Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 9.048
Filtrar
1.
Sci Rep ; 14(1): 10568, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719877

RESUMEN

Early diagnosis and treatment of pre- and early-stage osteoarthritis (OA) is important. However, the cellular and cartilaginous changes occurring during these stages remain unclear. We investigated the histological and immunohistochemical changes over time between pre- and early-stage OA in a rat model of traumatic injury. Thirty-six male rats were divided into two groups, control and OA groups, based on destabilization of the medial meniscus. Histological and immunohistochemical analyses of articular cartilage were performed on days 1, 3, 7, 10, and 14 postoperatively. Cell density of proteins associated with cartilage degradation increased from postoperative day one. On postoperative day three, histological changes, including chondrocyte death, reduced matrix staining, and superficial fibrillation, were observed. Simultaneously, a compensatory increase in matrix staining was observed. The Osteoarthritis Research Society International score increased from postoperative day seven, indicating thinner cartilage. On postoperative day 10, the positive cell density decreased, whereas histological changes progressed with fissuring and matrix loss. The proteoglycan 4-positive cell density increased on postoperative day seven. These findings will help establish an experimental model and clarify the mechanism of the onset and progression of pre- and early-stage traumatic OA.


Asunto(s)
Cartílago Articular , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Inmunohistoquímica , Osteoartritis , Animales , Cartílago Articular/patología , Cartílago Articular/metabolismo , Masculino , Ratas , Osteoartritis/patología , Osteoartritis/metabolismo , Condrocitos/metabolismo , Condrocitos/patología , Ratas Sprague-Dawley , Proteoglicanos/metabolismo
2.
Proc Jpn Acad Ser B Phys Biol Sci ; 100(5): 293-308, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38735753

RESUMEN

Multifunctional molecules involved in tumor progression and metastasis have been identified as valuable targets for immunotherapy. Among these, chondroitin sulfate proteoglycan 4 (CSPG4), a significant tumor cell membrane-bound proteoglycan, has emerged as a promising target, especially in light of advances in chimeric antigen receptor (CAR) T-cell therapy. The profound bioactivity of CSPG4 and its role in pivotal processes such as tumor proliferation, migration, and neoangiogenesis underline its therapeutic potential. We reviewed the molecular intricacies of CSPG4, its functional attributes within tumor cells, and the latest clinical-translational advances targeting it. Strategies such as blocking monoclonal antibodies, conjugate therapies, bispecific antibodies, small-molecule inhibitors, CAR T-cell therapies, trispecific killer engagers, and ribonucleic acid vaccines against CSPG4 were assessed. CSPG4 overexpression in diverse tumors and its correlation with adverse prognostic outcomes emphasize its significance in cancer biology. These findings suggest that targeting CSPG4 offers a promising avenue for future cancer therapy, with potential synergistic effects when combined with existing treatments.


Asunto(s)
Inmunoterapia , Neoplasias , Humanos , Inmunoterapia/métodos , Neoplasias/terapia , Neoplasias/inmunología , Animales , Proteoglicanos Tipo Condroitín Sulfato/metabolismo , Proteoglicanos Tipo Condroitín Sulfato/inmunología , Proteoglicanos/metabolismo , Proteoglicanos/química , Terapia Molecular Dirigida , Anticuerpos Monoclonales/uso terapéutico , Anticuerpos Monoclonales/inmunología , Antígenos , Proteínas de la Membrana
3.
BMC Cardiovasc Disord ; 24(1): 197, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580957

RESUMEN

BACKGROUND: Heart failure (HF) is a heterogeneous syndrome that affects millions worldwide, resulting in substantial health and economic burdens. However, the molecular mechanism of HF pathogenesis remains unclear. METHODS: HF-related key genes were screened by a bioinformatics approach.The impacts of HAPLN1 knockdown on Angiotensin II (Ang II)-induced AC16 cells were assessed through a series of cell function experiments. Enzyme-linked immunosorbent assay (ELISA) was used to measure levels of oxidative stress and apoptosis-related factors. The HF rat model was induced by subcutaneous injection isoprenaline and histopathologic changes in the cardiac tissue were assessed by hematoxylin and eosin (HE) staining and echocardiographic index. Downstream pathways regulated by HAPLN1 was predicted through bioinformatics and then confirmed in vivo and in vitro by western blot. RESULTS: Six hub genes were screened, of which HAPLN1, FMOD, NPPB, NPPA, and COMP were overexpressed, whereas NPPC was downregulated in HF. Further research found that silencing HAPLN1 promoted cell viability and reduced apoptosis in Ang II-induced AC16 cells. HAPLN1 knockdown promoted left ventricular ejection fraction (LVEF) and left ventricular fraction shortening (LVFS), while decreasing left ventricular end-systolic volume (LVESV) in the HF rat model. HAPLN1 knockdown promoted the levels of GSH and suppressed the levels of MDA, LDH, TNF-α, and IL-6. Mechanistically, silencing HAPLN1 activated the PKA pathway, which were confirmed both in vivo and in vitro. CONCLUSION: HAPLN1 knockdown inhibited the progression of HF by activating the PKA pathway, which may provide novel perspectives on the management of HF.


