Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.424
Filtrar
1.
Mar Environ Res ; 193: 106297, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38096713

RESUMEN

Protoporphyrin IX (PPIX), a key precursor for the synthesis of chlorophyll and heme, is fundamental to photosynthetic eukaryotic cells and participates in light absorption, energy transduction, and numerous other cellular metabolic activities. Along with the application of genetic and biochemical techniques over the past few years, our understanding of the formation of PPIX has been largely advanced, especially regarding possible metabolic pathways. However, the ecological role and function of PPIX in natural ecosystems remains unclear. We have previously established a method for quantifying PPIX in marine ecosystems. Here, our results provide evidence that PPIX is not only subtly linked to nutrient uptake but also triggers phytoplankton productivity. PPIX and its derivatives are dynamic spatiotemporally in direct response to increased nutrient availability. Using 16 S rRNA gene amplicon sequencing, PPIX was revealed to interact strongly with many microorganisms, indicating that PPIX serves as a critical metabolite in maintaining microbial metabolism and community development. In summary, we observed that PPIX is linearly related to nutrient availability and microbial diversity. The levels of microbial PPIX reflect ecological health, and the availability of PPIX and nutrients jointly affect microbial community composition.


Asunto(s)
Ecosistema , Protoporfirinas , Protoporfirinas/genética , Protoporfirinas/metabolismo , Hemo/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-37956555

RESUMEN

Heme B is a critical prosthetic group for the function of numerous proteins including the cytochrome P450 (CYP) family of enzymes. CYP enzymes are involved in the metabolism of endogenous and xenobiotic molecules that are of central interest in drug development. Formation of reactive metabolites by CYPs can lead to heme modification and destruction of the enzyme. The structure of the adducted heme can provide key information on the mechanism of inactivation, which is of great interest during preclinical drug discovery. Historically, techniques to extract the modified heme or protoporphyrin IX species involved harsh extraction conditions and esterification of propionate groups to aid chromatography. We have developed a simplified extraction method and LC/MS chromatography system that does not require derivatization to quantify heme B and identify modified heme B species from multiple CYP-containing matrices. The method uses mass defect filter triggered data dependent MS2 scans to rapidly identify heme and protoporphyrin IX adducts. These methods may also be useful for the analysis of other heme variants and hemoproteins.


Asunto(s)
Sistema Enzimático del Citocromo P-450 , Hemo , Hemo/análisis , Hemo/química , Hemo/metabolismo , Sistema Enzimático del Citocromo P-450/metabolismo , Protoporfirinas/metabolismo
3.
J Cancer Res Clin Oncol ; 149(19): 17607-17634, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37776358

RESUMEN

Photodynamic therapy (PDT) is a promising cancer treatment that kills cancer cells selectively by stimulating reactive oxygen species generation with photosensitizers exposed to specific light wavelengths. 5-aminolevulinic acid (5-ALA) is a widely used photosensitizer. However, its limited tumour penetration and targeting reduce its therapeutic efficacy. Scholars have investigated nano-delivery techniques to improve 5-ALA administration and efficacy in PDT. This review summarises recent advances in biological host biosynthetic pathways and regulatory mechanisms for 5-ALA production. The review also highlights the potential therapeutic efficacy of various 5-ALA nano-delivery modalities, such as nanoparticles, liposomes, and gels, in treating various cancers. Although promising, 5-ALA nano-delivery methods face challenges that could impair targeting and efficacy. To determine their safety and biocompatibility, extensive preclinical and clinical studies are required. This study highlights the potential of 5-ALA-NDSs to improve PDT for cancer treatment, as well as the need for additional research to overcome barriers and improve medical outcomes.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/uso terapéutico , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/uso terapéutico , Neoplasias/tratamiento farmacológico , Línea Celular Tumoral , Protoporfirinas/metabolismo , Protoporfirinas/uso terapéutico
4.
J Photochem Photobiol B ; 247: 112771, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37647818

RESUMEN

The therapeutic properties of 5-aminolevulinic acid (5-ALA) have been extensively studied for cancer detection and treatment using photodynamic therapy (PDT). When administered externally, 5-ALA is converted to protoporphyrin IX (PpIX) in cancer cells, which generates reactive oxygen species (ROS) upon exposure to light. This process enables targeted cell death induction and cancer detection. Given the highly conserved nature of heme biosynthesis over billions of years, we hypothesized that natural mechanisms might exist to prevent excessive accumulation of PpIX or heme resulting from 5-ALA overload. Therefore, we anticipated alterations in protein expression profiles upon exogenous administration of 5-ALA. To understand cellular responses to 5-ALA, we investigated protein expression changes and identified OR1B1 as a promising target in bladder, prostate, lung, and cervical cancer cells. OR1B1 expression was observed only with 5-ALA and ferrous chloride, highlighting the central role of heme in this discovery. Immunofluorescence and electron microscopy confirmed OR1B1's sub-cellular localization. These findings suggest that 5-ALA transformation in cancer cells and OR1B1 expression have potential for enhancing cancer detection and developing alternative treatments, including immunotherapy. This approach overcomes the limitations of PDT and opens new avenues for effective and targeted cancer interventions.


