípidos , ARN Viral/metabolismo , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/genética , Proteínas no Estructurales Virales/metabolismo , Replicación Viral
3.
J Nat Med ; 78(3): 784-791, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38512650

RESUMEN

Papain-like protease (PLpro) enzyme plays a vital role in viral replication as it breaks down polyproteins and disrupts the host's immune response. There are few reports on Kampo formulas that focus on PLpro activity. In this study, we evaluated the inhibitory effects of senkyuchachosan, a traditional Japanese medicine, on PLpro of SARS-CoV-2, the virus responsible for causing COVID-19. We purified the PLpro enzyme and conducted in vitro enzymatic assays using specific substrates. Among the nine crude drugs present in senkyuchachosan, four (Cyperi Rhizoma, Schizonepetae Spica, Menthae Herba, and Camelliae sinensis Folium [CsF]) strongly inhibited PLpro activity. CsF, derived from Camellia sinensis (green tea), contains polyphenols, including catechins and tannins. To confirm that the PLpro inhibitory effects of senkyuchachosan predominantly stem from tannins, the tannins were removed from the decoction using polyvinylpolypyrrolidone (PVPP). The inhibitory effect of senkyuchachosan on PLpro activity was reduced by the removal of PVPP. In addition, the tannin fraction obtained from the CsF extracts showed significant PLpro inhibitory effects. These findings lay the groundwork for the potential development of therapeutic agents that target SARS-CoV-2 infection by intervening in proteolytic cleavage of the virus.


Asunto(s)
SARS-CoV-2 , SARS-CoV-2/efectos de los fármacos , Humanos , Antivirales/farmacología , Antivirales/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Tratamiento Farmacológico de COVID-19 , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Taninos/farmacología , Medicina Kampo
4.
Chem Pharm Bull (Tokyo) ; 71(12): 897-905, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38044142

RESUMEN

Virtual screening with high-performance computers is a powerful and cost-effective technique in drug discovery. A chemical database is searched to find candidate compounds firmly bound to a target protein, judging from the binding poses and/or binding scores. The severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) infectious disease has spread worldwide for the last three years, causing severe slumps in economic and social activities. SARS-Cov-2 has two viral proteases: 3-chymotrypsin-like (3CL) and papain-like (PL) protease. While approved drugs have already been released for the 3CL protease, no approved agent is available for PL protease. In this work, we carried out in silico screening for the PL protease inhibitors, combining docking simulation and molecular mechanics calculation. Docking simulations were applied to 8,820 molecules in a chemical database of approved and investigational compounds. Based on the binding poses generated by the docking simulations, molecular mechanics calculations were performed to optimize the binding structures and to obtain the binding scores. Based on the binding scores, 57 compounds were selected for in vitro assay of the inhibitory activity. Five inhibitory compounds were identified from the in vitro measurement. The predicted binding structures of the identified five compounds were examined, and the significant interaction between the individual compound and the protease catalytic site was clarified. This work demonstrates that computational virtual screening by combining docking simulation with molecular mechanics calculation is effective for searching candidate compounds in drug discovery.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , Simulación del Acoplamiento Molecular , Proteínas no Estructurales Virales , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Simulación de Dinámica Molecular , Antivirales/farmacología , Antivirales/química
5.
J Mol Biol ; 435(24): 168337, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37918563