Asunto(s)
Proteínas de la Matriz Extracelular , Insuficiencia Cardíaca , Función Ventricular Izquierda , Animales , Ratas , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/metabolismo , Ratas Sprague-Dawley , Transducción de Señal , Volumen Sistólico , Proteoglicanos/genética , Proteoglicanos/metabolismo , Proteínas de la Matriz Extracelular/genética , Proteínas de la Matriz Extracelular/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
4.
PLoS One ; 19(4): e0298631, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38626010

RESUMEN

OBJECTIVE: Endothelial specific molecule-1 (ESM1) is implicated as an oncogene in multiple human cancers. However, the function of ESM1 in papillary thyroid cancer (PTC) is not well understood. The current study aimed to investigate the effect of ESM1 on the growth, migration, and invasion of PTC to provide a novel perspective for PTC treatment. METHODS: The expression levels of ESM1 in PTC tissues form 53 tumor tissue samples and 59 matching adjacent normal tissue samples were detected by immunohistochemical analysis. Knockdown of ESM1 expression in TPC-1 and SW579 cell lines was established to investigate its role in PTC. Moreover, cell proliferation, apoptosis, wound healing, and transwell assays were conducted in vitro to assess cell proliferation, migration and invasion. RESULTS: The findings revealed that ESM1 expression was significantly higher in PTC tissues than that found in paraneoplastic tissues (P<0.0001). Knockdown of ESM1 expression inhibited the proliferation, migration, and invasion of TPC-1 and SW579 cells in vitro. Compared with the control group, the mRNA and protein levels of ESM1 in PTC cells were significantly reduced following knockdown of its expression (P<0.01). In addition, ESM1-knockdown cells indicated decreased proliferation and decreased migratory and invasive activities (P<0.01, P<0.01, P<0.001, respectively). CONCLUSIONS: ESM1 was identified as a major gene in the occurrence and progression of PTC, which could increase the proliferation, migration, and invasion of PTC cells. It may be a promising diagnostic and therapeutic target gene.


Asunto(s)
Carcinoma Papilar , MicroARNs , Neoplasias de la Tiroides , Humanos , Cáncer Papilar Tiroideo/genética , Cáncer Papilar Tiroideo/patología , ARN Interferente Pequeño/genética , Neoplasias de la Tiroides/patología , Carcinoma Papilar/genética , Carcinoma Papilar/patología , Línea Celular Tumoral , Movimiento Celular/genética , Proliferación Celular/genética , Regulación Neoplásica de la Expresión Génica , MicroARNs/genética , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteoglicanos/metabolismo
5.
Biomolecules ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672477

RESUMEN

Serglycin (SRGN) is a pro-tumorigenic proteoglycan expressed and secreted by various aggressive tumors including glioblastoma (GBM). In our study, we investigated the interplay and biological outcomes of SRGN with TGFßRI, CXCR-2 and inflammatory mediators in GBM cells and fibroblasts. SRGN overexpression is associated with poor survival in GBM patients. High SRGN levels also exhibit a positive correlation with increased levels of various inflammatory mediators including members of TGFß signaling pathway, cytokines and receptors including CXCR-2 and proteolytic enzymes in GBM patients. SRGN-suppressed GBM cells show decreased expressions of TGFßRI associated with lower responsiveness to the manipulation of TGFß/TGFßRI pathway and the regulation of pro-tumorigenic properties. Active TGFßRI signaling in control GBM cells promotes their proliferation, invasion, proteolytic and inflammatory potential. Fibroblasts cultured with culture media derived by control SRGN-expressing GBM cells exhibit increased proliferation, migration and overexpression of cytokines and proteolytic enzymes including CXCL-1, IL-8, IL-6, IL-1ß, CCL-20, CCL-2, and MMP-9. Culture media derived by SRGN-suppressed GBM cells fail to induce the above properties to fibroblasts. Importantly, the activation of fibroblasts by GBM cells not only relies on the expression of SRGN in GBM cells but also on active CXCR-2 signaling both in GBM cells and fibroblasts.


Asunto(s)
Fibroblastos , Glioblastoma , Proteoglicanos , Receptores de Interleucina-8B , Transducción de Señal , Proteínas de Transporte Vesicular , Humanos , Glioblastoma/metabolismo , Glioblastoma/patología , Glioblastoma/genética , Receptores de Interleucina-8B/metabolismo , Receptores de Interleucina-8B/genética , Proteoglicanos/metabolismo , Proteoglicanos/genética , Fibroblastos/metabolismo , Fibroblastos/patología , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Transporte Vesicular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Comunicación Paracrina , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Neoplasias Encefálicas/genética , Regulación Neoplásica de la Expresión Génica , Células del Estroma/metabolismo , Células del Estroma/patología , Carcinogénesis/genética , Carcinogénesis/metabolismo , Carcinogénesis/patología
6.
Int J Mol Sci ; 25(8)2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38673852