Asunto(s)
Neoplasias , Fotoquimioterapia , Masculino , Humanos , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Línea Celular Tumoral , Protoporfirinas/metabolismo , Hemo , Neoplasias/tratamiento farmacológico
5.
Pharmacol Ther ; 248: 108487, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37392940

RESUMEN

Protoporphyrin IX (PPIX) is an intermediate in the heme biosynthesis pathway. Abnormal accumulation of PPIX due to certain pathological conditions such as erythropoietic protoporphyria and X-linked protoporphyria causes painful phototoxic reactions of the skin, which can significantly impact daily life. Endothelial cells in the skin have been proposed as the primary target for PPIX-induced phototoxicity through light-triggered generation of reactive oxygen species. Current approaches for the management of PPIX-induced phototoxicity include opaque clothing, sunscreens, phototherapy, blood therapy, antioxidants, bone marrow transplantation, and drugs that increase skin pigmentation. In this review, we discuss the present understanding of PPIX-induced phototoxicity including PPIX production and disposition, conditions that lead to PPIX accumulation, symptoms and individual differences, mechanisms, and therapeutics.


Asunto(s)
Células Endoteliales , Protoporfiria Eritropoyética , Humanos , Células Endoteliales/metabolismo , Protoporfirinas/farmacología , Protoporfirinas/metabolismo , Protoporfiria Eritropoyética/metabolismo , Protoporfiria Eritropoyética/patología , Protoporfiria Eritropoyética/terapia , 5-Aminolevulinato Sintetasa
6.
Photodiagnosis Photodyn Ther ; 43: 103723, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37487809

RESUMEN

Multi-charged nanoemulsions (NE) were designed to deliver Cannabidiol (CBD), Indocyanine green (ICG), and Protoporphyrin (PpIX) to treat glioblastoma (GBM) through Photodynamic Therapy (PDT). The phase-inversion temperature (PIT) method resulted in a highly stable NE that can be scaled easily, with a six-month shelf-life. We observed the quasi-spherical morphology of the nanoemulsions without any unencapsulated material and that 89% (± 5.5%) of the material was encapsulated. All physicochemical properties were within the expected range for a nanostructured drug delivery system, making these multi-charged nanoemulsions promising for further research and development. NE-PIC (NE-Protoporphyrin + Indocyanine + CBD) was easily internalized on GBM cells after three hours of incubation. Nanoemulsion (NE and NE-PIC) did not result in significant cytotoxicity, even for GBM or non-tumorigenic cell lines (NHF). Phototoxicity was significantly higher for the U87MG cell than the T98G cell when exposed to: visible (430 nm) and infrared (810 nm) laser light, with a difference of about 20%. From 50 mJ.cm-2, the viability of GBM cell lines decreases significantly, ranging from 65% to 85%. The NE-PIC was also effective for inhibiting cell proliferation into a 3D spheroidal GBM cell model, which is promising for mimicking the tumor cell environment. Irradiation at 810 nm was more effective in treating spheroid due to its deeper penetration in complex structures. NE-PIC has the potential as a drug delivery system for photoinactivation and photo diagnostic of GBM cell lines, taking advantage of the versatility of its active components.


Asunto(s)
Glioblastoma , Fotoquimioterapia , Humanos , Fotoquimioterapia/métodos , Glioblastoma/tratamiento farmacológico , Glioblastoma/patología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Protoporfirinas/metabolismo , Línea Celular Tumoral
7.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-37445603

