Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Comput Biol Chem ; 110: 108061, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38574417

RESUMEN

Being widely accepted tools in computational drug search, the (Q)SAR methods have limitations related to data incompleteness. The proteochemometrics (PCM) approach expands the applicability area by using description for both protein and ligand structures. The PCM algorithms are urgently required for the development of new antiviral agents. We suggest the PCM method using the TLMNA descriptors, combining the MNA descriptors of ligands and protein sequence N-grams. Our method was validated on the viral chymotrypsin-like proteases and their ligands. We have developed an original protocol allowing us to collect a comprehensive set of 15 protein sequences and more than 9000 ligands from the ChEMBL database. The N-grams were derived from the 3D-based alignment, accurately superposing ligand-binding regions. In testing the ligand set in SAR mode with MNA descriptors, an accuracy above 0.95 was determined that shows the perspective of the antiviral drug search in virtual chemical libraries. The effective PCM models were built with the TLMNA descriptor. The strong validation procedure with pair exclusion simulated the prediction of interactions between the new ligands and new targets, resulting in accuracy estimation up to 0.89. The PCM approach shows slightly lower accuracy caused by more uncertainty compared with SAR, but it overcomes the problem of data incompleteness.


Asunto(s)
Antivirales , Inhibidores de Proteasas , Inhibidores de Proteasas/química , Inhibidores de Proteasas/farmacología , Ligandos , Antivirales/química , Antivirales/farmacología , Algoritmos , Proteasas Virales/química , Proteasas Virales/metabolismo
2.
Bioorg Chem ; 133: 106426, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36801793

RESUMEN

West Nile Virus (WNV) belongs to a group of pathogenic viruses called flaviviruses. West Nile virus infection can be mild, causing so-called West Nile Fever (WNF) or severe neuroinvasive form of the disease (WNND), and ultimately even death. There are currently no known medications to prevent West Nile virus infection. Only symptomatic treatment is used. To date, there are no unequivocal tests enabling a quick and unambiguous assessment of WN virus infection. The aim of the research was to obtain specific and selective tools for determining the activity of the West Nile virus serine proteinase. Using the methods of combinatorial chemistry with iterative deconvolution, the substrate specificity of the enzyme in non-primed and primed positions was determined. The FRET ABZ-Ala-Lys-Gln-Arg-Gly-Gly-Thr-Tyr(3-NO2)-NH2 substrate was obtained, characterized by kinetic parameters (KM = 4.20 ± 0.32 × 10-5 M) as for the majority of proteolytic enzymes. The obtained sequence was used to develop and synthesize highly sensitive functionalized quantum dot-based protease probes (QD). A QD WNV NS3 protease probe was obtained to detect an increase in fluorescence of 0.05 nmol enzyme in the assay system. This value was at least 20 times lower than that observed with the optimized substrate. The obtained result may be the basis for further research on the potential use of the WNV NS3 protease in the diagnosis of West Nile virus infection.


Asunto(s)
Proteasas Virales , Fiebre del Nilo Occidental , Virus del Nilo Occidental , Humanos , Serina Endopeptidasas , Fiebre del Nilo Occidental/diagnóstico , Virus del Nilo Occidental/metabolismo , Proteasas Virales/química , Proteasas Virales/metabolismo
3.
Viruses ; 14(2)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35215882

RESUMEN

Stephen Oroszlan received his early education in Hungary, graduating in 1950 from the Technical University in Budapest with a degree in chemical engineering [...].


Asunto(s)
Proteínas de los Retroviridae/química , Proteínas de los Retroviridae/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Masculino , Retroviridae/efectos de los fármacos , Retroviridae/metabolismo , Inhibidores de Proteasa Viral/farmacología , Proteasas Virales/química , Proteasas Virales/metabolismo
4.
J Mol Biol ; 434(9): 167503, 2022 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-35183560