RESUMEN

One of the challenges of the mature nervous system is to maintain the stability of neural networks while providing a degree of plasticity to generate experience-dependent modifications. This plasticity-stability dynamism is regulated by perineuronal nets (PNNs) and is crucial for the proper functioning of the system. Previously, we found a relation between spinal PNNs reduction and maladaptive plasticity after spinal cord injury (SCI), which was attenuated by maintaining PNNs with activity-dependent therapies. Moreover, transgenic mice lacking the cartilage link protein 1 (Crtl1 KO mice) showed aberrant spinal PNNs and increased spinal plasticity. Therefore, the aim of this study is to evaluate the role of link protein 1 in the activity-dependent modulation of spinal PNNs surrounding motoneurons and its impact on the maladaptive plasticity observed following SCI. We first studied the activity-dependent modulation of spinal PNNs using a voluntary wheel-running protocol. This training protocol increased spinal PNNs in WT mice but did not modify PNN components in Crtl1 KO mice, suggesting that link protein 1 mediates the activity-dependent modulation of PNNs. Secondly, a thoracic SCI was performed, and functional outcomes were evaluated for 35 days. Interestingly, hyperreflexia and hyperalgesia found at the end of the experiment in WT-injured mice were already present at basal levels in Crtl1 KO mice and remained unchanged after the injury. These findings demonstrated that link protein 1 plays a dual role in the correct formation and in activity-dependent modulation of PNNs, turning it into an essential element for the proper function of PNN in spinal circuits.


Asunto(s)
Proteínas de la Matriz Extracelular , Ratones Noqueados , Traumatismos de la Médula Espinal , Médula Espinal , Animales , Médula Espinal/metabolismo , Traumatismos de la Médula Espinal/metabolismo , Ratones , Proteínas de la Matriz Extracelular/metabolismo , Proteínas de la Matriz Extracelular/genética , Plasticidad Neuronal , Neuronas Motoras/metabolismo , Red Nerviosa/metabolismo , Masculino , Proteoglicanos/metabolismo , Proteoglicanos/genética , Ratones Endogámicos C57BL
7.
J Physiol ; 602(9): 1939-1951, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38606903

RESUMEN

Recombinant human proteoglycan 4 (rhPRG4) is a macromolecular mucin-like glycoprotein that is classically studied as a lubricant within eyes and joints. Given that endogenously produced PRG4 is present within atherosclerotic lesions and genetic PRG4 deficiency increases atherosclerosis susceptibility in mice, in the current study we investigated the anti-atherogenic potential of chronic rhPRG4 treatment. Female low-density lipoprotein receptor knockout mice were fed an atherogenic Western-type diet for 6 weeks and injected three times per week intraperitoneally with 0.5 mg rhPRG4 or PBS as control. Treatment with rhPRG4 was associated with a small decrease in plasma-free cholesterol levels, without a change in cholesteryl ester levels. A marked increase in the number of peritoneal foam cells was detected in response to the peritoneal rhPRG4 administration, which could be attributed to elevated peritoneal leukocyte MSR1 expression levels. However, rhPRG4-treated mice exhibited significantly smaller aortic root lesions of 278 ± 21 × 103 µm2 compared with 339 ± 15 × 103 µm2 in the aortic root of control mice. The overall decreased atherosclerosis susceptibility coincided with a shift in the monocyte and macrophage polarization states towards the patrolling and anti-inflammatory M2-like phenotypes, respectively. Furthermore, rhPRG4 treatment significantly reduced macrophage gene expression levels as well as plasma protein levels of the pro-inflammatory/pro-atherogenic cytokine TNF-alpha. In conclusion, we have shown that peritoneal administration and subsequent systemic exposure to rhPRG4 beneficially impacts the inflammatory state and reduces atherosclerosis susceptibility in mice. Our findings highlight that PRG4 is not only a lubricant but also acts as an anti-inflammatory agent. KEY POINTS: Endogenously produced proteoglycan 4 is found in atherosclerotic lesions and its genetic deficiency in mice is associated with enhanced atherosclerosis susceptibility. In this study we investigated the anti-atherogenic potential of chronic treatment with recombinant human PRG4 in hypercholesterolaemic female low-density lipoprotein receptor knockout mice. We show that recombinant human PRG4 stimulates macrophage foam cell formation, but also dampens the pro-inflammatory state of monocyte/macrophages, eventually leading to a significant reduction in plasma TNF-alpha levels and a lowered atherosclerosis susceptibility. Our findings highlight that peritoneal recombinant human PRG4 treatment can execute effects both locally and systemically and suggest that it will be of interest to study whether rhPRG4 treatment is also able to inhibit the progression and/or induce regression of previously established atherosclerotic lesions.


