Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 17.998
Filtrar
1.
Biomed Environ Sci ; 37(4): 341-353, 2024 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-38727157

RESUMEN

Objective: Hydroquinone (HQ), one of the phenolic metabolites of benzene, is widely recognized as an important participant in benzene-induced hematotoxicity. However, there are few relevant proteomics in HQ-induced hematotoxicity and the mechanism hasn't been fully understood yet. Methods: In this study, we treated K562 cells with 40 µmol/L HQ for 72 h, examined and validated protein expression changes by Label-free proteomic analysis and Parallel reaction monitoring (PRM), and performed bioinformatics analysis to identify interaction networks. Results: One hundred and eighty-seven upregulated differentially expressed proteins (DEPs) and 279 downregulated DEPs were identified in HQ-exposed K562 cells, which were involved in neutrophil-mediated immunity, blood microparticle, and other GO terms, as well as the lysosome, metabolic, cell cycle, and cellular senescence-related pathways. Focusing on the 23 DEGs and 5 DEPs in erythroid differentiation-related pathways, we constructed the network of protein interactions and determined 6 DEPs (STAT1, STAT3, CASP3, KIT, STAT5B, and VEGFA) as main hub proteins with the most interactions, among which STATs made a central impact and may be potential biomarkers of HQ-induced hematotoxicity. Conclusion: Our work reinforced the use of proteomics and bioinformatic approaches to advance knowledge on molecular mechanisms of HQ-induced hematotoxicity at the protein level and provide a valuable basis for further clarification.


Asunto(s)
Benceno , Hemolíticos , Proteoma , Proteoma/metabolismo , Proteómica , Benceno/toxicidad , Células K562 , Humanos , Pruebas de Toxicidad/métodos , Hemolíticos/toxicidad
2.
J Hazard Mater ; 471: 134297, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38677119

RESUMEN

Developing mechanistic non-animal testing methods based on the adverse outcome pathway (AOP) framework must incorporate molecular and cellular key events associated with target toxicity. Using data from an in vitro assay and chemical structures, we aimed to create a hybrid model to predict hepatotoxicants. We first curated a reference dataset of 869 compounds for hepatotoxicity modeling. Then, we profiled them against PubChem for existing in vitro toxicity data. Of the 2560 resulting assays, we selected the mitochondrial membrane potential (MMP) assay, a high-throughput screening (HTS) tool that can test chemical disruptors for mitochondrial function. Machine learning was applied to develop quantitative structure-activity relationship (QSAR) models with 2536 compounds tested in the MMP assay for screening new compounds. The MMP assay results, including QSAR model outputs, yielded hepatotoxicity predictions for reference set compounds with a Correct Classification Ratio (CCR) of 0.59. The predictivity improved by including 37 structural alerts (CCR = 0.8). We validated our model by testing 37 reference set compounds in human HepG2 hepatoma cells, and reliably predicting them for hepatotoxicity (CCR = 0.79). This study introduces a novel AOP modeling strategy that combines public HTS data, computational modeling, and experimental testing to predict chemical hepatotoxicity.


Asunto(s)
Alternativas a las Pruebas en Animales , Enfermedad Hepática Inducida por Sustancias y Drogas , Aprendizaje Automático , Potencial de la Membrana Mitocondrial , Relación Estructura-Actividad Cuantitativa , Humanos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Pruebas de Toxicidad , Ensayos Analíticos de Alto Rendimiento , Hígado/efectos de los fármacos , Células Hep G2
3.
Sci Total Environ ; 927: 172199, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38580108

RESUMEN

Effect-directed analysis (EDA) is a crucial tool in environmental toxicology, effectively integrating toxicity testing with chemical analysis. The conventional EDA approach, however, presents challenges such as significant solvent consumption, extended analysis time, labor intensity, and potential contamination risks. In response, we introduce an innovative alternative to the conventional EDA. This method utilizes the MTT bioassay and online two-dimensional liquid chromatography (2D LC) coupled with high-resolution mass spectrometry (HR-MS), significantly reducing the fractionation steps and leveraging the enhanced sensitivity of the bioassay and automated chemical analysis. In the chemical analysis phase, a switching valve interface is employed for comprehensive analysis. We tested the performance of both the conventional and our online 2D LC-based methods using a household product. Both methods identified the same number of toxicants in the sample. Our alternative EDA is 22.5 times faster than the conventional method, fully automated, and substantially reduces solvent consumption. This novel approach offers ease, cost-effectiveness, and represents a paradigm shift in EDA methodologies. By integrating a sensitive bioassay with online 2D LC, it not only enhances efficiency but also addresses the challenges associated with traditional methods, marking a significant advancement in environmental toxicology research.