RESUMEN

Identifying residues critical to protein-protein binding and efficient design of stable and specific protein binders are challenging tasks. Extending beyond the direct contacts in a protein-protein binding interface, our study employs computational modeling to reveal the essential network of residue interactions and dihedral angle correlations critical in protein-protein recognition. We hypothesized that mutating residues exhibiting highly correlated dynamic motion within the interaction network could efficiently optimize protein-protein interactions to create tight and selective protein binders. We tested this hypothesis using the ubiquitin (Ub) and MERS coronaviral papain-like protease (PLpro) complex, since Ub is a central player in multiple cellular functions and PLpro is an antiviral drug target. Our designed ubiquitin variant (UbV) hosting three mutated residues displayed a ∼3,500-fold increase in functional inhibition relative to wild-type Ub. Further optimization of two C-terminal residues within the Ub network resulted in a KD of 1.5 nM and IC50 of 9.7 nM for the five-point Ub mutant, eliciting 27,500-fold and 5,500-fold enhancements in affinity and potency, respectively, as well as improved selectivity, without destabilizing the UbV structure. Our study highlights residue correlation and interaction networks in protein-protein interactions, and introduces an effective approach to design high-affinity protein binders for cell biology research and future therapeutics.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , Coronavirus del Síndrome Respiratorio de Oriente Medio , Ubiquitina , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Unión Proteica , Ubiquitina/química , Ubiquitina/metabolismo , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo
6.
J Virol ; 97(10): e0050723, 2023 10 31.
Artículo en Inglés | MEDLINE | ID: mdl-37768083

RESUMEN

IMPORTANCE: Generation of virus-host protein-protein interactions (PPIs) maps may provide clues to uncover SARS-CoV-2-hijacked cellular processes. However, these PPIs maps were created by expressing each viral protein singularly, which does not reflect the life situation in which certain viral proteins synergistically interact with host proteins. Our results reveal the host-viral protein-protein interactome of SARS-CoV-2 NSP3, NSP4, and NSP6 expressed individually or in combination. Furthermore, REEP5/TRAM1 complex interacts with NSP3 at ROs and promotes viral replication. The significance of our research is identifying virus-host interactions that may be targeted for therapeutic intervention.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , Interacciones Microbiota-Huesped , Glicoproteínas de Membrana , Proteínas de la Membrana , Proteínas de Transporte de Membrana , SARS-CoV-2 , Replicación Viral , Humanos , COVID-19/virología , Glicoproteínas de Membrana/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Unión Proteica , Mapas de Interacción de Proteínas , SARS-CoV-2/crecimiento & desarrollo , SARS-CoV-2/metabolismo , Proteínas no Estructurales Virales/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo
7.
PLoS Pathog ; 19(8): e1011614, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37651466

RESUMEN

Despite unprecedented efforts, our therapeutic arsenal against SARS-CoV-2 remains limited. The conserved macrodomain 1 (Mac1) in NSP3 is an enzyme exhibiting ADP-ribosylhydrolase activity and a possible drug target. To determine the role of Mac1 catalytic activity in viral replication, we generated recombinant viruses and replicons encoding a catalytically inactive NSP3 Mac1 domain by mutating a critical asparagine in the active site. While substitution to alanine (N40A) reduced catalytic activity by ~10-fold, mutations to aspartic acid (N40D) reduced activity by ~100-fold relative to wild-type. Importantly, the N40A mutation rendered Mac1 unstable in vitro and lowered expression levels in bacterial and mammalian cells. When incorporated into SARS-CoV-2 molecular clones, the N40D mutant only modestly affected viral fitness in immortalized cell lines, but reduced viral replication in human airway organoids by 10-fold. In mice, the N40D mutant replicated at >1000-fold lower levels compared to the wild-type virus while inducing a robust interferon response; all animals infected with the mutant virus survived infection. Our data validate the critical role of SARS-CoV-2 NSP3 Mac1 catalytic activity in viral replication and as a promising therapeutic target to develop antivirals.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , SARS-CoV-2 , Replicación Viral , Animales , Humanos , Ratones , Alanina , Antivirales , SARS-CoV-2/genética , SARS-CoV-2/fisiología , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo
8.
Sci Signal ; 16(783): eadd0082, 2023 05 02.
Artículo en Inglés | MEDLINE | ID: mdl-37130168