RESUMEN

Third generation Hepatitis C virus (HCV) NS3/4A protease inhibitors (PIs), glecaprevir and voxilaprevir, are highly effective across genotypes and against many resistant variants. Unlike earlier PIs, these compounds have fluorine substitutions on the P2-P4 macrocycle and P1 moieties. Fluorination has long been used in medicinal chemistry as a strategy to improve physicochemical properties and potency. However, the molecular basis by which fluorination improves potency and resistance profile of HCV NS3/4A PIs is not well understood. To systematically analyze the contribution of fluorine substitutions to inhibitor potency and resistance profile, we used a multi-disciplinary approach involving inhibitor design and synthesis, enzyme inhibition assays, co-crystallography, and structural analysis. A panel of inhibitors in matched pairs were designed with and without P4 cap fluorination, tested against WT protease and the D168A resistant variant, and a total of 22 high-resolution co-crystal structures were determined. While fluorination did not significantly improve potency against the WT protease, PIs with fluorinated P4 caps retained much better potency against the D168A protease variant. Detailed analysis of the co-crystal structures revealed that PIs with fluorinated P4 caps can sample alternate binding conformations that enable adapting to structural changes induced by the D168A substitution. Our results elucidate molecular mechanisms of fluorine-specific inhibitor interactions that can be leveraged in avoiding drug resistance.


Asunto(s)
Ácidos Aminoisobutíricos , Ciclopropanos , Diseño de Fármacos , Farmacorresistencia Viral , Inhibidores de Proteasas HCV NS3-4A , Lactamas Macrocíclicas , Leucina/análogos & derivados , Prolina/análogos & derivados , Quinoxalinas , Sulfonamidas , Proteasas Virales , Ácidos Aminoisobutíricos/química , Ácidos Aminoisobutíricos/farmacología , Ciclopropanos/química , Ciclopropanos/farmacología , Farmacorresistencia Viral/genética , Flúor/química , Inhibidores de Proteasas HCV NS3-4A/química , Inhibidores de Proteasas HCV NS3-4A/farmacología , Halogenación , Hepacivirus/efectos de los fármacos , Hepacivirus/enzimología , Hepacivirus/genética , Humanos , Lactamas Macrocíclicas/química , Lactamas Macrocíclicas/farmacología , Leucina/química , Leucina/genética , Leucina/farmacología , Prolina/química , Prolina/genética , Prolina/farmacología , Quinoxalinas/química , Quinoxalinas/farmacología , Sulfonamidas/química , Sulfonamidas/farmacología , Proteasas Virales/química , Proteasas Virales/genética
5.
Biomol NMR Assign ; 16(1): 31-35, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-34817802

RESUMEN

Zika virus (ZIKV) emerged as a global public health concern due to its relationship with severe neurological disorders. Non-structural (NS) proteins of ZIKV are essential for viral replication, regulatory function, and subversion of host responses. NS2B is a membrane protein responsible for the regulation of viral protease activity. This protein has transmembrane domains critical for the localization of viral protease to the endoplasmic reticulum membrane and a hydrophilic domain essential for folding, recruitment, and protease activity. Therefore, NS2B is considered a cofactor of viral protease which processes viral polyprotein and is essential for virus replication, making it an attractive antiviral drug target. Here, we report the backbone 1H, 15N, 13C resonance assignments of the full-length NS2B by high-resolution NMR. The backbone assignment will be necessary for determining the three-dimensional structure and backbone dynamics of NS2B, interaction mapping and screening potential of antiviral drugs against ZIKV and related pathogenic flaviviruses.


Asunto(s)
Proteínas no Estructurales Virales , Virus Zika , Resonancia Magnética Nuclear Biomolecular , Proteínas no Estructurales Virales/química , Proteasas Virales/química , Virus Zika/química
6.
Viruses ; 13(11)2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34835024

RESUMEN

Steve Oroszlan determined the sequences at the ends of virion proteins for a number of different retroviruses. This work led to the insight that the amino-terminal amino acid of the mature viral CA protein is always proline. In this remembrance, we review Steve's work that led to this insight and show how that insight was a necessary precursor to the work we have done in the subsequent years exploring the cleavage rate determinants of viral protease processing sites and the multiple roles the amino-terminal proline of CA plays after protease cleavage liberates it from its position in a protease processing site.