RESUMEN

Photodynamic therapy (PDT) is a two-stage treatment relying on cytotoxicity induced by photoexcitation of a nontoxic dye, called photosensitizer (PS). Using 5-aminolevulinic acid (5-ALA), the pro-drug of PS protoporphyrin IX, we investigated the impact of PDT on hepatocellular carcinoma (HCC). Optimal 5-ALA PDT dose was determined on three HCC cell lines by analyzing cell death after treatment with varying doses. HCC-patient-derived tumor hepatocytes and healthy donor liver myofibroblasts were treated with optimal 5-ALA PDT doses. The proliferation of cancer cells and healthy donor immune cells cultured with 5-ALA-PDT-treated conditioned media was analyzed. Finally, therapy efficacy on humanized SCID mice model of HCC was investigated. 5-ALA PDT induced a dose-dependent decrease in viability, with an up-to-four-fold reduction in viability of patient tumor hepatocytes. The 5-ALA PDT treated conditioned media induced immune cell clonal expansion. 5-ALA PDT has no impact on myofibroblasts in terms of viability, while their activation decreased cancer cell proliferation and reduced the tumor growth rate of the in vivo model. For the first time, 5-ALA PDT has been validated on primary patient tumor hepatocytes and donor healthy liver myofibroblasts. 5-ALA PDT may be an effective anti-HCC therapy, which might induce an anti-tumor immune response.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Trasplante de Hígado , Fotoquimioterapia , Ratones , Animales , Humanos , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Carcinoma Hepatocelular/tratamiento farmacológico , Medios de Cultivo Condicionados/farmacología , Neoplasias Hepáticas/tratamiento farmacológico , Ratones SCID , Donadores Vivos , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Protoporfirinas/metabolismo , Línea Celular Tumoral
8.
J Biomed Opt ; 28(8): 082809, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37483565

RESUMEN

Significance: India has one of the highest rates of oral squamous cell carcinoma (OSCC) in the world, with an incidence of 15 per 100,000 and more than 70,000 deaths per year. The problem is exacerbated by a lack of medical infrastructure and routine screening, especially in rural areas. New technologies for oral cancer detection and timely treatment at the point of care are urgently needed. Aim: Our study aimed to use a hand-held smartphone-coupled intraoral imaging device, previously investigated for autofluorescence (auto-FL) diagnostics adapted here for treatment guidance and monitoring photodynamic therapy (PDT) using 5-aminolevulinic acid (ALA)-induced protoporphyrin IX (PpIX) fluorescence (FL). Approach: A total of 12 patients with 14 buccal mucosal lesions having moderately/well-differentiated micro-invasive OSCC lesions (<2 cm diameter and <5 mm depth) were systemically (in oral solution) administered three doses of 20 mg/kg ALA (total 60 mg/kg). Lesion site PpIX and auto-FL were imaged using the multichannel FL and polarized white-light oral cancer imaging probe before/after ALA administration and after light delivery (fractionated, total 100 J/cm2 of 635 nm red LED light). Results: The handheld device was conducive for access to lesion site images in the oral cavity. Segmentation of ratiometric images in which PpIX FL is mapped relative to auto-FL enabled improved demarcation of lesion boundaries relative to PpIX alone. A relative FL (R-value) threshold of 1.4 was found to segment lesion site PpIX production among the patients with mild to severe dysplasia malignancy. The segmented lesion size is well correlated with ultrasound findings. Lesions for which R-value was >1.65 at the time of treatment were associated with successful outcomes. Conclusion: These results indicate the utility of a low-cost, handheld intraoral imaging probe for image-guided PDT and treatment monitoring while also laying the groundwork for an integrated approach, combining cancer screening and treatment with the same hardware.


Asunto(s)
Carcinoma de Células Escamosas , Neoplasias de la Boca , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/uso terapéutico , Teléfono Inteligente , Neoplasias de la Boca/patología , Fotoquimioterapia/métodos , Protoporfirinas/metabolismo , Fármacos Fotosensibilizantes/uso terapéutico
9.
Mol Pharm ; 20(8): 4058-4070, 2023 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-37471668

RESUMEN

There is a major need for the development of new therapeutics to combat antibiotic-resistant Staphylococcus aureus. Recently, gallium (Ga)-based complexes have shown promising antimicrobial effects against various bacteria, including multidrug-resistant organisms, by targeting multiple heme/iron-dependent metabolic pathways. Among these, Ga protoporphyrin (GaPP) inhibits bacterial growth by targeting heme pathways, including aerobic respiration. Ga(NO3)3, an iron mimetic, disrupts elemental iron pathways. Here, we demonstrate the enhanced antimicrobial activity of the combination of GaPP and Ga(NO3)3 against methicillin-resistant S. aureus (MRSA) under iron-limited conditions, including small colony variants (SCV). This therapy demonstrated significant antimicrobial activity without inducing slow-growing SCV. We also observed that the combination of GaPP and Ga(NO3)3 inhibited the MRSA catalase but not above that seen with Ga(NO3)3 alone. Neither GaPP nor Ga(NO3)3 alone or their combination inhibited the dominant superoxide dismutase expressed (SodA) under the iron-limited conditions examined. Intranasal administration of the combination of the two compounds improved drug biodistribution in the lungs compared to intraperitoneal administration. In a murine MRSA lung infection model, we observed a significant increase in survival and decrease in MRSA lung CFUs in mice that received combination therapy with intranasal GaPP and Ga(NO3)3 compared to untreated control or mice receiving GaPP or Ga(NO3)3 alone. No drug-related toxicity was observed as assessed histologically in the spleen, lung, nasal cavity, and kidney for both single and repeated doses of 10 mg Ga /Kg of mice over 13 days. Our results strongly suggest that GaPP and Ga(NO3)3 in combination have excellent synergism and potential to be developed as a novel therapy for infections with S. aureus.