RESUMEN

The SARS-CoV-2 papain-like protease (PLpro), which has deubiquitinating activity, suppresses the type I interferon (IFN-I) antiviral response. We investigated the mechanism by which PLpro antagonizes cellular antiviral responses. In HEK392T cells, PLpro removed K63-linked polyubiquitin chains from Lys289 of the stimulator of interferon genes (STING). PLpro-mediated deubiquitination of STING disrupted the STING-IKKε-IRF3 complex that induces the production of IFN-ß and IFN-stimulated cytokines and chemokines. In human airway cells infected with SARS-CoV-2, the combined treatment with the STING agonist diABZi and the PLpro inhibitor GRL0617 resulted in the synergistic inhibition of SARS-CoV-2 replication and increased IFN-I responses. The PLpros of seven human coronaviruses (SARS-CoV-2, SARS-CoV, MERS-CoV, HCoV-229E, HCoV-HKU1, HCoV-OC43, and HCoV-NL63) and four SARS-CoV-2 variants of concern (α, ß, γ, and δ) all bound to STING and suppressed STING-stimulated IFN-I responses in HEK293T cells. These findings reveal how SARS-CoV-2 PLpro inhibits IFN-I signaling through STING deubiquitination and a general mechanism used by seven human coronaviral PLpros to dysregulate STING and to facilitate viral innate immune evasion. We also identified simultaneous pharmacological STING activation and PLpro inhibition as a potentially effective strategy for antiviral therapy against SARS-CoV-2.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , Evasión Inmune , Interferón Tipo I , Proteínas de la Membrana , Humanos , Interferón Tipo I/inmunología , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Células HEK293 , Ubiquitinación , Proteínas de la Membrana/metabolismo , SARS-CoV-2/fisiología , Replicación Viral , COVID-19/inmunología
9.
Front Immunol ; 13: 947272, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36032116

RESUMEN

The newly emerged severe acute respiratory syndrome (SARS) coronavirus-2 (SARS-CoV-2) can result in dysregulated interferon (IFN) responses that contribute to disease severity. The papain-like protease of SARS-CoV-2 (SCoV2-PLpro) has been previously reported to attenuate IFN responses, but the underlying mechanism is not fully understood. In this study, we found that SCoV2-PLpro potently suppressed IFN production and signaling induced by Sendai virus as well as RIG-I-like receptor (RLR) signaling pathway components, including RIG-I, MAVS, TBK1, TRAF3, TRAF6, and IRF3. SCoV2-PLpro exhibited different specificity and efficiency than SARS-CoV PLpro, with the former exerting a greater inhibitory effect on the RIG-I- and TRAF3-mediated IFN response but a weaker effect on the MAVS-mediated IFN response. Furthermore, we showed that SCoV2-PLpro significantly reduced K63-ubiquitination of RIG-I, MAVS, TBK1, TRAF3, TRAF6, and IRF3 and K48-ubiquitination of IκBα, which are known critical for the innate immune signal transduction. The deubiquitinating (DUB) activity of SCoV2-PLpro required a catalytic residue cysteine 111 (C111) but not the UBL domain. Notably, by utilizing the DUB-defective C111 mutant, we demonstrated that SCoV2-PLpro targeted RLR signaling pathway regulators via deubiquitination-dependent and -independent mechanisms, with the inhibitory activities of RIG-I and TBK1 correlating with DUB function, whereas the antagonism effects on MAVS, TRAF3, TRAF6, and IRF3 independent on DUB activity. Overall, our results reveal that SCoV2-PLpro evolves differential IFN antagonism activity from SCoV1-PLpro and it targets multiple key RLR signaling pathway components via various mechanisms, providing insights into SARS-CoV-2 pathogenesis and clues for developing antiviral therapies for COVID-19.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus , Proteína 58 DEAD Box , Receptores Inmunológicos , SARS-CoV-2 , Transducción de Señal , COVID-19 , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteína 58 DEAD Box/metabolismo , Humanos , Receptores Inmunológicos/metabolismo , SARS-CoV-2/enzimología , Ubiquitinación
10.
Mar Drugs ; 20(3)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35323478