Asunto(s)
Aterosclerosis , Inflamación , Ratones Noqueados , Proteoglicanos , Receptores de LDL , Proteínas Recombinantes , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/genética , Aterosclerosis/metabolismo , Femenino , Proteoglicanos/farmacología , Proteoglicanos/metabolismo , Proteoglicanos/genética , Receptores de LDL/genética , Proteínas Recombinantes/farmacología , Proteínas Recombinantes/administración & dosificación , Ratones , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Ratones Endogámicos C57BL , Aorta/metabolismo , Aorta/efectos de los fármacos , Aorta/patología , Macrófagos/metabolismo , Macrófagos/efectos de los fármacos , Células Espumosas/metabolismo , Células Espumosas/efectos de los fármacos
8.
Glycobiology ; 34(5)2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38438145

RESUMEN

This review delves into the roles of glycosaminoglycans (GAGs), integral components of proteoglycans, in tooth development. Proteoglycans consist of a core protein linked to GAG chains, comprised of repeating disaccharide units. GAGs are classified into several types, such as hyaluronic acid, heparan sulfate, chondroitin sulfate, dermatan sulfate, and keratan sulfate. Functioning as critical macromolecular components within the dental basement membrane, these GAGs facilitate cell adhesion and aggregation, and play key roles in regulating cell proliferation and differentiation, thereby significantly influencing tooth morphogenesis. Notably, our recent research has identified the hyaluronan-degrading enzyme Transmembrane protein 2 (Tmem2) and we have conducted functional analyses using mouse models. These studies have unveiled the essential role of Tmem2-mediated hyaluronan degradation and its involvement in hyaluronan-mediated cell adhesion during tooth formation. This review provides a comprehensive summary of the current understanding of GAG functions in tooth development, integrating insights from recent research, and discusses future directions in this field.


Asunto(s)
Glicosaminoglicanos , Ácido Hialurónico , Ratones , Animales , Glicosaminoglicanos/metabolismo , Proteoglicanos/metabolismo , Sulfato de Queratano/metabolismo , Sulfatos de Condroitina/metabolismo , Heparitina Sulfato/metabolismo , Odontogénesis , Dermatán Sulfato
9.
Nat Commun ; 15(1): 2723, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38548715

RESUMEN

Integration of extracellular signals by neurons is pivotal for brain development, plasticity, and repair. Axon guidance relies on receptor-ligand interactions crosstalking with extracellular matrix components. Semaphorin-5A (Sema5A) is a bifunctional guidance cue exerting attractive and inhibitory effects on neuronal growth through the interaction with heparan sulfate (HS) and chondroitin sulfate (CS) glycosaminoglycans (GAGs), respectively. Sema5A harbors seven thrombospondin type-1 repeats (TSR1-7) important for GAG binding, however the underlying molecular basis and functions in vivo remain enigmatic. Here we dissect the structural basis for Sema5A:GAG specificity and demonstrate the functional significance of this interaction in vivo. Using x-ray crystallography, we reveal a dimeric fold variation for TSR4 that accommodates GAG interactions. TSR4 co-crystal structures identify binding residues validated by site-directed mutagenesis. In vitro and cell-based assays uncover specific GAG epitopes necessary for TSR association. We demonstrate that HS-GAG binding is preferred over CS-GAG and mediates Sema5A oligomerization. In vivo, Sema5A:GAG interactions are necessary for Sema5A function and regulate Plexin-A2 dependent dentate progenitor cell migration. Our study rationalizes Sema5A associated developmental and neurological disorders and provides mechanistic insights into how multifaceted guidance functions of a single transmembrane cue are regulated by proteoglycans.


Asunto(s)
Glicosaminoglicanos , Semaforinas , Glicosaminoglicanos/metabolismo , Proteoglicanos/metabolismo , Heparitina Sulfato/metabolismo , Movimiento Celular , Semaforinas/genética , Semaforinas/metabolismo
10.
Connect Tissue Res ; 65(2): 117-132, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38530304

RESUMEN

Osteoarthritis (OA) is a multifactorial joint disease characterized by articular cartilage degradation. Risk factors for OA include joint trauma, obesity, and inflammation, each of which can affect joint health independently, but their interaction and the associated consequences of such interaction were largely unexplored. Here, we studied compositional and structural alterations in knee joint cartilages of Sprague-Dawley rats exposed to two OA risk factors: joint injury and diet-induced obesity. Joint injury was imposed by surgical transection of anterior cruciate ligaments (ACLx), and obesity was induced by a high fat/high sucrose diet. Depth-dependent proteoglycan (PG) content and collagen structural network of cartilage were measured from histological sections collected previously in Collins et al.. (2015). We found that ACLx primarily affected the superficial cartilages. Compositionally, ACLx led to reduced PG content in lean animals, but increased PG content in obese rats. Structurally, ACLx caused disorganization of collagenous network in both lean and obese animals through increased collagen orientation in the superficial tissues and a change in the degree of fibrous alignment. However, the cartilage degradation attributed to joint injury and obesity was not necessarily additive when the two risk factors were present simultaneously, particularly for PG content and collagen orientation in the superficial tissues. Interestingly, sham surgeries caused a through-thickness disorganization of collagen network in lean and obese animals. We conclude that the interactions of multiple OA risk factors are complex and their combined effects cannot be understood by superposition principle. Further research is required to elucidate the interactive mechanism between OA subtypes.