Asunto(s)
Contaminantes Ambientales , Cromatografía Liquida/métodos , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Pruebas de Toxicidad/métodos , Monitoreo del Ambiente/métodos , Espectrometría de Masas/métodos , Bioensayo/métodos , Ecotoxicología/métodos
4.
Food Chem Toxicol ; 188: 114698, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38679282

RESUMEN

Phototoxicity is an acute toxic reaction induced by topical skin exposure to photoreactive chemicals followed by exposure to environmental light and thus chemicals that absorb UV are recommended to be evaluated for phototoxic potential. There are currently three internationally harmonized alternative test methods for phototoxicity. One of them is the in vitro Phototoxicity: RhE Phototoxicity test method (OECD TG498). Korean center for the Validation of Alternative Methods (KoCVAM) developed an in vitro phototoxicity test method using a KeraSkin™ reconstructed human epidermis model (KeraSkin™ Phototoxicity Assay) as a 'me-too' test method of OECD TG498. For the development and optimization of KeraSkin™ Phototoxicity Assay, the following test chemicals were used: 6 proficiency chemicals in OECD TG498 (3 phototoxic and 3 non-phototoxic), 6 reference chemicals in OECD Performance Standard No. 356 (excluding the proficiency test chemicals, 3 phototoxic and 3 non-phototoxic) and 13 additional chemicals (7 phototoxic and 6 non-phototoxic). Based on the test results generated from the test chemicals above, the overall predictive capacity of KeraSkin™ Phototoxicity Assay was calculated. In particular, the assay exhibited 100 % accuracy, 100 % sensitivity, and 100 % specificity. Therefore, it fulfills the requirements to be included as a 'me-too' test method in OECD TG498.


Asunto(s)
Dermatitis Fototóxica , Epidermis , Humanos , Epidermis/efectos de los fármacos , Epidermis/efectos de la radiación , Alternativas a las Pruebas en Animales/métodos , Rayos Ultravioleta , Pruebas de Toxicidad/métodos , Modelos Biológicos
5.
Front Immunol ; 15: 1373411, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38646535

RESUMEN

Introduction: Veterinary vaccines against Clostridium perfringens type C need to be tested for absence of toxicity, as mandated by pharmacopoeias worldwide. This toxicity testing is required at multiple manufacturing steps and relies on outdated mouse tests that involve severe animal suffering. Clostridium perfringens type C produces several toxins of which the ß-toxin is the primary component responsible for causing disease. Here, we describe the successful development of a new cell-based in vitro assay that can address the specific toxicity of the ß-toxin. Methods: Development of the cell-based assay followed the principle of in vitro testing developed for Cl. septicum vaccines, which is based on Vero cells. We screened four cell lines and selected the THP-1 cell line, which was shown to be the most specific and sensitive for ß-toxin activity, in combination with a commercially available method to determine cell viability (MTS assay) as a readout. Results: The current animal test is estimated to detect 100 - 1000-fold dilutions of the Cl. perfringens type C non-inactivated antigen. When tested with an active Cl. perfringens type C antigen preparation, derived from a commercial vaccine manufacturing process, our THP-1 cell-based assay was able to detect toxin activity from undiluted to over 10000-fold dilution, showing a linear range between approximately 1000- and 10000-fold dilutions. Assay specificity for the ß-toxin was confirmed with neutralizing antibodies and lack of reaction to Cl. perfringens culture medium. In addition, assay parameters demonstrated good repeatability. Conclusions: Here, we have shown proof of concept for a THP-1 cell-based assay for toxicity testing of veterinary Cl. perfringens type C vaccines that is suitable for all vaccine production steps. This result represents a significant step towards the replacement of animal-based toxicity testing of this veterinary clostridial antigen. As a next step, assessment of the assay's sensitivity and repeatability and validation of the method will have to be performed in a commercial manufacturing context in order to formally implement the assay in vaccine quality control.