Asunto(s)
Galio , Staphylococcus aureus Resistente a Meticilina , Animales , Ratones , Protoporfirinas/farmacología , Protoporfirinas/metabolismo , Staphylococcus aureus , Distribución Tisular , Antibacterianos/farmacología , Galio/farmacología , Hemo/metabolismo , Hierro/metabolismo , Pruebas de Sensibilidad Microbiana
10.
Photodiagnosis Photodyn Ther ; 42: 103581, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37116819

RESUMEN

Aminolevulinic acid-photodynamic diagnosis (ALA-PDD) is a promising alternative method to detect cancer cells because of its high specificity and low rate of side effects. Exogenous ALA is administered and accumulates as protoporphyrin IX (PpIX) in cancer cells, which then emit red fluorescence following light irradiation to enable surgeons to accurately identify and remove cancerous tissue. Recent reports suggested that PpIX failed to accumulate in some patients who underwent ALA-PDD. We hypothesized that cell senescence, which is a relatively inactive state, affects porphyrin accumulation in bladder cancer cells. In this study, we evaluated the relationship between cell senescence and porphyrin accumulation in affecting the efficacy of ALA-PDD. First, we utilized three bladder cancer cell lines to evaluate senescence-related indicators and establish a cell senescence model. Then, we identified the differences in porphyrin production and the proteins involved in porphyrin accumulation between old and young cells. We found that compared with young cells, old cells possessed higher concentration of PpIX and had lower ABCG2 expression. The increase in PpIX levels following ABCG2 inhibition is three times higher in old cells than in young cells, suggesting that cell senescence was closely related with porphyrin accumulation in cancer. In conclusion, we found that the efficacy of ALA-PDD and porphyrin accumulation was relatively high in senescent cancer cells and that inhibition of ABCG2 could improve the efficacy of ALA-PDD in young bladder cancer cells.


Asunto(s)
Fotoquimioterapia , Porfirinas , Neoplasias de la Vejiga Urinaria , Humanos , Ácido Aminolevulínico/farmacología , Fármacos Fotosensibilizantes/farmacología , Fotoquimioterapia/métodos , Línea Celular Tumoral , Porfirinas/farmacología , Protoporfirinas/metabolismo , Neoplasias de la Vejiga Urinaria/tratamiento farmacológico , Neoplasias de la Vejiga Urinaria/metabolismo , Senescencia Celular
11.
Animal ; 17(5): 100776, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37043933

RESUMEN

Eggshell colour is the unique appearance and economically valuable trait of eggs, whereas the colour is often short of uniformity, especially in the blue-shelled breeds, hence, their pigment differences and molecular mechanism need clarity. To investigate the relationship between the pigment content of eggshells and related gene expression in the eggshell glands of chickens, four subtypes of blue-shelled eggs ('Olive', 'Green', 'Blue', and 'Light') from the same blue-eggshell chicken line were selected; Hy-Line 'White' and 'Brown'-shelled eggs were used as control groups. The L*, a*, b* values, and protoporphyrin-IX and biliverdin contents in each group of eggshells were measured. In addition, the shell glands of the corresponding hens were collected to detect SLCO1B3 genotype and mRNA expression, and ABCG2 and HMOX1 transcription and protein expression. Eggshell colour L* values were negatively correlated with protoporphyrin-IX, b* values were positively correlated with total pigment content (P < 0.001), and a* values were positively correlated with protoporphyrin-IX (P < 0.001) but negatively with biliverdin. Moreover, all four blue-eggshell subtypes were SLCO1B3 homozygous, with SLCO1B3 mRNA expression in shell glands being significantly higher than in the White and Brown groups. ABCG2 and HMOX1 mRNA expression were highest in the Brown and Green groups, respectively (P < 0.05), and were positively correlated with protoporphyrin-IX (P < 0.001) and biliverdin contents in eggshells, respectively. Western blot and immunohistochemical results demonstrated that the Brown group had the highest ABCG2 expression (P < 0.05), followed by the Green and Olive groups. HMOX1 protein expression was higher in the Olive and Green groups (P < 0.05), and lowest in the White group. This study suggests that ABCG2 and HMOX1 have important regulatory roles in the production and transport of protoporphyrin-IX and biliverdin in blue-shelled chicken eggs, respectively.