Asunto(s)
Prolina/química , Proteínas de los Retroviridae/química , Proteínas de los Retroviridae/metabolismo , Animales , Cápside/química , Cápside/metabolismo , VIH-1/química , VIH-1/metabolismo , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Proteolisis , Retroviridae/química , Retroviridae/metabolismo , Proteasas Virales/química , Proteasas Virales/metabolismo , Ensamble de Virus
7.
Chem Commun (Camb) ; 57(82): 10771-10774, 2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34585685

RESUMEN

We have established a new protocol for detecting severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) using a peptidomimetic to covalently detect a viral marker protease.


Asunto(s)
Prueba de COVID-19 , COVID-19/diagnóstico , SARS-CoV-2 , Proteasas Virales/aislamiento & purificación , Bioensayo/economía , Técnicas Biosensibles/economía , COVID-19/sangre , COVID-19/virología , Prueba de COVID-19/economía , Ahorro de Costo , Técnicas Electroquímicas/economía , Humanos , Peptidomiméticos/química , Tirosina/química , Proteasas Virales/química
8.
J Virol ; 95(18): e0084821, 2021 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-34232702

RESUMEN

Reverse transcriptases (RTs) use their DNA polymerase and RNase H activities to catalyze the conversion of single-stranded RNA to double-stranded DNA (dsDNA), a crucial process for the replication of retroviruses. Foamy viruses (FVs) possess a unique RT, which is a fusion with the protease (PR) domain. The mechanism of substrate binding by this enzyme has been unknown. Here, we report a crystal structure of monomeric full-length marmoset FV (MFV) PR-RT in complex with an RNA/DNA hybrid substrate. We also describe a structure of MFV PR-RT with an RNase H deletion in complex with a dsDNA substrate in which the enzyme forms an asymmetric homodimer. Cryo-electron microscopy reconstruction of the full-length MFV PR-RT-dsDNA complex confirmed the dimeric architecture. These findings represent the first structural description of nucleic acid binding by a foamy viral RT and demonstrate its ability to change its oligomeric state depending on the type of bound nucleic acid. IMPORTANCE Reverse transcriptases (RTs) are intriguing enzymes converting single-stranded RNA to dsDNA. Their activity is essential for retroviruses, which are divided into two subfamilies differing significantly in their life cycles: Orthoretrovirinae and Spumaretrovirinae. The latter family is much more ancient and comprises five genera. A unique feature of foamy viral RTs is that they contain N-terminal protease (PR) domains, which are not present in orthoretroviral enzymes. So far, no structural information for full-length foamy viral PR-RT interacting with nucleic substrates has been reported. Here, we present crystal and cryo-electron microscopy structures of marmoset foamy virus (MFV) PR-RT. These structures revealed the mode of binding of RNA/DNA and dsDNA substrates. Moreover, unexpectedly, the structures and biochemical data showed that foamy viral PR-RT can adopt both a monomeric configuration, which is observed in our structures in the presence of an RNA/DNA hybrid, and an asymmetric dimer arrangement, which we observed in the presence of dsDNA.


Asunto(s)
ADN/metabolismo , ADN Polimerasa Dirigida por ARN/química , ARN/metabolismo , Ribonucleasa H/química , Spumavirus/enzimología , Proteasas Virales/química , Proteínas Virales/química , Microscopía por Crioelectrón , ADN/química , Conformación Proteica , ARN/química , ADN Polimerasa Dirigida por ARN/metabolismo , Ribonucleasa H/metabolismo , Proteasas Virales/metabolismo , Proteínas Virales/metabolismo
9.
Biomolecules ; 11(6)2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-34071582