Asunto(s)
Toxinas Bacterianas , Clostridium perfringens , Animales , Clostridium perfringens/inmunología , Toxinas Bacterianas/inmunología , Toxinas Bacterianas/toxicidad , Humanos , Células Vero , Chlorocebus aethiops , Pruebas de Toxicidad/métodos , Infecciones por Clostridium/veterinaria , Infecciones por Clostridium/inmunología , Infecciones por Clostridium/diagnóstico , Células THP-1 , Ratones , Supervivencia Celular/efectos de los fármacos , Línea Celular , Vacunas Bacterianas/inmunología , Alternativas a las Pruebas en Animales/métodos
6.
Biomolecules ; 14(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38672478

RESUMEN

This scientific study employs the Taylor dispersion technique for diffusion measurements to investigate the interaction between sulfamerazine (NaSMR) and macromolecular cyclodextrins (ß-CD and HP-ß-CD). The results reveal that the presence of ß-CD influences the diffusion of the solution component, NaSMR, indicating a counterflow of this drug due to solute interaction. However, diffusion data indicate no inclusion of NaSMR within the sterically hindered HP-ß-CD cavity. Additionally, toxicity tests were conducted, including pollen germination (Actinidia deliciosa) and growth curve assays in BY-2 cells. The pollen germination tests demonstrate a reduction in sulfamerazine toxicity, suggesting potential applications for this antimicrobial agent with diminished adverse effects. This comprehensive investigation contributes to a deeper understanding of sulfamerazine-cyclodextrin interactions and their implications for pharmaceutical and biological systems.


Asunto(s)
Sulfamerazina , Sulfamerazina/química , Difusión , Ciclodextrinas/química , Pruebas de Toxicidad , beta-Ciclodextrinas/química , 2-Hidroxipropil-beta-Ciclodextrina/química
7.
Regul Toxicol Pharmacol ; 149: 105621, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38608922

RESUMEN

Although the United States Food & Drug Administration (FDA) has provided guidance on the control of drug degradants for prescription drugs, there is less guidance on how to set degradant specifications for FDA OTC monograph drugs. Given that extensive impurity testing was not part of the safety paradigm in original OTC monographs, a weight of evidence (WOE) approach to qualify OTC degradants is proposed. This approach relies on in silico tools and read-across approaches alongside standard toxicity testing to determine safety. Using several drugs marketed under 21 CFR 341 as case studies, this research demonstrates the utility of a WOE approach across data-rich and data-poor degradants. Based on degradant levels ranging from 1 to 4% of the maximum daily doses of each case study drug and 10th percentile body weight data for each patient group, children were recognized as having the highest potential exposure relative to adults per body mass. Depending on data availability and relationship to the parent API, margins of safety (MOS) or exposure margins were calculated for each degradant. The findings supported safe use, and indicated that this contemporary WOE approach could be utilized to assess OTC degradants. This approach is valuable to establish specifications for degradants in OTCs.


Asunto(s)
Antitusígenos , Medicamentos sin Prescripción , United States Food and Drug Administration , Medicamentos sin Prescripción/efectos adversos , Humanos , Estados Unidos , Antitusígenos/efectos adversos , Tos/tratamiento farmacológico , Medición de Riesgo , Niño , Contaminación de Medicamentos , Adulto , Pruebas de Toxicidad/métodos , Resfriado Común/tratamiento farmacológico
8.
Sci Total Environ ; 928: 172538, 2024 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-38636863