Asunto(s)
Pollos , Cáscara de Huevo , Animales , Femenino , Pollos/genética , Pollos/metabolismo , Protoporfirinas/análisis , Protoporfirinas/metabolismo , Biliverdina/análisis , Biliverdina/química , Biliverdina/metabolismo , Color , Fitomejoramiento , Óvulo , Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Pigmentación/genética
12.
Nat Commun ; 14(1): 1660, 2023 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-36966149

RESUMEN

Nanomedicine holds great promise to enhance cancer therapy. However, low active pharmaceutical ingredient (API) loading content, unpredictable drug release, and potential toxicity from excipients limit their translational capability. We herein report a full-API nanodrug composed of FDA-approved 5-aminolevulinic acid (ALA), human essential element Fe3+, and natural bioactive compound curcumin with an ideal API content and pH-responsive release profile for continuous spatiotemporal cancer therapy achieved by multi-step tandem endogenous biosynthesis. First, ALA enzymatically converts into photosensitizer protoporphyrin IX (PpIX). Afterward, multiple downstream products including carbon monoxide (CO), Fe2+, biliverdin (BV), and bilirubin (BR) are individually biosynthesized through the PpIX-heme-CO/Fe2+/BV-BR metabolic pathway, further cooperating with released Fe3+ and curcumin, ultimately eliciting mitochondria damage, membrane disruption, and intracytoplasmic injury. This work not only provides a paradigm for exploiting diversified metabolites for tumor suppression, but also presents a safe and efficient full-API nanodrug, facilitating the practical translation of nanodrugs.


Asunto(s)
Curcumina , Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/uso terapéutico , Ácido Aminolevulínico , Protoporfirinas/metabolismo , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Nanopartículas/uso terapéutico
13.
Artículo en Inglés | MEDLINE | ID: mdl-36781044

RESUMEN

Recent studies have shown that the egg yolk maternal components, which are a mixture of substances that can affect the developing embryo, do not act separately but are interconnected and co-adapted. Surprisingly, no study to date has focused on the associations between maternally derived albumen steroids and albumen and eggshell compounds with pleiotropic effects. Eggshell pigment protoporphyrin (PROTO IX) should provide primary antimicrobial protection for eggs, but as a proven pro-oxidant, it may compromise female fitness. Abundant albumen proteins ovotransferrin (OVOTR) and lysozyme (LSM) have been shown to have antimicrobial, antioxidant, immunoregulatory and growth-regulatory roles. To investigate associations between albumen steroids and OVOTR, LSM and eggshell cuticle PROTO IX, we used chicken eggs with differently pigmented eggshells. We found that albumen steroid hormones were strongly intercorrelated. In addition, we revealed that albumen LSM and testosterone (T) were positively associated, while a negative association was found between albumen LSM and pregnenolone (P5). Eggshell cuticle PROTO IX was negatively associated with the concentration of albumen 17α-hydroxypregnenolone (17-OHP5). Finally, of all the hormones tested, only the concentration of albumen 17-OHP5 correlated negatively with egg volume and varied with eggshell colour and chicken breed. Although experimental evidence for the effect of maternal albumen steroids on avian developing embryo is still scarce, our study is the first to highlight co-variation and potential co-adjustment of maternally derived albumen steroids, proteins and eggshell cuticle pigment suggesting similar allocation mechanisms known for yolk maternal compounds with the potential to influence the avian embryo and offspring phenotype.


Asunto(s)
Antiinfecciosos , Cáscara de Huevo , Femenino , Animales , Cáscara de Huevo/fisiología , Protoporfirinas/metabolismo , Proteínas/metabolismo , Yema de Huevo , Pollos/genética , Antiinfecciosos/metabolismo , Hormonas/metabolismo , Esteroides/metabolismo
14.
J Pharm Sci ; 112(6): 1635-1643, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36682488

