Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 209
Filtrar
1.
Rev Alerg Mex ; 71(1): 78, 2024 Feb 01.
Artículo en Español | MEDLINE | ID: mdl-38683095

RESUMEN

OBJECTIVE: Analyze phylogenetic relationships and molecular mimicry of Cit s 2 and other plant profilins. METHODS: Online bioinformatics tools including Basic Local Alignment Search Tool (BLASTP), PRALINE and MEGA were used for multiple alignments and phylogenetic analysis. A 3D-homology model of Cit s 2 was predicted. Models were calculated with MODELLER. The best model was selected with the model scoring option of MAESTRO. Conserved regions between Cit s 2 and other profilins were located on the 3D model and antigenic regions were predicted by ElliPro server (3-5). RESULTS: Cit s 2 amino acid sequence (Uniprot code:P84177) was compared with other 30 profilins from different allergenic sources. The identity between Cit s 2 and other profilins ranged between 82 and 99%. The highest identity was observed with Cucumis melo (99%) followed by Prunus persica (98%) and Malus domestica (92%). High conserved antigenic regions were observed on the 3D predicted model. Seven lineal and six discontinuous epitopes were found in Cit s 2. CONCLUSION: High conserved antigenic regions were observed on the 3D predicted model of Cit s 2, which might involve potential cross-reactivity between Cit s 2 and other profilins. Future studies are needed to further analyze these results.


OBJETIVO: Analizar las relaciones filogenéticas y el mimetismo molecular de Cit s 2 y otras profilinas vegetales. MÉTODOS: Se utilizaron herramientas bioinformáticas en línea, incluida la de búsqueda de alineación local básica (BLASTP), PRALINE y MEGA, para alineamientos múltiples y análisis filogenético. Se predijo un modelo de homología 3D de Cit s 2. Los modelos se calcularon con MODELLER. El mejor modelo fue seleccionado con la opción de puntuación de modelo de Maestro. Las regiones conservadas entre Cit s 2 y otras profilinas se ubicaron en el modelo 3D y las regiones antigénicas fueron predichas por el servidor ElliPro (3-5). RESULTADOS: La secuencia de aminoácidos de Cit s 2 (código Uniprot: P84177), se comparó con otras 30 profilinas de diferentes fuentes alergénicas. La mayor identidad se observó con Cucumis melo (99%) seguida de Prunus persica (98%) y Malus domestica (92%). Se observaron regiones antigénicas altamente conservadas en el modelo predicho en 3D. Se encontraron siete epítopes lineales, y seis epítopes discontinuos en Cit s 2. CONCLUSIÓN: Se observaron regiones antigénicas altamente conservadas en el modelo 3D predicho de Cit s 2, lo que podría implicar una posible reactividad cruzada entre Cit s 2 y otras profilinas. Se necesitan estudios futuros para analizar más a fondo estos resultados.


Asunto(s)
Antígenos de Plantas , Profilinas , Alérgenos/inmunología , Secuencia de Aminoácidos , Simulación por Computador , Secuencia Conservada , Modelos Moleculares , Filogenia , Proteínas de Plantas/inmunología , Profilinas/inmunología , Profilinas/genética , Profilinas/química , Cucumis/química , Cucumis/metabolismo , Prunus persica/química , Prunus persica/metabolismo , Malus/química , Malus/metabolismo , Antígenos de Plantas/química
2.
Sci Rep ; 14(1): 4933, 2024 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418625

RESUMEN

Red flesh apple (Malus pumila var. medzwetzkyana Dieck), purple leaf plum (Prunus cerasifera Ehrhar f), and purple leaf peach (Prunus persica 'Atropurpurea') are significant ornamental plants within the Rosaceae family. The coloration of their fruits and leaves is crucial in their appearance and nutritional quality. However, qualitative and quantitative studies on flavonoids in the succulent fruits and leaves of multicolored Rosaceae plants are lacking. To unveil the diversity and variety-specificity of flavonoids in these three varieties, we conducted a comparative analysis of flavonoid metabolic components using ultra-high-performance liquid phase mass spectrometry (UPLC-MS/MS). The results revealed the detection of 311 metabolites, including 47 flavonoids, 105 flavonols, 16 chalcones, 37 dihydroflavonoids, 8 dihydroflavonols, 30 anthocyanins, 14 flavonoid carbon glycosides, 23 flavanols, 8 isoflavones, 11 tannins, and 12 proanthocyanidins. Notably, although the purple plum and peach leaves exhibited distinct anthocyanin compounds, paeoniflorin and corythrin glycosides were common but displayed varying glycosylation levels. While the green purple leaf peach fruit (PEF) and red flesh apple leaf (AL) possessed the lowest anthocyanin content, they exhibited the highest total flavonoid content. Conversely, the red flesh apple fruit (AF) displayed the highest anthocyanin content and a diverse range of anthocyanin glycosylation modifications, indicating that anthocyanins predominantly influenced the fruit's color. Purple PLF, PLL, and PEL showcased varying concentrations of anthocyanins, suggesting that their colors result from the co-color interaction between specific types of anthocyanins and secondary metabolites, such as flavonols, flavonoids, and dihydroflavonoids. This study provides novel insights into the variations in tissue metabolites among Rosaceae plants with distinct fruit and leaf colors.