Asunto(s)
Cartílago Articular , Osteoartritis , Ratas , Animales , Ratas Sprague-Dawley , Articulación de la Rodilla/patología , Osteoartritis/patología , Proteoglicanos/metabolismo , Obesidad/metabolismo , Cartílago Articular/patología , Colágeno/metabolismo
11.
PLoS One ; 19(2): e0298802, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38394161

RESUMEN

In this study we used a spatial transcriptomics approach to identify genes specifically associated with either high or low outflow regions in the trabecular meshwork (TM) that could potentially affect aqueous humor outflow in vivo. High and low outflow regions were identified and isolated from organ cultured human anterior segments perfused with fluorescently-labeled 200 nm FluoSpheres. The NanoString GeoMx Digital Spatial Profiler (DSP) platform was then used to identified genes in the paraffin embedded tissue sections from within those regions. These transcriptome analyses revealed that 16 genes were statistically upregulated in high outflow regions and 57 genes were statistically downregulated in high outflow regions when compared to low outflow regions. Gene ontology enrichment analysis indicated that the top three biological categories of these differentially expressed genes were ECM/cell adhesion, signal transduction, and transcription. The ECM/cell adhesion genes that showed the largest differential expression (Log2FC ±1.5) were ADAM15, BGN, LDB3, and CRKL. ADAM15, which is a metalloproteinase that can bind integrins, was upregulated in high outflow regions, while the proteoglycan BGN and two genes associated with integrin signaling (LDB3, and CRKL) were downregulated. Immunolabeling studies supported the differential expression of ADAM15 and showed that it was specifically upregulated in high outflow regions along the inner wall of Schlemm's canal and in the juxtacanalicular (JCT) region of the TM. In addition to these genes, the studies showed that genes for decorin, a small leucine-rich proteoglycan, and the α8 integrin subunit were enriched in high outflow regions. These studies identify several novel genes that could be involved in segmental outflow, thus demonstrating that digital spatial profiling could be a useful approach for understanding segmental flow through the TM. Furthermore, this study suggests that changes in the expression of genes involved in regulating the activity and/or organization of the ECM and integrins in the TM are likely to be key players in segmental outflow.


Asunto(s)
Humor Acuoso , Malla Trabecular , Humanos , Malla Trabecular/metabolismo , Humor Acuoso/metabolismo , Esclerótica , Proteoglicanos/metabolismo , Integrinas/genética , Integrinas/metabolismo , Presión Intraocular , Proteínas de la Membrana/metabolismo , Proteínas ADAM/metabolismo
12.
Glycobiology ; 34(3)2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38376199

RESUMEN

The roles of keratan sulfate (KS) as a proton detection glycosaminoglycan in neurosensory processes in the central and peripheral nervous systems is reviewed. The functional properties of the KS-proteoglycans aggrecan, phosphacan, podocalyxcin as components of perineuronal nets in neurosensory processes in neuronal plasticity, cognitive learning and memory are also discussed. KS-glycoconjugate neurosensory gels used in electrolocation in elasmobranch fish species and KS substituted mucin like conjugates in some tissue contexts in mammals need to be considered in sensory signalling. Parallels are drawn between KS's roles in elasmobranch fish neurosensory processes and its roles in mammalian electro mechanical transduction of acoustic liquid displacement signals in the cochlea by the tectorial membrane and stereocilia of sensory inner and outer hair cells into neural signals for sound interpretation. The sophisticated structural and functional proteins which maintain the unique high precision physical properties of stereocilia in the detection, transmittance and interpretation of acoustic signals in the hearing process are important. The maintenance of the material properties of stereocilia are essential in sound transmission processes. Specific, emerging roles for low sulfation KS in sensory bioregulation are contrasted with the properties of high charge density KS isoforms. Some speculations are made on how the molecular and electrical properties of KS may be of potential application in futuristic nanoelectronic, memristor technology in advanced ultrafast computing devices with low energy requirements in nanomachines, nanobots or molecular switches which could be potentially useful in artificial synapse development. Application of KS in such innovative areas in bioregulation are eagerly awaited.


Asunto(s)
Glicosaminoglicanos , Sulfato de Queratano , Animales , Sulfato de Queratano/química , Proteoglicanos/metabolismo , Mamíferos/metabolismo
13.
Cell Commun Signal ; 22(1): 128, 2024 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-38360757

RESUMEN

In pathologies including cancer, aberrant Transforming Growth Factor-ß (TGF-ß) signaling exerts profound tumor intrinsic and extrinsic consequences. Intense clinical endeavors are underway to target this pathway. Central to the success of these interventions is pinpointing factors that decisively modulate the TGF-ß responses. Betaglycan/type III TGF-ß receptor (TßRIII), is an established co-receptor for the TGF-ß superfamily known to bind directly to TGF-ßs 1-3 and inhibin A/B. Betaglycan can be membrane-bound and also undergo ectodomain cleavage to produce soluble-betaglycan that can sequester its ligands. Its extracellular domain undergoes heparan sulfate and chondroitin sulfate glycosaminoglycan modifications, transforming betaglycan into a proteoglycan. We report the unexpected discovery that the heparan sulfate glycosaminoglycan chains on betaglycan are critical for the ectodomain shedding. In the absence of such glycosaminoglycan chains betaglycan is not shed, a feature indispensable for the ability of betaglycan to suppress TGF-ß signaling and the cells' responses to exogenous TGF-ß ligands. Using unbiased transcriptomics, we identified TIMP3 as a key inhibitor of betaglycan shedding thereby influencing TGF-ß signaling. Our results bear significant clinical relevance as modified betaglycan is present in the ascites of patients with ovarian cancer and can serve as a marker for predicting patient outcomes and TGF-ß signaling responses. These studies are the first to demonstrate a unique reliance on the glycosaminoglycan chains of betaglycan for shedding and influence on TGF-ß signaling responses. Dysregulated shedding of TGF-ß receptors plays a vital role in determining the response and availability of TGF-ßs', which is crucial for prognostic predictions and understanding of TGF-ß signaling dynamics.