RESUMEN

Several natural products recovered from a marine-derived Aspergillus niger were tested for their inhibitory activity against SARS CoV-2 in vitro. Aurasperone A (3) was found to inhibit SARS CoV-2 efficiently (IC50 = 12.25 µM) with comparable activity with the positive control remdesivir (IC50 = 10.11 µM). Aurasperone A exerted minimal cytotoxicity on Vero E6 cells (CC50 = 32.36 mM, SI = 2641.5) and it was found to be much safer than remdesivir (CC50 = 415.22 µM, SI = 41.07). To putatively highlight its molecular target, aurasperone A was subjected to molecular docking against several key-viral protein targets followed by a series of molecular dynamics-based in silico experiments that suggested Mpro to be its primary viral protein target. More potent anti-SARS CoV-2 Mpro inhibitors can be developed according to our findings presented in the present investigation.


Asunto(s)
Antivirales/farmacología , Cromonas/farmacología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Inhibidores de Proteasas/farmacología , SARS-CoV-2/efectos de los fármacos , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/farmacología , Alanina/análogos & derivados , Alanina/farmacología , Animales , Antivirales/aislamiento & purificación , Aspergillus niger/química , Chlorocebus aethiops , Cromonas/aislamiento & purificación , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas/aislamiento & purificación , ARN Helicasas/metabolismo , Glicoproteína de la Espiga del Coronavirus/metabolismo , Células Vero
11.
Sci Rep ; 12(1): 2145, 2022 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-35140265

RESUMEN

The most common host entry point of human adapted coronaviruses (CoV) including SARS-CoV-2 is through the initial colonization in the nostril and mouth region which is responsible for spread of the infection. Most recent studies suggest that the commercially available oral and nasal rinse products are effective in inhibiting the viral replication. However, the anti-viral mechanism of the active ingredients present in the oral rinses have not been studied. In the present study, we have assessed in vitro enzymatic inhibitory activity of active ingredients in the oral mouth rinse products: aloin A and B, chlorhexidine, eucalyptol, hexetidine, menthol, triclosan, methyl salicylate, sodium fluoride and povidone, against two important proteases of SARS-CoV-2 PLpro and 3CLpro. Our results indicate only aloin A and B effectively inhibited proteolytic activity of PLpro with an IC50 of 13.16 and 16.08 µM. Interestingly, neither of the aloin isoforms inhibited 3CLpro enzymatic activity. Computational structural modelling of aloin A and B interaction with PLpro revealed that, both aloin isoforms form hydrogen bond with Tyr268 of PLpro, which is critical for their proteolytic activity. Furthermore, 100 ns molecular dynamics (MD) simulation studies predicted that both aloin isoforms have strong interaction with Glu167, which is required for PLpro deubiquitination activity. Our results from the in vitro deubiquitinase inhibition assay show that aloin A and B isomers exhibit deubiquitination inhibitory activity with an IC50 value of 15.68 and 17.51 µM, respectively. In conclusion, the isoforms of aloin inhibit both proteolytic and the deubiquitinating activity of SARS-CoV-2 PLpro, suggesting potential in inhibiting the replication of SARS-CoV-2 virus.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/metabolismo , Emodina/análogos & derivados , SARS-CoV-2/enzimología , Animales , Sitios de Unión , COVID-19/patología , COVID-19/virología , Supervivencia Celular/efectos de los fármacos , Chlorocebus aethiops , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Emodina/química , Emodina/metabolismo , Emodina/farmacología , Humanos , Simulación de Dinámica Molecular , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Isoformas de Proteínas/farmacología , SARS-CoV-2/aislamiento & purificación , Células Vero
12.
J Med Chem ; 65(1): 876-884, 2022 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-34981929