RESUMEN

Hypertrophic scar is a common problem after skin burns or trauma which brings physical, psychological, and cosmetic problems to patients. Photodynamic therapy with 5-aminolevulinic acid (5-ALA) is a promising therapy for hypertrophic scar. However, clinical applications of 5-ALA are limited because of the low permeability of 5-ALA in the skin stratum corneum and the rapid binding of protoporphyrin IX (PpIX) with iron ions, which lead to insufficient PpIX production in target tissues. Herein, a mixture of 5-ALA and DFO (deferoxamine, a special iron chelator) was applied for the treatment of hypertrophic scar. 5-ALA/DFO could efficiently block the biotransformation of PpIX to heme, thus realizing a significant accumulation of photosensitizer. In addition, injection locally into the lesion was applied, which combined with enhanced photodynamic therapy to destroy hypertrophic scar fibroblasts. In vitro experiments showed that 5-ALA/DFO could increase more ROS generation by increasing the accumulation of PpIX, resulting in the apoptosis of hypertrophic scar fibroblasts. Furthermore, 5-ALA/DFO inhibited the proliferation and migration of hypertrophic scar fibroblasts. In vivo study showed that 5-ALA/DFO could effectively inhibit the formation of proliferative scar. Therefore, 5-ALA/DFO has the potential to enhance the photodynamic therapy of 5-ALA and provides a new treatment strategy for hypertrophic scar.


Asunto(s)
Cicatriz Hipertrófica , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Deferoxamina/farmacología , Deferoxamina/uso terapéutico , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Cicatriz Hipertrófica/tratamiento farmacológico , Fármacos Fotosensibilizantes , Protoporfirinas/metabolismo , Protoporfirinas/uso terapéutico , Fotoquimioterapia/métodos
15.
Photochem Photobiol ; 99(2): 787-792, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-35857390

RESUMEN

As a tumor photodiagnostic agent, 5-aminolevulinic acid (ALA) is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with fluorescence. ALA-PpIX fluorescence was evaluated in human renal cell carcinoma (RCC) cell lines and non-tumor HK-2 cell lines. We found that extracellular PpIX level was correlated with ABCG2 activity, illustrating its importance as a PpIX efflux transporter. Extracellular PpIX was also related to the Km of ferrochelatase (FECH) that chelates PpIX with ferrous iron to form heme. The Vmax of FECH was higher in all RCC cell lines tested than in the HK-2 cell line. TCGA dataset analysis indicates a positive correlation between FECH expression and RCC patient survival. These findings suggest FECH as an important biomarker in RCC. Effects of iron chelator deferoxamine (DFO) on the enhancement of PpIX fluorescence were assessed. DFO increased intracellular PpIX in both tumor and non-tumor cells, resulting in no gain in tumor/non-tumor fluorescence ratios. DFO appeared to increase ALA-PpIX more at 1-h than at 4-h treatment. There was an inverse correlation between ALA-PpIX fluorescence and the enhancement effect of DFO. These results suggest that enhancement of ALA-PpIX by DFO may be limited by the availability of ferrous iron in mitochondria following ALA administration.


Asunto(s)
Carcinoma de Células Renales , Neoplasias Renales , Fotoquimioterapia , Humanos , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/metabolismo , Deferoxamina/farmacología , Carcinoma de Células Renales/tratamiento farmacológico , Fluorescencia , Protoporfirinas/farmacología , Protoporfirinas/metabolismo , Hierro , Hemo , Neoplasias Renales/tratamiento farmacológico , Quelantes del Hierro/farmacología , Fármacos Fotosensibilizantes/farmacología , Línea Celular Tumoral , Fotoquimioterapia/métodos
16.
Photodiagnosis Photodyn Ther ; 41: 103119, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36336324

RESUMEN

BACKGROUND: Cancer cells with stem cell-like features are generally more resistant to chemotherapy and radiotherapy than differentiated tumor cells. Thus, these cells tend to increase the propensity for tumor recurrence and metastasis. This study investigated the efficacy of 5-aminolevulinic acid-mediated photodynamic therapy (ALA-PDT) in destructing glioma stem cells (GSCs), including the mesenchymal subtype (MES-GSCs) demonstrated to have the lowest radio- and chemosensitivity. METHODS: Five high-grade glioma (HGG) GSC lines and derived differentiated glioma cell (DGC) lines were examined for protoporphyrin-IX (PpIX) expression using fluorescence-activated cell sorting (FACS) and then assessed for ALA-PDT sensitivity using cell viability assays. MES-GSCs surviving ALA-PDT were then isolated and evaluated for stem cell and mesenchymal marker expression levels (CD44, ALDH1A3, KLF4, nestin) by qRT-PCR. The ability of these surviving cells to form tumors was then examined using colony forming and by xenograft tumor assays in athymic mice. Finally, the relationship between PpIX expression level (high versus low) and ALA-PDT sensitivity was examined by FACS and colony forming assays. RESULTS: ALA-PDT was effective against all GSC lines including MES-GSCs. MES-GSC lines exhibited higher PpIX expression than derived DGCs. Surviving MES-GSCs demonstrated lower stem cell marker expression and tumor forming potential than naive MES-GSCs. Higher PpIX production capacity by MES-GSCs was associated with greater colony forming ability, and ALA-PDT was more effective against MES-GSCs with greater PpIX accumulation. CONCLUSION: ALA-PDT may be clinically effective against HGG by targeting GSCs, including MES-GSCs.