Asunto(s)
Glicosaminoglicanos , Neoplasias Ováricas , Humanos , Femenino , Glicosaminoglicanos/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Proteoglicanos/metabolismo , Receptores de Factores de Crecimiento Transformadores beta/metabolismo , Heparitina Sulfato/metabolismo
14.
Int J Mol Sci ; 25(4)2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38396667

RESUMEN

Chronic pancreatitis (CP), a progressive inflammatory disease, poses diagnostic challenges due to its initially asymptomatic nature. While CP's impact on exocrine and endocrine functions is well-recognized, its potential influence on other body systems, particularly in young individuals, remains underexplored. This study investigates the hypothesis that CP in growing pigs leads to alterations in articular cartilage and subchondral bone, potentially contributing to osteoarthritis (OA) development. Utilizing a pig model of cerulein-induced CP, we examined the structural and compositional changes in subchondral bone, articular cartilage, and synovial fluid. Histological analyses, including Picrosirius Red and Safranin-O staining, were employed alongside immuno-histochemistry and Western blotting techniques. Our findings reveal significant changes in the subchondral bone, including reduced bone volume and alterations in collagen fiber composition. Articular cartilage in CP pigs exhibited decreased proteoglycan content and alterations in key proteins such as MMP-13 and TGF-ß1, indicative of early cartilage degradation. These changes suggest a link between CP and musculoskeletal alterations, underscoring the need for further research into CP's systemic effects. Our study provides foundational insights into the relationship between CP and skeletal health, potentially guiding future pediatric healthcare strategies for early CP diagnosis and management.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Animales , Niño , Porcinos , Cartílago Articular/metabolismo , Huesos/metabolismo , Osteoartritis/metabolismo , Proteoglicanos/metabolismo , Líquido Sinovial/metabolismo
15.
Development ; 151(4)2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38251863

RESUMEN

The interplay between neural progenitors and stem cells (NPSCs), and their extracellular matrix (ECM) is a crucial regulatory mechanism that determines their behavior. Nonetheless, how the ECM dictates the state of NPSCs remains elusive. The hindbrain is valuable to examine this relationship, as cells in the ventricular surface of hindbrain boundaries (HBs), which arise between any two neighboring rhombomeres, express the NPSC marker Sox2, while being surrounded with the membrane-bound ECM molecule chondroitin sulphate proteoglycan (CSPG), in chick and mouse embryos. CSPG expression was used to isolate HB Sox2+ cells for RNA-sequencing, revealing their distinguished molecular properties as typical NPSCs, which express known and newly identified genes relating to stem cells, cancer, the matrisome and cell cycle. In contrast, the CSPG- non-HB cells, displayed clear neural-differentiation transcriptome. To address whether CSPG is significant for hindbrain development, its expression was manipulated in vivo and in vitro. CSPG manipulations shifted the stem versus differentiation state of HB cells, evident by their behavior and altered gene expression. These results provide further understanding of the uniqueness of hindbrain boundaries as repetitive pools of NPSCs in-between the rapidly growing rhombomeres, which rely on their microenvironment to maintain their undifferentiated state during development.


Asunto(s)
Células-Madre Neurales , Proteoglicanos , Ratones , Animales , Proteoglicanos/metabolismo , Sulfatos de Condroitina , Proteoglicanos Tipo Condroitín Sulfato , Matriz Extracelular/metabolismo , Rombencéfalo/metabolismo , Células-Madre Neurales/metabolismo
16.
Int J Biol Macromol ; 260(Pt 2): 129575, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38246450

RESUMEN

Hyaluronan and proteoglycan link protein 1 (HAPLN1) is an extracellular matrix protein stabilizing interactions between hyaluronan and proteoglycan. Although HAPLN1 is being investigated for various biological roles, its N-glycosylation is poorly understood. In this study, the structure of N-glycopeptides of trypsin-treated recombinant human HAPLN1 (rhHAPLN1) expressed from CHO cells were identified by nano-liquid chromatography-tandem mass spectrometry. A total of 66 N-glycopeptides were obtained, including 16 and 12 N-glycans at sites Asn 6 (located in the N-terminal region) and Asn 41 (located in the Ig-like domain, which interacts with proteoglycan), respectively. The quantities (%) of each N-glycan relative to the totals (100 %) at each site were calculated. Tri- and tetra-sialylation (to resist proteolysis and extend half-life) were more abundant at Asn 6, and di- (core- and terminal-) fucosylation (to increase binding affinity and stability) and sialyl-Lewis X/a epitope (a major ligand for E-selectin) were more abundant at Asn 41. These results indicate that N-glycans attached to Asn 6 (protecting HAPLN1) and Asn 41 (supporting molecular interactions) play different roles in HAPLN1. This is the first study of site-specific N-glycosylation in rhHAPLN1, which will be useful for understanding its molecular interactions in the extracellular matrix.