RESUMEN

Coronavirus disease 2019 (COVID-19) pandemic, a global health threat, was caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The SARS-CoV-2 papain-like cysteine protease (PLpro) was recognized as a promising drug target because of multiple functions in virus maturation and antiviral immune responses. Inhibitor GRL0617 occupied the interferon-stimulated gene 15 (ISG15) C-terminus-binding pocket and showed an effective antiviral inhibition. Here, we described a novel peptide-drug conjugate (PDC), in which GRL0617 was linked to a sulfonium-tethered peptide derived from PLpro-specific substrate LRGG. The EM-C and EC-M PDCs showed a promising in vitro IC50 of 7.40 ± 0.37 and 8.63 ± 0.55 µM, respectively. EC-M could covalently label PLpro active site C111 and display anti-ISGylation activities in cellular assays. The results represent the first attempt to design PDCs composed of stabilized peptide inhibitors and GRL0617 to inhibit PLpro. These novel PDCs provide promising opportunities for antiviral drug design.


Asunto(s)
Compuestos de Anilina/química , Antivirales/metabolismo , Benzamidas/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Diseño de Fármacos , Naftalenos/química , Péptidos/química , SARS-CoV-2/enzimología , Compuestos de Anilina/metabolismo , Compuestos de Anilina/farmacología , Antivirales/química , Antivirales/farmacología , Antivirales/uso terapéutico , Benzamidas/metabolismo , Benzamidas/farmacología , COVID-19/patología , COVID-19/virología , Línea Celular , Supervivencia Celular/efectos de los fármacos , Proteasas Similares a la Papaína de Coronavirus/química , Citocinas/química , Evaluación Preclínica de Medicamentos , Humanos , Concentración 50 Inhibidora , Naftalenos/metabolismo , Naftalenos/farmacología , SARS-CoV-2/aislamiento & purificación , Ubiquitinas/química , Tratamiento Farmacológico de COVID-19
13.
J Med Chem ; 65(4): 2940-2955, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-34665619

RESUMEN

Antiviral agents that complement vaccination are urgently needed to end the COVID-19 pandemic. The SARS-CoV-2 papain-like protease (PLpro), one of only two essential cysteine proteases that regulate viral replication, also dysregulates host immune sensing by binding and deubiquitination of host protein substrates. PLpro is a promising therapeutic target, albeit challenging owing to featureless P1 and P2 sites recognizing glycine. To overcome this challenge, we leveraged the cooperativity of multiple shallow binding sites on the PLpro surface, yielding novel 2-phenylthiophenes with nanomolar inhibitory potency. New cocrystal structures confirmed that ligand binding induces new interactions with PLpro: by closing of the BL2 loop of PLpro forming a novel "BL2 groove" and by mimicking the binding interaction of ubiquitin with Glu167 of PLpro. Together, this binding cooperativity translates to the most potent PLpro inhibitors reported to date, with slow off-rates, improved binding affinities, and low micromolar antiviral potency in SARS-CoV-2-infected human cells.


Asunto(s)
Antivirales/farmacología , Tratamiento Farmacológico de COVID-19 , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Inhibidores de Cisteína Proteinasa/farmacología , Antivirales/síntesis química , Antivirales/química , Sitios de Unión/efectos de los fármacos , COVID-19/metabolismo , Proteasas Similares a la Papaína de Coronavirus/aislamiento & purificación , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Cristalografía por Rayos X , Inhibidores de Cisteína Proteinasa/síntesis química , Inhibidores de Cisteína Proteinasa/química , Humanos , Pruebas de Sensibilidad Microbiana , Microsomas Hepáticos/química , Microsomas Hepáticos/metabolismo , Modelos Moleculares , Pandemias , Resonancia por Plasmón de Superficie , Células Tumorales Cultivadas
14.
Mol Biotechnol ; 64(1): 1-8, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34420183