Asunto(s)
Malus , Prunus persica , Rosaceae , Antocianinas/metabolismo , Frutas/metabolismo , Rosaceae/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Hojas de la Planta/metabolismo , Flavonoides/metabolismo , Malus/metabolismo , Flavonoles/metabolismo , Prunus persica/metabolismo , Regulación de la Expresión Génica de las Plantas
3.
Plant Physiol ; 194(4): 2472-2490, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38217865

RESUMEN

LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKEs (LBDs/ASLs) are plant-specific transcription factors that function downstream of auxin-regulated lateral root (LR) formation. Our previous research found that PpLBD16 positively regulates peach (Prunus persica) LR formation. However, the downstream regulatory network and target genes of PpLBD16 are still largely unknown. Here, we constructed a PpLBD16 homologous overexpression line and a PpLBD16 silenced line. We found that overexpressing PpLBD16 promoted peach root initiation, while silencing PpLBD16 inhibited peach root formation. Through RNA sequencing (RNA-seq) analysis of roots from PpLBD16 overexpression and silenced lines, we discovered that genes positively regulated by PpLBD16 were closely related to cell wall synthesis and degradation, ion/substance transport, and ion binding and homeostasis. To further detect the binding motifs and potential target genes of PpLBD16, we performed DNA-affinity purification sequencing (DAP-seq) analysis in vitro. PpLBD16 preferentially bound to CCNGAAANNNNGG (MEME-1), [C/T]TTCT[C/T][T/C] (MEME-2), and GCGGCGG (ABR1) motifs. By combined analysis of RNA-seq and DAP-seq data, we screened candidate target genes for PpLBD16. We demonstrated that PpLBD16 bound and activated the cell wall modification-related genes EXPANSIN-B2 (PpEXPB2) and SUBTILISIN-LIKE PROTEASE 1.7 (PpSBT1.7), the ion transport-related gene CYCLIC NUCLEOTIDE-GATED ION CHANNEL 1 (PpCNGC1) and the polyphenol oxidase (PPO)-encoding gene PpPPO, thereby controlling peach root organogenesis and promoting LR formation. Moreover, our results displayed that PpLBD16 and its target genes are involved in peach LR primordia development. Overall, this work reveals the downstream regulatory network and target genes of PpLBD16, providing insights into the molecular network of LBD16-mediated LR development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Prunus persica , Factores de Transcripción/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Prunus persica/genética , Prunus persica/metabolismo , Regulación de la Expresión Génica de las Plantas , Transporte Iónico , Pared Celular/genética , Pared Celular/metabolismo , Raíces de Plantas/metabolismo , Ácidos Indolacéticos/metabolismo
4.
J Plant Res ; 137(2): 241-254, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38194204

RESUMEN

'Red Meat Honey Crisp (RMHC)' has been widely cultivated by growers in recent years due to its early maturity, and red meat type characteristics. As a bud variant of 'Super Red (SR)' peach, red flesh is the most distinctive characteristic of 'Red Meat Honey Crisp (RMHC)'. However, the mechanism of red flesh formation in 'RMHC' remains unclear. In this study, 79 differentially produced metabolites were identified by metabolomics analysis. The anthocyanin content in 'RMHC' was significantly higher than that in 'SR' during the same period, such as cyanidin O-syringic acid and cyanidin 3-O-glucoside. Other flavonoids also increased during the formation of red flesh, including flavonols (6-hydroxykaempferol-7-O-glucoside, hyperin), flavanols (protocatechuic acid, (+)-gallocatechin), and flavonoids (chrysoeriol 5-O-hexoside, tricetin). In addition, transcriptomic analysis and RT-qPCR showed that the expression levels of the flavonoid synthesis pathway transcription factor MYB75 and some structural genes, such as PpDFR, PpCHS, PpC4H, and PpLDOX increased significantly in 'RMHC'. Subcellular localization analysis revealed that MYB75 was localized to the nucleus. Yeast single hybridization assays showed that MYB75 bound to the cis-acting element CCGTTG of the PpDFR promoter region. The MYB75-PpDFR regulatory network was identified to be a key pathway in the reddening of 'RMHC' flesh. Moreover, this is the first study to describe the cause for red meat reddening in 'RMHC' compared to 'SR' peaches using transcriptomics, metabolomics and molecular methods. Our study identified a key transcription factor involved in the regulation of the flavonoid synthetic pathway and contributes to peach breeding-related efforts as well as the identification of genes involved in color formation in other species.