Asunto(s)
Ácido Hialurónico , Polisacáridos , Animales , Cricetinae , Humanos , Glicosilación , Cricetulus , Polisacáridos/química , Proteoglicanos/metabolismo , Proteínas de la Matriz Extracelular/metabolismo , Glicopéptidos/metabolismo
17.
PLoS One ; 19(1): e0291632, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38295021

RESUMEN

BACKGROUND: The binding of low-density lipoprotein (LDL) to proteoglycans (PGs) in the extracellular matrix (ECM) of the arterial intima is a key initial step in the development of atherosclerosis. Although many techniques have been developed to assess this binding, most of the methods are labor-intensive and technically challenging to standardize across research laboratories. Thus, sensitive, and reproducible assay to detect LDL binding to PGs is needed to screen clinical populations for atherosclerosis risk. OBJECTIVES: The aim of this study was to develop a quantitative, and reproducible assay to evaluate the affinity of LDL towards PGs and to replicate previously published results on LDL-PG binding. METHODS: Immunofluorescence microscopy was performed to visualize the binding of LDL to PGs using mouse vascular smooth muscle (MOVAS) cells. An in-cell ELISA (ICE) was also developed and optimized to quantitatively measure LDL-PG binding using fixed MOVAS cells cultured in a 96-well format. RESULTS: We used the ICE assay to show that, despite equal APOB concentrations, LDL isolated from adults with cardiovascular disease bound to PG to a greater extent than LDL isolated from adults without cardiovascular disease (p<0.05). CONCLUSION: We have developed an LDL-PG binding assay that is capable of detecting differences in PG binding affinities despite equal APOB concentrations. Future work will focus on candidate apolipoproteins that enhance or diminish this interaction.


Asunto(s)
Aterosclerosis , Enfermedades Cardiovasculares , Animales , Ratones , Lipoproteínas LDL/metabolismo , Proteoglicanos/metabolismo , Apolipoproteínas B/metabolismo , Unión Proteica
18.
Matrix Biol ; 126: 1-13, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38185344

RESUMEN

OBJECTIVE: Mouse models of Marfan syndrome (MFS) with Fibrillin 1 (Fbn1) variant C1041G exhibit cardiovascular abnormalities, including myxomatous valve disease (MVD) and aortic aneurism, with structural extracellular matrix (ECM) dysregulation. In this study, we examine the structure-function-mechanics relations of the mitral valve related to specific transitions in ECM composition and organization in progressive MVD in MFS mice from Postnatal day (P)7 to 1 year-of-age. APPROACH AND RESULTS: Mechanistic links between mechanical forces and biological changes in MVD progression were examined in Fbn1C1041G/+ MFS mice. By echocardiography, mitral valve dysfunction is prevalent at 2 months with a decrease in cardiac function at 6 months, followed by a preserved cardiac function at 12 months. Mitral valve (MV) regurgitation occurs in a subset of mice at 2-6 months, while progressive dilatation of the aorta occurs from 2 to 12 months. Mitral valve tissue mechanical assessments using a uniaxial Permeabilizable Fiber System demonstrate decreased stiffness of MFS MVs at all stages. Histological and microscopic analysis of ECM content, structure, and fiber orientation demonstrate that alterations in ECM mechanics, composition, and organization precede functional abnormalities in Fbn1C1041G/+MFS MVs. At 2 months, ECM abnormalities are detected with an increase in proteoglycans and decreased stiffness of the mitral valve. By 6-12 months, collagen fiber remodeling is increased with abnormal fiber organization in MFS mitral valve leaflets. At the same time, matrifibrocyte gene expression characteristic of collagen-rich connective tissue is increased, as detected by RNA in situ hybridization and qPCR. Together, these studies demonstrate early prevalence of proteoglycans at 2 months followed by upregulation of collagen structure and organization with age in MVs of MFS mice. CONCLUSIONS: Altogether, our data indicate dynamic regulation of mitral valve structure, tissue mechanics, and function that reflect changes in ECM composition, organization, and gene expression in progressive MVD. Notably, increased collagen fiber organization and orientation, potentially dependent on increased matrifibrocyte cell activity, is apparent with altered mitral valve mechanics and function in aging MFS mice.