RESUMEN

Because of the essential roles of SARS-CoV-2 papain-like protease (PLpro) in the viral polyprotein processing and suppression of host immune responses, it is a crucial target for drug discovery against COVID-19. To develop robust biochemical methodologies for inhibitor screening against PLpro, extensive characterization of recombinant protein is important. Here we report cloning, expression, and purification of the recombinant SARS-CoV-2 PLpro, and explore various parameters affecting its stability and the catalytic activity. We also report the optimum conditions which should be used for high-throughput inhibitor screening using a fluorogenic tetrapeptide substrate.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Ensayos Analíticos de Alto Rendimiento/métodos , Antivirales/farmacología , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/aislamiento & purificación , Cumarinas/química , Cumarinas/metabolismo , Inhibidores de Cisteína Proteinasa/farmacología , Dimetilsulfóxido/química , Dispersión Dinámica de Luz , Ácido Edético/química , Estabilidad de Enzimas , Fluorometría/métodos , Concentración de Iones de Hidrógeno , Concentración Osmolar , Péptidos/química , Péptidos/metabolismo , Temperatura
15.
Angew Chem Int Ed Engl ; 61(9): e202113617, 2022 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-34889013

RESUMEN

The main protease (Mpro ) and papain-like protease (PLpro ) play critical roles in SARS-CoV-2 replication and are promising targets for antiviral inhibitors. The simultaneous visualization of Mpro and PLpro is extremely valuable for SARS-CoV-2 detection and rapid inhibitor screening. However, such a crucial investigation has remained challenging because of the lack of suitable probes. We have now developed a dual-color probe (3MBP5) for the simultaneous detection of Mpro and PLpro by fluorescence (or Förster) resonance energy transfer (FRET). This probe produces fluorescence from both the Cy3 and Cy5 fluorophores that are cleaved by Mpro and PLpro . 3MBP5-activatable specificity was demonstrated with recombinant proteins, inhibitors, plasmid-transfected HEK 293T cells, and SARS-CoV-2-infected TMPRSS2-Vero cells. Results from the dual-color probe first verified the simultaneous detection and intracellular distribution of SARS-CoV-2 Mpro and PLpro . This is a powerful tool for the simultaneous detection of different proteases with value for the rapid screening of inhibitors.


Asunto(s)
Color , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Colorantes Fluorescentes/química , Inhibidores de Proteasas/farmacología , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Transferencia Resonante de Energía de Fluorescencia , Células HEK293 , Humanos
16.
J Virol ; 96(1): e0137221, 2022 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-34643430

RESUMEN

Coronaviral papain-like proteases (PLpros) are essential enzymes that mediate not only the proteolytic processes of viral polyproteins during virus replication but also the deubiquitination and deISGylation of cellular proteins that attenuate host innate immune responses. Therefore, PLpros are attractive targets for antiviral drug development. Here, we report the crystal structure of papain-like protease 2 (PLP2) of porcine epidemic diarrhea virus (PEDV) in complex with ubiquitin (Ub). The X-ray structural analyses reveal that PEDV PLP2 interacts with the Ub substrate mainly through the Ub core region and C-terminal tail. Mutations of Ub-interacting residues resulted in a moderately or completely abolished deubiquitinylating function of PEDV PLP2. In addition, our analyses also indicate that 2-residue-extended blocking loop 2 at the S4 subsite contributes to the substrate selectivity and binding affinity of PEDV PLP2. Furthermore, the PEDV PLP2 Glu99 residue, conserved in alphacoronavirus PLpros, was found to govern the preference of a positively charged P4 residue of peptidyl substrates. Collectively, our data provided structure-based information for the substrate binding and selectivity of PEDV PLP2. These findings may help us gain insights into the deubiquitinating (DUB) and proteolytic functions of PEDV PLP2 from a structural perspective. IMPORTANCE Current challenges in coronaviruses (CoVs) include a comprehensive understanding of the mechanistic effects of associated enzymes, including the 3C-like and papain-like proteases. We have previously reported that the PEDV PLP2 exhibits a broader substrate preference, superior DUB function, and inferior peptidase activity. However, the structural basis for these functions remains largely unclear. Here, we show the high-resolution X-ray crystal structure of PEDV PLP2 in complex with Ub. Integrated structural and biochemical analyses revealed that (i) three Ub core-interacting residues are essential for DUB function, (ii) 2-residue-elongated blocking loop 2 regulates substrate selectivity, and (iii) a conserved glutamate residue governs the substrate specificity of PEDV PLP2. Collectively, our findings provide not only structural insights into the catalytic mechanism of PEDV PLP2 but also a model for developing antiviral strategies.