RESUMEN

With the advancement of cementitious material technologies, ultra-high performance concretes incorporating nano- and(or) micro-sized particle materials have been developed; however, their environmental risks are still poorly understood. This study investigates the ecotoxicological effects of ultra-high performance concrete (UC) leachate by comparing with that of the conventional concrete (CC) leachate. For this purpose, a dynamic leaching test and a battery test with algae, water flea, and zebrafish were performed using standardized protocols. The conductivity, concentration of inorganic elements (Al, K, Na, and Fe), and total organic concentration were lower in the UC leachate than in the CC leachate. The EC50 values of the CC and UC leachates were 44.9 % and >100 % in algae, and 8.0 % and 63.1 % in water flea, respectively. All zebrafish exposed to the CC and UC leachates survived. A comprehensive evaluation of the ecotoxicity of the CC and UC leachate based on the toxicity classification system (TCS) showed that their toxicity classification was "highly acute toxicity" and "acute toxicity", respectively. Based on the hazard quotient and principal component analysis, Al and(or) K could be significant factors determining the ecotoxicity of concrete leachate. Furthermore, the ecotoxicity of UC could not be attributed to the use of silica-based materials or multi-wall carbon nanotubes. This study is the first of its kind on the ecotoxicity of UC leachate in aquatic environments, and the results of this study can be used to develop environment-friendly UC.


Asunto(s)
Organismos Acuáticos , Materiales de Construcción , Contaminantes Químicos del Agua , Pez Cebra , Animales , Contaminantes Químicos del Agua/toxicidad , Organismos Acuáticos/efectos de los fármacos , Ecotoxicología , Cladóceros/efectos de los fármacos , Pruebas de Toxicidad
9.
Chemosphere ; 357: 142046, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38636913

RESUMEN

Human and environmental ecosystem beings are exposed to multicomponent compound mixtures but the toxicity nature of compound mixtures is not alike to the individual chemicals. This work introduces four models for the prediction of the negative logarithm of median effective concentration (pEC50) of individual chemicals to marine bacteria Photobacterium Phosphoreum (P. Phosphoreum) and algal test species Selenastrum Capricornutum (S. Capricornutum) as well as their mixtures to P. Phosphoreum, and S. Capricornutum. These models provide the simplest approaches for the forecast of pEC50 of some classes of organic compounds from their interpretable structural parameters. Due to the lack of adequate toxicity data for chemical mixtures, the largest available experimental data of individual chemicals (55 data) and their mixtures (99 data) are used to derive the new correlations. The models of individual chemicals are based on two simple structural parameters but chemical mixture models require further interaction terms. The new model's results are compared with the outputs of the best accessible quantitative structure-activity relationships (QSARs) models. Various statistical parameters are done on the new and comparative complex QSAR models, which confirm the higher reliability and simplicity of the new correlations.


Asunto(s)
Compuestos Orgánicos , Photobacterium , Relación Estructura-Actividad Cuantitativa , Photobacterium/efectos de los fármacos , Compuestos Orgánicos/toxicidad , Compuestos Orgánicos/química , Contaminantes Químicos del Agua/toxicidad , Contaminantes Químicos del Agua/química , Diatomeas/efectos de los fármacos , Pruebas de Toxicidad
11.
Regul Toxicol Pharmacol ; 149: 105617, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38561146

RESUMEN

Accumulating evidence has shown that the abnormal toxicity test (ATT) is not suitable as a quality control batch release test for biologics and vaccines. The purpose of the current study was to explore the optimal ATT experimental design for an adenoviral vector-based vaccine product to avoid false positive results following the standard test conditions stipulated in the Pharmacopoeias. ATT were conducted in both mice and guinea pigs based on methods in Pharmacopeias, with modifications to assess effects of dose volume and amount of virus particles (VPs). The results showed intraperitoneal (IP) dosing at human relevant dose and volume (i.e., VPs), as required by pharmacopeia study design, resulted in false positive findings not associated with extraneous contaminants of a product. Considering many gene therapy products use adeno associated virus as the platform for transgene delivery, data from this study are highly relevant in providing convincing evidence to show the ATT is inappropriate as batch release test for biologics, vaccine and gene therapy products. In conclusion, ATT, which requires unnecessary animal usage and competes for resources which otherwise can be spent on innovative medicine research, should be deleted permanently as batch release test by regulatory authorities around the world.