RESUMEN

The urgent need for novel and effective drugs against the SARS-CoV-2 coronavirus pandemic has stimulated research worldwide. The Papain-like protease (PLpro), which is essential for viral replication, shares a similar active site structural architecture to other cysteine proteases. Here, we have used representatives of the Ovarian Tumor Domain deubiquitinase family OTUB1 and OTUB2 along with the PLpro of SARS-CoV-2 to validate and rationalize the binding of inhibitors from previous SARS-CoV candidate compounds. By forming a new chemical bond with the cysteine residue of the catalytic triad, covalent inhibitors irreversibly suppress the protein's activity. Modeling covalent inhibitor binding requires detailed knowledge about the compounds' reactivities and binding. Molecular Dynamics refinement simulations of top poses reveal detailed ligand-protein interactions and show their stability over time. The recently discovered selective OTUB2 covalent inhibitors were used to establish and validate the computational protocol. Structural parameters and ligand dynamics are in excellent agreement with the ligand-bound OTUB2 crystal structures. For SARS-CoV-2 PLpro, recent covalent peptidomimetic inhibitors were simulated and reveal that the ligand-protein interaction is very dynamic. The covalent and non-covalent docking plus subsequent MD refinement of known SARS-CoV inhibitors into DUBs and the SARS-CoV-2 PLpro point out a possible approach to target the PLpro cysteine protease from SARS-CoV-2. The results show that such an approach gives insight into ligand-protein interactions, their dynamic character, and indicates a path for selective ligand design.


Asunto(s)
Enzimas Desubicuitinizantes/antagonistas & inhibidores , Inhibidores de Proteasas/química , SARS-CoV-2/metabolismo , Proteasas Virales/química , Sitios de Unión , COVID-19/patología , Dominio Catalítico , Enzimas Desubicuitinizantes/metabolismo , Diseño de Fármacos , Femenino , Humanos , Enlace de Hidrógeno , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Simulación de Dinámica Molecular , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/patología , Inhibidores de Proteasas/metabolismo , SARS-CoV-2/aislamiento & purificación , Proteasas Virales/metabolismo
11.
Biomolecules ; 11(3)2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808721

RESUMEN

The huge global expansion of the COVID-19 pandemic caused by the novel SARS-corona virus-2 is an extraordinary public health emergency. The unavailability of specific treatment against SARS-CoV-2 infection necessitates the focus of all scientists in this direction. The reported antiviral activities of guanidine alkaloids encouraged us to run a comprehensive in silico binding affinity of fifteen guanidine alkaloids against five different proteins of SARS-CoV-2, which we investigated. The investigated proteins are COVID-19 main protease (Mpro) (PDB ID: 6lu7), spike glycoprotein (PDB ID: 6VYB), nucleocapsid phosphoprotein (PDB ID: 6VYO), membrane glycoprotein (PDB ID: 6M17), and a non-structural protein (nsp10) (PDB ID: 6W4H). The binding energies for all tested compounds indicated promising binding affinities. A noticeable superiority for the pentacyclic alkaloids particularly, crambescidin 786 (5) and crambescidin 826 (13) has been observed. Compound 5 exhibited very good binding affinities against Mpro (ΔG = -8.05 kcal/mol), nucleocapsid phosphoprotein (ΔG = -6.49 kcal/mol), and nsp10 (ΔG = -9.06 kcal/mol). Compound 13 showed promising binding affinities against Mpro (ΔG = -7.99 kcal/mol), spike glycoproteins (ΔG = -6.95 kcal/mol), and nucleocapsid phosphoprotein (ΔG = -8.01 kcal/mol). Such promising activities might be attributed to the long ω-fatty acid chain, which may play a vital role in binding within the active sites. The correlation of c Log P with free binding energies has been calculated. Furthermore, the SAR of the active compounds has been clarified. The Absorption, Distribution, Metabolism, Excretion, and Toxicity (ADMET) studies were carried out in silico for the 15 compounds; most examined compounds showed optimal to good range levels of ADMET aqueous solubility, intestinal absorption and being unable to pass blood brain barrier (BBB), non-inhibitors of CYP2D6, non-hepatotoxic, and bind plasma protein with a percentage less than 90%. The toxicity of the tested compounds was screened in silico against five models (FDA rodent carcinogenicity, carcinogenic potency TD50, rat maximum tolerated dose, rat oral LD50, and rat chronic lowest observed adverse effect level (LOAEL)). All compounds showed expected low toxicity against the tested models. Molecular dynamic (MD) simulations were also carried out to confirm the stable binding interactions of the most promising compounds, 5 and 13, with their targets. In conclusion, the examined 15 alkaloids specially 5 and 13 showed promising docking, ADMET, toxicity and MD results which open the door for further investigations for them against SARS-CoV-2.