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/química , Virus de la Diarrea Epidémica Porcina/química , Coronavirus/química , Coronavirus/clasificación , Coronavirus/enzimología , Proteasas Similares a la Papaína de Coronavirus/genética , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Cristalografía por Rayos X , Mutación , Virus de la Diarrea Epidémica Porcina/enzimología , Virus de la Diarrea Epidémica Porcina/genética , Unión Proteica , Dominios Proteicos , Relación Estructura-Actividad , Especificidad por Sustrato , Ubiquitina/química , Ubiquitina/metabolismo
17.
Infect Genet Evol ; 96: 105155, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34823028

RESUMEN

The present study aimed to predict the binding potential of carbon nanotube and nano fullerene towards multiple targets of SARS-CoV-2. Based on the virulent functions, the spike glycoprotein, RNA-dependent RNA polymerase, main protease, papain-like protease, and RNA binding domain of the nucleocapsid proteins of SARS-CoV-2 were prioritized as the molecular targets and their three-dimensional (3D) structures were retrieved from the Protein Data Bank. The 3D structures of carbon nanotubes and nano-fullerene were computationally modeled, and the binding potential of these nanoparticles to the selected molecular targets was predicted by molecular docking and molecular dynamic (MD) simulations. The drug-likeness and pharmacokinetic features of the lead molecules were computationally predicted. The current study suggested that carbon fullerene and nanotube demonstrated significant binding towards the prioritized multi-targets of SARS-CoV-2. Interestingly, carbon nanotube showed better interaction with these targets when compared to carbon fullerene. MD simulation studies clearly showed that the interaction of nanoparticles and selected targets possessed stability and conformational changes. This study revealed that carbon nanotubes and fullerene are probably used as effectual binders to multiple targets of SARS-CoV-2, and the study offers insights into the experimental validation and highlights the relevance of utilizing carbon nanomaterials as a therapeutic remedy against COVID-19.


Asunto(s)
Fulerenos/metabolismo , Nanotubos de Carbono , SARS-CoV-2/metabolismo , Proteínas Virales/química , Antivirales/química , Antivirales/metabolismo , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Proteínas de la Nucleocápside de Coronavirus/química , Proteínas de la Nucleocápside de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Fulerenos/química , Fulerenos/farmacocinética , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Nanotubos de Carbono/química , Fosfoproteínas/química , Fosfoproteínas/metabolismo , ARN Polimerasa Dependiente del ARN/química , ARN Polimerasa Dependiente del ARN/metabolismo , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/metabolismo , Proteínas Virales/metabolismo
18.
J Am Chem Soc ; 143(48): 20095-20108, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34817989

RESUMEN

Chemical modifications of native proteins can affect their stability, activity, interactions, localization, and more. However, there are few nongenetic methods for the installation of chemical modifications at a specific protein site in cells. Here we report a covalent ligand directed release (CoLDR) site-specific labeling strategy, which enables the installation of a variety of functional tags on a target protein while releasing the directing ligand. Using this approach, we were able to label various proteins such as BTK, K-RasG12C, and SARS-CoV-2 PLpro with different tags. For BTK we have shown selective labeling in cells of both alkyne and fluorophores tags. Protein labeling by traditional affinity methods often inhibits protein activity since the directing ligand permanently occupies the target binding pocket. We have shown that using CoLDR chemistry, modification of BTK by these probes in cells preserves its activity. We demonstrated several applications for this approach including determining the half-life of BTK in its native environment with minimal perturbation, as well as quantification of BTK degradation by a noncovalent proteolysis targeting chimera (PROTAC) by in-gel fluorescence. Using an environment-sensitive "turn-on" fluorescent probe, we were able to monitor ligand binding to the active site of BTK. Finally, we have demonstrated efficient CoLDR-based BTK PROTACs (DC50 < 100 nM), which installed a CRBN binder onto BTK. This approach joins very few available labeling strategies that maintain the target protein activity and thus makes an important addition to the toolbox of chemical biology.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa/química , Colorantes Fluorescentes/química , Ligandos , Proteínas Proto-Oncogénicas p21(ras)/antagonistas & inhibidores , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Agammaglobulinemia Tirosina Quinasa/metabolismo , Dominio Catalítico , Proteasas Similares a la Papaína de Coronavirus/química , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Semivida , Humanos , Piperidinas/química , Piperidinas/metabolismo , Proteolisis , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Pirimidinas/química , Pirimidinas/metabolismo , SARS-CoV-2/enzimología
19.
Int J Mol Sci ; 22(22)2021 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-34830267