Asunto(s)
Vectores Genéticos , Pruebas de Toxicidad , Animales , Cobayas , Pruebas de Toxicidad/métodos , Ratones , Reacciones Falso Positivas , Femenino , Adenoviridae/genética , Masculino , Vacunas
12.
ALTEX ; 41(2): 152-178, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38579692

RESUMEN

Developmental neurotoxicity (DNT) testing has seen enormous progress over the last two decades. Preceding even the publication of the animal-based OECD test guideline for DNT testing in 2007, a series of non-animal technology workshops and conferences (starting in 2005) shaped a community that has delivered a comprehensive battery of in vitro test methods (IVB). Its data interpretation is covered by a very recent OECD test guidance (No. 377). Here, we aim to overview the progress in the field, focusing on the evolution of testing strategies, the role of emerging technologies, and the impact of OECD test guidelines on DNT testing. In particular, this is an example of a targeted development of an animal-free testing approach for one of the most complex hazards of chemicals to human health. These developments started literally from a blank slate, with no proposed alternative methods available. Over two decades, cutting-edge science enabled the design of a testing approach that spares animals and enables throughput for this challenging hazard. While it is evident that the field needs guidance and regulation, the massive economic impact of decreased human cognitive capacity caused by chemical exposure should be prioritized more highly. Beyond this, the claim to fame of DNT in vitro testing is the enormous scientific progress it has brought for understanding the human brain, its development, and how it can be perturbed.


Developmental neurotoxicity (DNT) testing predicts the hazard of exposure to chemicals to human brain development. Comprehensive advanced non-animal testing strategies using cutting-edge technology can now replace animal-based approaches to assess this complex hazard. These strategies can assess large numbers of chemicals more accurately and efficiently than the animal-based approach. Recent OECD test guidance has formalized this battery of in vitro test methods for DNT, marking a pivotal achievement in the field. The shift towards non-animal testing reflects both a commitment to animal welfare and a growing recognition of the economic and public health impacts associated with impaired cognitive function caused by chemical exposures. These innovations ultimately contribute to safer chemical management and better protection of human health, especially during the vulnerable stages of brain development.


Asunto(s)
Síndromes de Neurotoxicidad , Pruebas de Toxicidad , Animales , Alternativas a las Pruebas en Animales , Modelos Animales , Síndromes de Neurotoxicidad/etiología
14.
Hum Reprod ; 39(5): 936-954, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38438162