Asunto(s)
Alcaloides/química , Antivirales/química , Proteínas de la Nucleocápside de Coronavirus/química , Poríferos/química , SARS-CoV-2/química , Glicoproteína de la Espiga del Coronavirus/química , Animales , Antivirales/farmacología , Antivirales/toxicidad , Barrera Hematoencefálica , Cristalografía por Rayos X , Ligandos , Glicoproteínas de Membrana/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Fosfoproteínas/química , Inhibidores de Proteasas/química , Ratas , Programas Informáticos , Proteasas Virales/química
12.
Methods Mol Biol ; 2266: 227-238, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33759130

RESUMEN

Three-dimensional pharmacophore models have been proven extremely valuable in exploring novel chemical space through virtual screening. However, traditional pharmacophore-based approaches need ligand information and rely on static snapshots of highly dynamic systems. In this chapter, we describe PyRod, a novel tool to generate three-dimensional pharmacophore models based on water traces of a molecular dynamics simulation of an apo-protein.The protocol described herein was successfully applied for the discovery of novel drug-like inhibitors of West Nile virus NS2B-NS3 protease. By using this recent example, we highlight the key steps of the generation and validation of PyRod-derived pharmacophore models and their application for virtual screening.


Asunto(s)
Descubrimiento de Drogas/métodos , Simulación de Dinámica Molecular , Inhibidores de Proteasas/química , Programas Informáticos , Proteasas Virales/química , Agua/química , Sitios de Unión , Ligandos , Modelos Moleculares , Conformación Molecular , Simulación del Acoplamiento Molecular , Unión Proteica , Bibliotecas de Moléculas Pequeñas , Proteínas no Estructurales Virales/química , Virus del Nilo Occidental/química
13.
Eur J Pharm Sci ; 160: 105744, 2021 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-33540040

RESUMEN

The current global pandemic outbreak of COVID-19, caused by the SARS-CoV-2, strikes an invincible damage to both daily life and the global economy. WHO guidelines for COVID-19 clinical management includes infection control and prevention, social distancing and supportive care using supplemental oxygen and mechanical ventilator support. Currently, evolving researches and clinical reports regarding infected patients with SARS-CoV-2 suggest a potential list of repurposed drugs that may produce appropriate pharmacological therapeutic efficacies in treating COVID-19 infected patients. In this study, we performed virtual screening and evaluated the obtained results of US-FDA approved small molecular database library (302 drug molecule) against two important different protein targets in COVID-19. Best compounds in molecular docking were used as a training set for generation of two different pharmacophores. The obtained pharmacophores were employed for virtual screening of ChEMBL database. The filtered compounds were clustered using Finger print model to obtain two compounds that will be subjected to molecular docking simulations against the two targets. Compounds complexes with SARS-CoV-2 main protease and S-protein were studied using molecular dynamics (MD) simulation. MD simulation studies suggest the potential inhibitory activity of ChEMBL398869 against SARS-CoV-2 main protease and restress the importance of Gln189 flexibility in inhibitors recognition through increasing S2 subsite plasticity.


Asunto(s)
Antivirales/farmacología , COVID-19/virología , Bases de Datos de Proteínas , Simulación de Dinámica Molecular , SARS-CoV-2/enzimología , Proteasas Virales/metabolismo , Sustitución de Aminoácidos , Antivirales/química , Humanos , Modelos Químicos , Estructura Molecular , Conformación Proteica , SARS-CoV-2/genética , Relación Estructura-Actividad , Inhibidores de Proteasa Viral , Proteasas Virales/química , Proteasas Virales/genética
14.
Biochimie ; 182: 177-184, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33484784