Asunto(s)
Miel , Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Antocianinas/metabolismo , Flavonoides/metabolismo , Perfilación de la Expresión Génica , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Int J Phytoremediation ; 26(4): 569-578, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37684742

RESUMEN

To promote the selenium (Se) uptakes in fruit trees under Se-contaminated soil, the effects of water extract of Fagopyrum dibotrys (D. Don) Hara straw on the Se accumulation in peach seedlings under selenium-contaminated soil were studied. The results showed that the root biomass, chlorophyll content, activities of antioxidant enzymes, and soluble protein content of peach seedlings were increased by the F. dibotrys straw extract. The different forms of Se (total Se, inorganic Se, and organic Se) were also increased in peach seedlings following treatment with the F. dibotrys straw extract. The highest total shoot Se content was treated by the 300-fold dilution of F. dibotrys straw, which was 30.87% higher than the control. The F. dibotrys straw extract also increased the activities of adenosine triphosphate sulfurase (ATPS), and adenosine 5'-phosphosulfate reductase (APR) in peach seedlings, but decreased the activity of serine acetyltransferase (SAT). Additionally, correlation and grey relational analyses revealed that chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se content. Overall, this study shows that the water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


The water extract of Fagopyrum dibotrys (D. Don) Hara straw promoted the selenium (Se) uptake in peach seedlings under selenium-contaminated soil. The concentration of F. dibotrys straw extract showed a quadratic polynomial regression relationship with the total root and shoot Se. Furthermore, chlorophyll a content, APR activity, and root biomass were closely associated with the total shoot Se. This study shows that water extract of F. dibotrys straw can promote Se uptake in peach seedlings, and 300-fold dilution is the most suitable concentration.


Asunto(s)
Fagopyrum , Prunus persica , Selenio , Biodegradación Ambiental , Clorofila A/análisis , Fagopyrum/metabolismo , Prunus persica/metabolismo , Plantones/química , Selenio/metabolismo , Suelo , Agua/análisis
7.
Food Chem ; 439: 138105, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38043287

RESUMEN

Non-volatiles offer some insight into the formation of aroma-active components in peach puree (PP), but more depth investigation is still needed. Formation pathways of key aroma-active and off-flavor components in PP during thermal concentration (PP + C) and sterilization (PP + C + S) are unclear. Therefore, GC-O-MS combined with UPLC-MS/MS was used to identify the volatile and nonvolatile components and their formation pathways. Among the 36 aroma-active compounds, the contents of γ-decalactone, hexyl acetate, leaf acetate, hexanal, and 1-hexanol (odor activity value ≥ 1) decreased by 46 %, 100 %, 100 %, 92 %, and 100 % between PP and PP + C + S, causing the weakening of "green" and "fruity" attributes. Off-flavor components including 1-octen-3-one, isobutyric acid, isothiazole, and isovaleric acid were identified during thermal processing. 1-Octen-3-one content increased by 75 % from PP to PP + C + S through linolenic acid metabolism, which contributed to "cooked"; the formation of isobutyric and isovaleric acids, isothiazole, resulted in the enhancement of "sour/rancid" via serine and leucine metabolism.


Asunto(s)
Prunus persica , Compuestos Orgánicos Volátiles , Odorantes/análisis , Prunus persica/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Acetatos , Compuestos Orgánicos Volátiles/metabolismo
8.
Plant Physiol ; 194(4): 2049-2068, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-37992120