Asunto(s)
Glioma , Fotoquimioterapia , Ratones , Animales , Humanos , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Ácido Aminolevulínico/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fotoquimioterapia/métodos , Línea Celular Tumoral , Recurrencia Local de Neoplasia/tratamiento farmacológico , Glioma/tratamiento farmacológico , Glioma/patología , Células Madre Neoplásicas , Protoporfirinas/metabolismo
17.
J Cancer Res Clin Oncol ; 149(8): 4391-4402, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36107247

RESUMEN

PURPOSE: Advancements in photodynamic diagnosis (PDD) and photodynamic therapy (PDT) as a standard care in cancer therapy have been limited. This study is aimed to investigate the clinical availability of 5-aminolevulinic acid (5-ALA)-based PDD and PDT in glioblastoma (GBM) patient-derived tumorspheres (TSs) and mouse orthotopic xenograft model. METHODS: PDT was performed using a 635 nm light-emitting diode (LED). Transcriptome profiles were obtained from microarray data. For knockdown of C5α, siRNA was transfected into tumor mesenchymal stem-like cells (tMSLCs). The invasiveness of TSs was quantified using collagen-based 3D invasion assays. RESULTS: Treatment with 1 mM 5 ALA induced distinct protoporphyrin IX (PpIX) fluorescence in GBM TSs, but not in non-tumor cells or tissues, including tMSLCs. These observations were negatively correlated with the expression levels of FECH, which catalyzes the conversion of accumulated PpIX to heme. Furthermore, the 5-ALA-treated GBM TSs were sensitive to PDT, thereby significantly decreasing cell viability and invasiveness. Notably, the effects of PDT were abolished by culturing TSs with tMSLC-conditioned media. Transcriptome analysis revealed diverse tMSLC-secreted chemokines, including C5α, and their correlations with the expression of stemness- or mesenchymal transition-associated genes. By adding or inhibiting C5α, we confirmed that acquired resistance to PDT was induced via tMSLC-secreted C5α. CONCLUSIONS: Our results show substantial therapeutic effects of 5-ALA-based PDT on GBM TSs, suggesting C5α as a key molecule responsible for PDT resistance. These findings could trigger PDT as a standard clinical modality for the treatment of GBM.


Asunto(s)
Glioblastoma , Fotoquimioterapia , Humanos , Animales , Ratones , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Glioblastoma/tratamiento farmacológico , Glioblastoma/genética , Glioblastoma/patología , Fotoquimioterapia/métodos , Línea Celular Tumoral , Protoporfirinas/farmacología , Protoporfirinas/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico
18.
Int J Radiat Biol ; 99(3): 474-487, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-35930496

RESUMEN

PURPOSE: Photodynamic therapy (PDT) utilizes visible light to activate the cytotoxic effects of photosensitizing drugs. PDT protocols require optimization to overcome treatment resistance and induce a beneficial anti-tumor immune response. The aim of this study was to examine the possibility to suppress the resistance of esophageal cell lines to aminolevulinic acid (ALA)-PDT by administration of iron chelators to induce sufficient cell cytotoxicity under pathophysiologically relevant conditions, mimicking the advanced stages of cancer. MATERIALS AND METHODS: Effects of ALA-PDT in combination with iron chelators were compared in three esophageal cell lines in conventional monolayers and in 3 D cultures based on collagen type I. Modified colony assay and fluorescence-based live cell imaging, respectively were applied. The latter was used also to test the capability of pre-polarized macrophages to interact with cancer cells subjected to ALA-PDT with or without iron chelators. RESULTS: Iron chelators were effective in the enhancement of ALA-PDT in all cell lines under both culture conditions. Fluorescence evaluation of cell viability in 3 D cultures indicated the contribution of apoptotic cell death after ALA-PDT, both with and without iron chelators. Engulfment of remnants of dead cancer cells by macrophages in 2 D cultures was indicated, however, the interaction between macrophages and cancer cells in 3 D cultures subjected to ALA-PDT with or without iron chelators was not present. CONCLUSIONS: The potential of iron chelators to enhance ALA-PDT was maintained in 3 D collagen matrices. Although PDT dose (ALA concentration, light exposure time) required modification in a cell line-dependent manner to achieve a comparable effect of PDT alone in conventional monolayers and in collagen matrices, the potential of iron chelators to suppress the resistance of esophageal cells to ALA-PDT was not influenced by a fibrillar collagen matrix.