RESUMEN

STUDY QUESTION: Is there a cumulative toxicity of disposables used in IVF procedures? SUMMARY ANSWER: A toxicity may be detected when consumables are used cumulatively, while no toxicity is detected when the same consumables are used and tested individually. WHAT IS KNOWN ALREADY: Many components of items used in IVF laboratories may impair human embryonic development. Consequently, it is necessary to screen all reagents and materials which could be in contact with gametes and embryos. Toxicity tests, such as the mouse embryo assay and the human sperm motility assay (HSMA), are used by manufacturers as quality control tools to demonstrate the safety of their products. This evaluation is currently individually performed for each single consumable. However, during an IVF cycle, several devices are used sequentially, potentially creating a cumulative exposure to chemical contaminants, which could not be detected for individually tested consumables. STUDY DESIGN, SIZE, DURATION: The objective of this observational study conducted from March 2021 to October 2022 was to evaluate with the HSMA methodology if there was a cumulative toxicity when several disposables are sequentially used. Fourteen categories of consumables currently used in routine IVF procedures were studied, which included devices used for sperm and oocyte collection (cups, condoms, and oocyte aspiration needles), manipulation (flasks, tubes, tips, pipettes, embryo transfer catheters, syringes, and gloves), culture (dishes), and storage (straws). PARTICIPANTS/MATERIALS, SETTING, METHODS: After obtaining patient consent, the surplus semen assessed as having normal parameters according to the World Health Organization 2010 criteria were used to perform the HSMAs. First, each consumable was tested individually. Then, associations of three, four, and five consumables, previously validated as non-toxic when tested individually, were analyzed. HSMAs were conducted three times to ensure reproducibility, with a defined toxicity threshold of a sperm motility index (SMI) below 0.85 in at least two of three tests. MAIN RESULTS AND THE ROLE OF CHANCE: Thirty-six references of disposables were first individually tested across 53 lots. Forty-nine (92%) demonstrated compliance. However, four (8%) devices revealed toxicity: one lot of 1 ml syringes, two lots of sperm cups, and one lot of 25 cm2 flasks. These four references were excluded from the IVF routine procedures. A total of 48 combinations of consumables were assessed, involving 41 lots from 32 references that were previously individually tested. Among the evaluated combinations, 17 out of 48 (35%) associations exhibited toxicity with a SMI below 0.85 for two of the three tests (n = 8) or all the three tests (n = 9). Notably, three out of 17 (18%) of the three-consumable associations, five out of 16 (31%) of the four-consumable associations, and nine out of 15 (60%) of the five-consumable associations were found not compliant. The toxicity did not originate from a single consumable, because only consumables that were individually pre-validated as non-toxic were included in the combinations, but the toxicity had a cumulative origin. The risk of cumulative toxicity increased with the number of consumables included in the association (Cochran-Mantel-Haenszel statistic, P = 0.013). LIMITATIONS, REASONS FOR CAUTION: The high proportion of non-compliant combinations of disposables can be attributed directly to the extreme rigorous extraction conditions employed during the tests, which could deviate from the conditions encountered in routine clinical use. Also, the methodology employed in the HSMAs (e.g. toxicity extraction duration, sperm concentrations, and protein supplementation of the medium) can influence the sensitivity of the tests. WIDER IMPLICATIONS OF THE FINDINGS: This study highlights the significance of performing toxicity testing on devices before introducing them into clinical practice. Disposables should be tested individually to detect immediate toxicities and also in combination. Our results advocate rationalizing the number of consumables used in each IVF procedure and re-evaluating the use of glass consumables. STUDY FUNDING/COMPETING INTEREST(S): This study received fundings from GCS Ramsay Santé pour l'Enseignement et la Recherche (Paris, France) and the Centre de Biologie Médicale BIOGROUP (Le Chesnay-Rocquencourt, France). The authors declare that they have no conflict of interest that could be perceived as prejudicing the impartiality of the reported research. TRIAL REGISTRATION NUMBER: N/A.


Asunto(s)
Fertilización In Vitro , Motilidad Espermática , Humanos , Fertilización In Vitro/métodos , Masculino , Femenino , Motilidad Espermática/efectos de los fármacos , Ratones , Animales , Pruebas de Toxicidad/métodos , Desarrollo Embrionario/efectos de los fármacos , Espermatozoides/efectos de los fármacos
15.
Chemosphere ; 353: 141529, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428534

RESUMEN

An important problem is the impact of photodegradation on product toxicity in biological tests, which may be complex and context-dependent. Previous studies have described the pharmacology of cefepime, but the toxicological effects of its photodegradation products remain largely unknown. Therefore, photodegradation studies were undertaken in conditions similar to those occurring in biological systems insilico, in vitro, in vivo and ecotoxicological experiments. The structures of four cefepime photodegradation products were determined by UPLC-MS/MS method. The calculated in silico ADMET profile indicates that carcinogenic potential is expected for compounds CP-1, cefepime, CP-2 and CP-3. The Cell Line Cytomotovity Predictor 2.0 tool was used to predict the cytotoxic effects of cefepime and related compounds in non-transformed and cancer cell lines. The results indicate that possible actions include: non-small cell lung cancer, breast adenocarcinoma, prostate cancer and papillary renal cell carcinoma. OPERA models were used to predict absorption, distribution, metabolism and excretion (ADME) endpoints, and potential bioactivity of CP-2, cefepime and CP-4. The results obtained in silico show that after 96h of exposure, cefepime, CP-1, CP-2, and CP-3 are moderately toxic in the zebrafish model, while CP-4 is highly toxic. On the contrary, cefepime is more toxic to T. platyurus (highly toxic) compared to the zebrafish model, similar to products CP-4, CP-3 and CP-2. In vitro cytotoxicity studies were performed by MTT assay and in vivo acute embryo toxicity studies using Danio rerio embryos and larvae. In vitro showed an increase in the cytotoxicity of products with the longest exposure period i.e. for 8 h. Additionally, at a concentration of 200 µg/mL, statistically significant changes in metabolic activity were observed depending on the irradiation time. In vivo studies conducted with Zebrafish showed that both cefepime and its photodegradation products have only low toxicity. Assessment of potential ecotoxicity included Microbiotests on invertebrates (Thamnotoxkit F and Daphtoxkit F), and luminescence inhibition tests (LumiMara). The observed toxicity of the tested solutions towards both Thamnocephalus platyurus and Daphnia magna indicates that the parent substance (unexposed) has lower toxicity, which increases during irradiation. The acute toxicity (Lumi Mara) of nonirradiated cefepime solution is low for all tested strains (<10%), but mixtures of cefepime and its photoproducts showed growth inhibition against all tested strains (except #6, Photobacterium phoreum). Generally, it can be concluded that after UV-Vis irradiation, the mixture of cefepime phototransformation products shows a significant increase in toxicity.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Animales , Masculino , Fotólisis , Pruebas de Toxicidad/métodos , Pez Cebra , Cefepima/toxicidad , Cromatografía Liquida , Espectrometría de Masas en Tándem
16.
Sci Total Environ ; 927: 171448, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453088