RESUMEN

The main protease (Mpro) of SARS-CoV and SARS-CoV-2 is a key enzyme in viral replication and a promising target for the development of antiviral therapeutics. The understanding of this protein is based on a number of observations derived from earlier x-ray structures, which mostly consider substrates or ligands as the main reason behind modulation of the active site. This lead to the concept of substrate-induced subsite cooperativity as an initial attempt to explain the dual binding specificity of this enzyme in recognizing the cleavage sequences at its N- and C-termini, which are important processing steps in obtaining the mature protease. The presented hypothesis proposes that structural heterogeneity is a property of the enzyme, independent of the presence of a substrate or ligand. Indeed, the analysis of Mpro structures of SARS-CoV and SARS-CoV-2 reveals a conformational diversity for the catalytically competent state in ligand-free structures. Variation in the binding site appears to result from flexibility at residues lining the S1 subpocket and segments incorporating methionine 49 and glutamine 189. The structural evidence introduces "structure-based recognition" as a new paradigm in substrate proteolysis by Mpro. In this concept, the binding space in subpockets of the enzyme varies in a non-cooperative manner, causing distinct conformations, which recognize and process different cleavage sites, as the N- and C-termini. Insights into the recognition basis of the protease provide explanation to the ordered processing of cleavage sites. The hypothesis expands the conformational space of the enzyme and consequently opportunities for drug development and repurposing efforts.


Asunto(s)
COVID-19/virología , Conformación Proteica , SARS-CoV-2/enzimología , Coronavirus Relacionado al Síndrome Respiratorio Agudo Severo/enzimología , Proteasas Virales/química , Proteasas Virales/metabolismo , Antivirales/química , Antivirales/metabolismo , Dominio Catalítico , Diseño de Fármacos , Humanos , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Especificidad por Sustrato
15.
J R Soc Interface ; 18(174): 20200591, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33402024

RESUMEN

The COVID-19 pandemic caused by the novel coronavirus SARS-CoV-2 has no publicly available vaccine or antiviral drugs at the time of writing. An attractive coronavirus drug target is the main protease (Mpro, also known as 3CLpro) because of its vital role in the viral cycle. A significant body of work has been focused on finding inhibitors which bind and block the active site of the main protease, but little has been done to address potential non-competitive inhibition, targeting regions other than the active site, partly because the fundamental biophysics of such allosteric control is still poorly understood. In this work, we construct an elastic network model (ENM) of the SARS-CoV-2 Mpro homodimer protein and analyse its dynamics and thermodynamics. We found a rich and heterogeneous dynamical structure, including allosterically correlated motions between the homodimeric protease's active sites. Exhaustive 1-point and 2-point mutation scans of the ENM and their effect on fluctuation free energies confirm previously experimentally identified bioactive residues, but also suggest several new candidate regions that are distant from the active site, yet control the protease function. Our results suggest new dynamically driven control regions as possible candidates for non-competitive inhibiting binding sites in the protease, which may assist the development of current fragment-based binding screens. The results also provide new insights into the active biophysical research field of protein fluctuation allostery and its underpinning dynamical structure.


Asunto(s)
COVID-19/virología , SARS-CoV-2/metabolismo , Proteasas Virales/química , Simulación por Computador , Cristalización , Humanos , Modelos Moleculares , Conformación Proteica , SARS-CoV-2/enzimología , Termodinámica , Proteasas Virales/efectos de los fármacos , Proteasas Virales/metabolismo
16.
J Phys Chem Lett ; 12(1): 65-72, 2021 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-33306377

RESUMEN

We analyzed a 100 µs MD trajectory of the SARS-CoV-2 main protease by a non-parametric data analysis approach which allows characterizing a free energy landscape as a simultaneous function of hundreds of variables. We identified several conformations that, when visited by the dynamics, are stable for several hundred nanoseconds. We explicitly characterize and describe these metastable states. In some of these configurations, the catalytic dyad is less accessible. Stabilizing them by a suitable binder could lead to an inhibition of the enzymatic activity. In our analysis we keep track of relevant contacts between residues which are selectively broken or formed in the states. Some of these contacts are formed by residues which are far from the catalytic dyad and are accessible to the solvent. Based on this analysis we propose some relevant contact patterns and three possible binding sites which could be targeted to achieve allosteric inhibition.


