RESUMEN
Ocean acidification is a result of the decrease in the pH of marine water, caused mainly by the increase in CO2 released in the atmosphere and its consequent dissolution in seawater. These changes can be dramatic for marine organisms especially for oysters Crassostrea gasar if other stressors such as xenobiotics are present. The effect of pH changes (6.5, 7.0 and 8.2) was assessed on the transcript levels of biotransformation [cytochromes P450 (CYP2AU1, CYP2-like2) and glutathione S-transferase (GSTΩ-like)] and antioxidant [superoxide dismutase (SOD-like), catalase (CAT-like) and glutathione peroxidase (GPx-like)] genes, as well as enzyme activities [superoxide dismutase, (SOD), catalase (CAT), glutathione reductase (GR), glutathione-S-transferases transferase (GST) and glucose-6-phosphate dehydrogenase (G6PDH)] and lipid peroxidation (MDA) in the gills of Crassostrea gasar exposed to 100⯵g·L-1 of phenanthrene (PHE) for 24 and 96â¯h. Likewise, the PHE burdens was evaluated in whole soft tissues of exposed oysters. The accumulation of PHE in oysters was independent of pH. However, acidification promoted a significant decrease in the transcript levels of some protective genes (24â¯h exposure: CYP2AU1 and GSTΩ-like; 96â¯h exposure: CAT-like and GPx-like), which was not observed in the presence of PHE. Activities of GST, CAT and SOD enzymes increased in the oysters exposed to PHE at the control pH (8.2), but at a lower pH values, this activation was suppressed, and no changes were observed in the G6PDH activity and MDA levels. Biotransformation genes showed better responses after 24â¯h, and antioxidant-coding genes after 96â¯h, along with the activities of antioxidant enzymes (SOD, CAT), probably because biotransformation of PHE increases the generation of reactive oxygen species. The lack of change in MDA levels suggests that antioxidant modulation efficiently prevented oxidative stress. The effect of pH on the responses to PHE exposure should be taken into account before using these and any other genes as potential molecular biomarkers for PHE exposure.
Asunto(s)
Crassostrea/fisiología , Fenantrenos/efectos adversos , Protones/efectos adversos , Agua de Mar/química , Contaminantes Químicos del Agua/efectos adversos , Animales , Crassostrea/efectos de los fármacos , Concentración de Iones de Hidrógeno , Distribución Aleatoria , Estrés Fisiológico , Factores de TiempoRESUMEN
PURPOSE: To determine the mechanism of proton radiation- induced coagulopathy. MATERIAL AND METHODS: Ferrets were exposed to either solar particle event (SPE)-like proton radiation at a predetermined dose rate of 0.5 Gray (Gy) per hour (h) for a total dose of 0 or 1 Gy. Blood was collected pre- and post-irradiation for a complete blood cell count or a soluble fibrin concentration analysis, to determine whether coagulation activation had occurred. Tissue was stained with an anti-fibrinogen antibody to confirm the presence of fibrin in blood vessels. RESULTS: SPE-like proton radiation exposure resulted in coagulation cascade activation, as determined by increased soluble fibrin concentration in blood from 0.7-2.4 at 3 h, and 9.9 soluble fibrin units (p < 0.05) at 24 h post-irradiation and fibrin clots in blood vessels of livers, lungs and kidneys from irradiated ferrets. In combination with this increase in fibrin clots, ferrets had increased prothrombin time and partial thromboplastin time values post-irradiation, which are representative of the extrinsic/intrinsic coagulation pathways. Platelet counts remained at pre-irradiation values over the course of 7 days, indicating that the observed effects were not platelet-related, but instead likely to be due to radiation-induced effects on secondary hemostasis. White blood cell (WBC) counts were reduced in a statistically significant manner from 24 h through the course of the seven-day experiment. CONCLUSIONS: SPE-like proton radiation results in significant decreases in all WBC counts as well as activates secondary hemostasis; together, these data suggest severe risks to astronaut health from exposure to SPE radiation.