RESUMEN

Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.


Asunto(s)
Embrión no Mamífero , Oryzias , Parabenos , Relación Estructura-Actividad Cuantitativa , Contaminantes Químicos del Agua , Animales , Oryzias/embriología , Contaminantes Químicos del Agua/toxicidad , Embrión no Mamífero/efectos de los fármacos , Parabenos/toxicidad , Teratógenos/toxicidad , Pruebas de Toxicidad
17.
Environ Geochem Health ; 46(3): 103, 2024 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-38436752

RESUMEN

In this study, we focused on soil contaminated by polycyclic aromatic hydrocarbons (PAHs) at typical coking-polluted sites in Beijing, conducted research on enhanced PAH bioremediation and methods to evaluate remediation effects based on toxicity testing, and examined changes in pollutant concentrations during ozone preoxidation coupled with biodegradation in test soil samples. The toxicity of mixed PAHs in soil was directly evaluated using the Ames test, and the correlation between mixed PAH mutagenicity and benzo(a)pyrene (BaP) toxicity was investigated in an effort to establish a carcinogenic risk assessment model based on biological toxicity tests to evaluate remediation effects on PAH-contaminated soil. This study provides a theoretical and methodological foundation for evaluating the effect of bioremediation on PAH-contaminated soil at industrially contaminated sites. The results revealed that the removal rate of PAHs after 5 min of O3 preoxidation and 4 weeks of soil reaction with saponin surfactants and medium was 83.22%. The soil PAH extract obtained after remediation had a positive effect on the TA98 strain at a dose of 2000 µg·dish-1, and the carcinogenic risk based on the Ames toxicity test was 8.98 times greater than that calculated by conventional carcinogenic PAH toxicity parameters. The total carcinogenic risk of the remediated soil samples was approximately one order of magnitude less than that of the original soil samples.


Asunto(s)
Contaminantes Ambientales , Hidrocarburos Policíclicos Aromáticos , Humanos , Beijing , Biodegradación Ambiental , Carcinogénesis , Carcinógenos , Hidrocarburos Policíclicos Aromáticos/toxicidad , Suelo , Pruebas de Toxicidad
18.
Chemosphere ; 355: 141814, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38554862