Asunto(s)
COVID-19 , Simulación de Dinámica Molecular , Inhibidores de Proteasas/farmacología , SARS-CoV-2/metabolismo , Proteasas Virales/química , Proteasas Virales/metabolismo , Sitios de Unión , Humanos , Modelos Moleculares , Inhibidores de Proteasas/química , Unión Proteica , Conformación Proteica
17.
Int J Mol Sci ; 21(20)2020 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-33081394

RESUMEN

The non-structural protein 2 (nsP2) of alphavirus Venezuelan equine encephalitis virus (VEEV) is a cysteine protease that is responsible for processing of the viral non-structural polyprotein and is an important drug target owing to the clinical relevance of VEEV. In this study we designed two recombinant VEEV nsP2 constructs to study the effects of an N-terminal extension on the protease activity and to investigate the specificity of the elongated enzyme in vitro. The N-terminal extension was found to have no substantial effect on the protease activity. The amino acid preferences of the VEEV nsP2 protease were investigated on substrates representing wild-type and P5, P4, P2, P1, P1', and P2' variants of Semliki forest virus nsP1/nsP2 cleavage site, using a His6-MBP-mEYFP recombinant substrate-based protease assay which has been adapted for a 96-well plate-based format. The structural basis of enzyme specificity was also investigated in silico by analyzing a modeled structure of VEEV nsP2 complexed with oligopeptide substrate. To our knowledge, in vitro screening of P1' amino acid preferences of VEEV nsP2 protease remains undetermined to date, thus, our results may provide valuable information for studies and inhibitor design of different alphaviruses or other Group IV viruses.


Asunto(s)
Virus de la Encefalitis Equina Venezolana/enzimología , Proteasas Virales/química , Dominio Catalítico , Simulación de Dinámica Molecular , Oligopéptidos/química , Oligopéptidos/metabolismo , Especificidad por Sustrato , Proteasas Virales/genética , Proteasas Virales/metabolismo
18.
Sci Rep ; 10(1): 14422, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32879358

RESUMEN

Alphaviruses are (re-)emerging arboviruses of public health concern. The nsP3 gene product is one of the key players during viral replication. NsP3 comprises three domains: a macro domain, a zinc-binding domain and a hypervariable region. The macro domain is essential at both early and late stages of the replication cycle through ADP-ribose (ADPr) binding and de-ADP-ribosylation of host proteins. However, both its specific role and the precise molecular mechanism of de-ADP-ribosylation across specific viral families remains to be elucidated. Here we investigate by X-ray crystallography the mechanism of ADPr reactivity in the active site of Getah virus macro domain, which displays a peculiar substitution of one of the conserved residues in the catalytic loop. ADPr adopts distinct poses including a covalent bond between the C''1 of the ADPr and a conserved Togaviridae-specific cysteine. These different poses observed for ADPr may represent snapshots of the de-ADP-ribosylation mechanism, highlighting residues to be further characterised.


Asunto(s)
Adenosina Difosfato Ribosa/metabolismo , Alphavirus/enzimología , Simulación del Acoplamiento Molecular , Proteínas no Estructurales Virales/química , Proteasas Virales/química , ADP-Ribosilación , Adenosina Difosfato Ribosa/química , Sitios de Unión , Unión Proteica , Proteínas no Estructurales Virales/metabolismo , Proteasas Virales/metabolismo
19.
Nanoscale ; 12(13): 6964-6970, 2020 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-32195488

RESUMEN

Toehold-mediated strand displacement (TMSD) as an important player in DNA nanotechnology has been widely utilized for engineering non-enzymatic molecular circuits. However, these circuits suffer from uncontrollable leakage and unsatisfactory response speed. We utilized site-specific and sequence-independent nucleases to engineer high- robustness DNA molecular circuits. First, we found that the kinetics of the APE1-catalyzed reaction is highly dependent on substrate stability, allowing for the elimination of asymptotic leakage of DNA split circuits. Second, we obtained strict substrate preference of λ exonuclease (λexo) by optimizing the reaction conditions. Robust single-layer and cascade gates with leak resistance were established by using λ exo. Owing to the remarkably fast kinetics of these nucleases, all the circuits yield a high speed of computation. Compared to TMSD-based approaches, nuclease-powered circuits render advanced features such as leakage resistance, hundreds of times higher speed, and simplified structures, representing a class of promising artificial molecule systems.


Asunto(s)
Bacteriófago lambda/enzimología , Computadores Moleculares , ADN/química , Exonucleasas/química , Proteasas Virales/química , Cinética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...