RESUMEN

The worldwide outbreak of COVID-19 was caused by a pathogenic virus called Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Therapies against SARS-CoV-2 target the virus or human cells or the immune system. However, therapies based on specific antibodies, such as vaccines and monoclonal antibodies, may become inefficient enough when the virus changes its antigenicity due to mutations. Polyphenols are the major class of bioactive compounds in nature, exerting diverse health effects based on their direct antioxidant activity and their effects in the modulation of intracellular signaling. There are currently numerous clinical trials investigating the effects of polyphenols in prophylaxis and the treatment of COVID-19, from symptomatic, via moderate and severe COVID-19 treatment, to anti-fibrotic treatment in discharged COVID-19 patients. Antiviral activities of polyphenols and their impact on immune system modulation could serve as a solid basis for developing polyphenol-based natural approaches for preventing and treating COVID-19.


Asunto(s)
Antivirales/uso terapéutico , COVID-19/prevención & control , Polifenoles/uso terapéutico , Antivirales/química , Antivirales/metabolismo , COVID-19/virología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/metabolismo , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Humanos , Plantas Medicinales/química , Plantas Medicinales/metabolismo , Polifenoles/química , Polifenoles/metabolismo , SARS-CoV-2/aislamiento & purificación , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/antagonistas & inhibidores , Glicoproteína de la Espiga del Coronavirus/metabolismo
20.
Molecules ; 26(21)2021 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-34771004

RESUMEN

Papain-like protease is an essential enzyme in the proteolytic processing required for the replication of SARS-CoV-2. Accordingly, such an enzyme is an important target for the development of anti-SARS-CoV-2 agents which may reduce the mortality associated with outbreaks of SARS-CoV-2. A set of 69 semi-synthesized molecules that exhibited the structural features of SARS-CoV-2 papain-like protease inhibitors (PLPI) were docked against the coronavirus papain-like protease (PLpro) enzyme (PDB ID: (4OW0). Docking studies showed that derivatives 34 and 58 were better than the co-crystallized ligand while derivatives 17, 28, 31, 40, 41, 43, 47, 54, and 65 exhibited good binding modes and binding free energies. The pharmacokinetic profiling study was conducted according to the four principles of the Lipinski rules and excluded derivative 31. Furthermore, ADMET and toxicity studies showed that derivatives 28, 34, and 47 have the potential to be drugs and have been demonstrated as safe when assessed via seven toxicity models. Finally, comparing the molecular orbital energies and the molecular electrostatic potential maps of 28, 34, and 47 against the co-crystallized ligand in a DFT study indicated that 28 is the most promising candidate to interact with the target receptor (PLpro).


Asunto(s)
Proteasas Similares a la Papaína de Coronavirus/metabolismo , SARS-CoV-2/efectos de los fármacos , Replicación Viral/efectos de los fármacos , Antivirales/farmacología , COVID-19/metabolismo , Simulación por Computador , Proteasas Similares a la Papaína de Coronavirus/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Papaína/metabolismo , Péptido Hidrolasas/metabolismo , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Inhibidores de Proteasas/farmacología , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidad , Tratamiento Farmacológico de COVID-19
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...