Asunto(s)
Síndrome de Marfan , Ratones , Animales , Síndrome de Marfan/genética , Síndrome de Marfan/patología , Válvula Mitral/metabolismo , Válvula Mitral/patología , Matriz Extracelular/metabolismo , Fibrilina-1/genética , Fibrilina-1/metabolismo , Colágeno/metabolismo , Proteoglicanos/metabolismo
19.
J Neuroinflammation ; 21(1): 35, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287411

RESUMEN

BACKGROUND: Microglia is the major contributor of post-stroke neuroinflammation cascade and the crucial cellular target for the treatment of ischemic stroke. Currently, the endogenous mechanism underlying microglial activation following ischemic stroke remains elusive. Serglycin (SRGN) is a proteoglycan expressed in immune cells. Up to now, the role of SRGN on microglial activation and ischemic stroke is largely unexplored. METHODS: Srgn knockout (KO), Cd44-KO and wild-type (WT) mice were subjected to middle cerebral artery occlusion (MCAO) to mimic ischemic stroke. Exogenous SRGN supplementation was achieved by stereotactic injection of recombinant mouse SRGN (rSRGN). Cerebral infarction was measured by 2,3,5-triphenyltetrazolium chloride (TTC) staining. Neurological functions were evaluated by the modified neurological severity score (mNSS) and grip strength. Microglial activation was detected by Iba1 immunostaining, morphological analysis and cytokines' production. Neuronal death was examined by MAP2 immunostaining and FJB staining. RESULTS: The expression of SRGN and its receptor CD44 was significantly elevated in the ischemic mouse brains, especially in microglia. In addition, lipopolysaccharide (LPS) induced SRGN upregulation in microglia in vitro. rSRGN worsened ischemic brain injury in mice and amplified post-stroke neuroinflammation, while gene knockout of Srgn exerted reverse impacts. rSRGN promoted microglial proinflammatory activation both in vivo and in vitro, whereas Srgn-deficiency alleviated microglia-mediated inflammatory response. Moreover, the genetic deletion of Cd44 partially rescued rSRGN-induced excessed neuroinflammation and ischemic brain injury in mice. Mechanistically, SRGN boosted the activation of NF-κB signal, and increased glycolysis in microglia. CONCLUSION: SRGN acts as a novel therapeutic target in microglia-boosted proinflammatory response following ischemic stroke.


Asunto(s)
Lesiones Encefálicas , Isquemia Encefálica , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Proteínas de Transporte Vesicular , Animales , Ratones , Microglía/metabolismo , Isquemia Encefálica/metabolismo , Enfermedades Neuroinflamatorias , Accidente Cerebrovascular/metabolismo , Infarto de la Arteria Cerebral Media/complicaciones , Infarto de la Arteria Cerebral Media/metabolismo , Proteoglicanos/metabolismo , Accidente Cerebrovascular Isquémico/metabolismo , Lesiones Encefálicas/metabolismo
20.
J Intensive Care Med ; 39(3): 277-287, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37670670

RESUMEN

BACKGROUND: Sepsis-associated destruction of the pulmonary microvascular endothelial glycocalyx (EGCX) creates a vulnerable endothelial surface, contributing to the development of acute respiratory distress syndrome (ARDS). Constituents of the EGCX shed into circulation, glycosaminoglycans and proteoglycans, may serve as biomarkers of endothelial dysfunction. We sought to define the patterns of plasma EGCX degradation products in children with sepsis-associated pediatric ARDS (PARDS), and test their association with clinical outcomes. METHODS: We retrospectively analyzed a prospective cohort (2018-2020) of children (≥1 month to <18 years of age) receiving invasive mechanical ventilation for acute respiratory failure for ≥72 h. Children with and without sepsis-associated PARDS were selected from the parent cohort and compared. Blood was collected at time of enrollment. Plasma glycosaminoglycan disaccharide class (heparan sulfate, chondroitin sulfate, and hyaluronan) and sulfation subtypes (heparan sulfate and chondroitin sulfate) were quantified using liquid chromatography tandem mass spectrometry. Plasma proteoglycans (syndecan-1) were measured through an immunoassay. RESULTS: Among the 39 mechanically ventilated children (29 with and 10 without sepsis-associated PARDS), sepsis-associated PARDS patients demonstrated higher levels of heparan sulfate (median 639 ng/mL [interquartile range, IQR 421-902] vs 311 [IQR 228-461]) and syndecan-1 (median 146 ng/mL [IQR 32-315] vs 8 [IQR 8-50]), both p = 0.01. Heparan sulfate subtype analysis demonstrated greater proportions of N-sulfated disaccharide levels among children with sepsis-associated PARDS (p = 0.01). Increasing N-sulfated disaccharide levels by quartile were associated with severe PARDS (n = 9/29) with the highest quartile including >60% of the severe PARDS patients (test for trend, p = 0.04). Higher total heparan sulfate and N-sulfated disaccharide levels were independently associated with fewer 28-day ventilator-free days in children with sepsis-associated PARDS (all p < 0.05). CONCLUSIONS: Children with sepsis-associated PARDS exhibited higher plasma levels of heparan sulfate disaccharides and syndecan-1, suggesting that EGCX degradation biomarkers may provide insights into endothelial dysfunction and PARDS pathobiology.


Asunto(s)
Síndrome de Dificultad Respiratoria , Sepsis , Humanos , Niño , Estudios Retrospectivos , Sindecano-1/metabolismo , Sulfatos de Condroitina/metabolismo , Estudios Prospectivos , Glicocálix/química , Glicocálix/metabolismo , Sepsis/complicaciones , Sepsis/metabolismo , Heparitina Sulfato/metabolismo , Biomarcadores , Proteoglicanos/metabolismo , Disacáridos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...