Asunto(s)
Ácido Aminolevulínico , Fotoquimioterapia , Ácido Aminolevulínico/farmacología , Ácido Aminolevulínico/uso terapéutico , Fármacos Fotosensibilizantes/farmacología , Colágeno Tipo I , Fotoquimioterapia/métodos , Línea Celular Tumoral , Quelantes del Hierro/farmacología , Colágeno , Hierro , Protoporfirinas/metabolismo
19.
Int J Mol Sci ; 23(23)2022 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36499224

RESUMEN

Today, most research on treating cancers targets one single cancer, often because of the very specific operation principle of the therapy. For instance, immunotherapies require the expression of a particular antigen, which might not be expressed in all cancers or in all patients. What about metastases? Combination therapies are promising but require treatment personalization and are an expensive approach that many health systems are not willing to pay for. Resection of cancerous tissues may be conducted beforehand. However, the precise location and removal of tumors are in most cases, hurdles that require margins to prevent recurrence. Herein, we further demonstrate the wide application of aminolevulinate-based photodynamic diagnosis and therapy toward breast cancers. By selecting four breast cancer cell lines that represent the main breast tumor subtypes, we investigated their ability to accumulate the fluorescent protoporphyrin IX upon treatment with the marketed 5-aminolevulinic acid hexyl ester (ALA-Hex) or our new and more stable derivative PSI-ALA-Hex. We found that all cell lines were able to accumulate PpIX under a few hours independent of their hormonal status with both treatments. Additionally, this accumulation was less dose-dependent with PSI-ALA-Hex and induced similar or higher fluorescence intensity than ALA-Hex in three out of four cell lines. The toxicity of the two molecules was not different up to 0.33 mM. However, PSI-ALA-Hex was more toxic at 1 mM, even though lower concentrations of PSI-ALA-Hex led to the same PpIX accumulation level. Additional illumination with blue light to induce cell death by generating reactive oxygen species was also considered. The treatments led to a dramatic death of the BT-474 cells under all conditions. In SK-BR-3 and MCF-7, ALA-Hex was also very efficient at all concentrations. However, increasing doses of PSI-ALA-Hex (0.33 and 1 mM) surprisingly led to a higher viability rate. In contrast, the triple-negative breast cancer cells MDA-MB-231 showed a higher death induction with higher concentrations of ALA-Hex or PSI-ALA-Hex. Derivatives of ALA seem promising as fluorescence-guided resection tools and may enable subsequent completion of cancer cell destruction by blue light irradiation.


Asunto(s)
Neoplasias de la Mama , Fotoquimioterapia , Humanos , Femenino , Ácido Aminolevulínico/metabolismo , Fármacos Fotosensibilizantes/farmacología , Protoporfirinas/metabolismo , Células MCF-7 , Línea Celular Tumoral
20.
Int J Mol Sci ; 23(23)2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36499695

RESUMEN

Photodynamic therapy is one of the most patient friendly and promising anticancer therapies. The active ingredient is irradiated protoporphyrin IX, which is produced in the body that transfers energy to the oxygen-triggering phototoxic reaction. This effect could be enhanced by using iron chelators, which inhibit the final step of heme biosynthesis, thereby increasing the protoporphyrin IX concentration. In the presented work, we studied thiosemicarbazone derivative, which is a universal enhancer of the phototoxic effect. We examined several genes that are involved in the transport of the heme substrates and heme itself. The results indicate that despite an elevated level of ABCG2, which is responsible for the PpIX efflux, its concentration in a cell is sufficient to trigger a photodynamic reaction. This effect was not observed for 5-ALA alone. The analyzed cell lines differed in the scale of the effect and a correlation with the PpIX accumulation was observed. Additionally, an increased activation of the iron transporter MFNR1 was also detected, which indicated that the regulation of iron transport is essential in PDT.


Asunto(s)
Fotoquimioterapia , Tiosemicarbazonas , Humanos , Tiosemicarbazonas/farmacología , Fotoquimioterapia/métodos , Protoporfirinas/farmacología , Protoporfirinas/metabolismo , Ácido Aminolevulínico/farmacología , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Hemo/metabolismo , Hierro , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...