RESUMEN

Evaluating the toxicity of micropollutants forms the basis for understanding their potential risks to the ecosystem and/or human health. To accurately evaluate the toxicity of micropollutants in toxicity tests, many factors have been carefully considered, while the impact of the number of test organisms on toxicity results has rarely been taken into account. In this study, the role of the organism number on the developmental toxicity of five micropollutants was investigated using embryos of the marine polychaete Platynereis dumerilii. The toxicity of hydrophobic micropollutants was found to decrease significantly with increasing the number of embryos used in the test. A quantitative model was developed to better describe how the number of embryos affected developmental toxicity. The model showed a satisfactory fit to the raw data in all scenarios tested. The intrinsic half-maximal effective concentration EC50,int was then determined using the model. For a given compound, the EC50,int was a stable parameter that did not depend on the number of test embryos and thus provided an indication of the intrinsic toxicity of the compounds tested. Compared with the EC50 values determined with the commonly used embryo number (around 120), the EC50,int values of all tested hydrophobic micropollutants were lower. The more hydrophobic the compounds tested, the more pronounced the reduction in toxicity. This suggested that hydrophobic micropollutants could be more toxic than reported in the literature. Some suggestions were also made to eliminate the effect of the number of organisms used in the toxicity evaluation.


Asunto(s)
Poliquetos , Contaminantes Químicos del Agua , Animales , Humanos , Ecosistema , Interacciones Hidrofóbicas e Hidrofílicas , Pruebas de Toxicidad , Contaminantes Químicos del Agua/toxicidad
19.
Toxicol Appl Pharmacol ; 485: 116886, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38452946

RESUMEN

Despite extensive preclinical testing, cancer therapeutics can result in unanticipated toxicity to non-tumor tissue in patients. These toxicities may pass undetected in preclinical experiments due to modeling limitations involving poor biomimicry of 2-dimensional in vitro cell cultures and due to lack of interspecies translatability in in vivo studies. Instead, primary cells can be grown into miniature 3-dimensional structures that recapitulate morphological and functional aspects of native tissue, termed "organoids." Here, human bronchioalveolar organoids grown from primary alveolar epithelial cells were employed to model lung epithelium and investigate off-target toxicities associated with antibody-drug conjugates (ADCs). ADCs with three different linker-payload combinations (mafodotin, vedotin, and deruxtecan) were tested in bronchioalveolar organoids generated from human, rat, and nonhuman primate lung cells. Organoids demonstrated antibody uptake and changes in viability in response to ADC exposure that model in vivo drug sensitivity. RNA sequencing identified inflammatory activation in bronchioalveolar cells in response to deruxtecan. Future studies will explore specific cell populations involved in interstitial lung disease and incorporate immune cells to the culture.


Asunto(s)
Inmunoconjugados , Organoides , Organoides/efectos de los fármacos , Organoides/patología , Animales , Inmunoconjugados/toxicidad , Humanos , Ratas , Evaluación Preclínica de Medicamentos/métodos , Macaca fascicularis , Células Cultivadas , Pruebas de Toxicidad/métodos , Alveolos Pulmonares/efectos de los fármacos , Alveolos Pulmonares/patología , Células Epiteliales Alveolares/efectos de los fármacos , Células Epiteliales Alveolares/patología
20.
Regul Toxicol Pharmacol ; 149: 105590, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38462048

RESUMEN

ISO 10993-1:2018 describes evaluating the biocompatibility profile of a medical device from a risk-based approach. This standard details the battery of information that should be considered within the assessment of a device, including raw material composition data, manufacturing processes, and endpoint testing. The ISO 10993/18562 series requires worst-case assumptions and exposure scenarios to be used in the evaluation, which may result in an over-estimation of patient safety risk. Currently, biocompatibility assessments evaluate each data set independently, and the consequence of this individualized assessment of exaggerated inputs is potential false alarms regarding patient safety. To evaluate these safety concerns, the ISO standards indicate that professional judgement should be used to estimate patient risk but does not provide guidance on incorporating a holistic review of the data into the risk assessment. Recalibrating these worst-case data to evaluate them in a weight-of-evidence (WoE) approach may provide a more realistic data set to determine actual patient risk. This proposed WoE framework combines understanding data applicability with a method for gauging the strength of data that can provide additional support for the final safety conclusion. Using a WoE framework will allow risk assessors to contextualize the data and utilize it to comprehensively estimate patient safety.


Asunto(s)
Materiales Biocompatibles , Medición de Riesgo/métodos , Humanos , Materiales Biocompatibles/toxicidad , Ensayo de Materiales/métodos , Ensayo de Materiales/normas , Animales , Seguridad del Paciente , Pruebas de Toxicidad/métodos , Pruebas de Toxicidad/normas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...