RESUMEN

Fruit ripening is accompanied by dramatic changes in color, texture, and flavor and is regulated by transcription factors (TFs) and epigenetic factors. However, the detailed regulatory mechanism remains unclear. Gene expression patterns suggest that PpNAC1 (NAM/ATAF1/2/CUC) TF plays a major role in peach (Prunus persica) fruit ripening. DNA affinity purification (DAP)-seq combined with transactivation tests demonstrated that PpNAC1 can directly activate the expression of multiple ripening-related genes, including ACC synthase1 (PpACS1) and ACC oxidase1 (PpACO1) involved in ethylene biosynthesis, pectinesterase1 (PpPME1), pectate lyase1 (PpPL1), and polygalacturonase1 (PpPG1) related to cell wall modification, and lipase1 (PpLIP1), fatty acid desaturase (PpFAD3-1), and alcohol acyltransferase1 (PpAAT1) involved in volatiles synthesis. Overexpression of PpNAC1 in the tomato (Solanum lycopersicum) nor (nonripening) mutant restored fruit ripening, and its transient overexpression in peach fruit induced target gene expression, supporting a positive role of PpNAC1 in fruit ripening. The enhanced transcript levels of PpNAC1 and its target genes were associated with decreases in their promoter mCG methylation during ripening. Declining DNA methylation was negatively associated with increased transcripts of DNA demethylase1 (PpDML1), whose promoter is recognized and activated by PpNAC1. We propose that decreased methylation of the promoter region of PpNAC1 leads to a subsequent decrease in DNA methylation levels and enhanced transcription of ripening-related genes. These results indicate that positive feedback between PpNAC1 and PpDML1 plays an important role in directly regulating expression of multiple genes required for peach ripening and quality formation.


Asunto(s)
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Frutas/genética , Frutas/metabolismo , Metilación de ADN/genética , Regulación de la Expresión Génica de las Plantas , ADN/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Etilenos/metabolismo
9.
Int J Mol Sci ; 24(22)2023 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-38003323

RESUMEN

The yellowing of leaves due to iron deficiency is a prevalent issue in peach production. Although the capacity of exogenous melatonin (MT) to promote iron uptake in peach plants has been demonstrated, its underlying mechanism remains ambiguous. This investigation was carried out to further study the effects of exogenous MT on the iron absorption and transport mechanisms of peach (Prunus persica) plants under iron-deficient conditions through transcriptome sequencing. Under both iron-deficient and iron-supplied conditions, MT increased the content of photosynthetic pigments in peach leaves and decreased the concentrations of pectin, hemicellulose, cell wall iron, pectin iron, and hemicellulose iron in peach plants to a certain extent. These effects stemmed from the inhibitory effect of MT on the polygalacturonase (PG), cellulase (Cx), phenylalanine ammonia-lyase (PAL), and cinnamoyl-coenzyme A reductase (CCR) activities, as well as the promotional effect of MT on the cinnamic acid-4-hydroxylase (C4H) activity, facilitating the reactivation of cell wall component iron. Additionally, MT increased the ferric-chelate reductase (FCR) activity and the contents of total and active iron in various organs of peach plants under iron-deficient and iron-supplied conditions. Transcriptome analysis revealed that the differentially expressed genes (DEGs) linked to iron metabolism in MT-treated peach plants were primarily enriched in the aminoacyl-tRNA biosynthesis pathway under iron-deficient conditions. Furthermore, MT influenced the expression levels of these DEGs, regulating cell wall metabolism, lignin metabolism, and iron translocation within peach plants. Overall, the application of exogenous MT promotes the reactivation and reutilization of iron in peach plants.


Asunto(s)
Deficiencias de Hierro , Melatonina , Prunus persica , Hierro/metabolismo , Prunus persica/metabolismo , Melatonina/farmacología , Pectinas/metabolismo
10.
Plant Physiol Biochem ; 204: 108092, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37852068

RESUMEN

In this study, we compared sorbitol metabolism, energy metabolism, and CI development in yellow peach fruit at 1 °C (less susceptible to CI) and 8 °C (more susceptible to CI) storage to elucidate potential connections between them. The results indicated that storage at 1 °C effectively maintained the textural quality of yellow peach fruit and delayed the onset of CI by 12 days compared to 8 °C. This positive effect might be attributable to 1 °C storage maintaining higher sorbitol content throughout the storage duration, thus sustaining the higher adenosine triphosphate (ATP) level and energy charge. The regulation of sorbitol accumulation by 1 °C storage was closely linked to the metabolic activity of sorbitol, which stimulated sorbitol synthesis by enhancing sorbitol-6-phosphate dehydrogenase (S6PDH) activity after 12 days while suppressing sorbitol degradation via decreased sorbitol oxidase (SOX) and NAD+-sorbitol dehydrogenase (NAD+-SDH) activities before 24 days. In addition, the notable up-regulation in the NAD+-SDH activity in the late storage period promoted the conversion of sorbitol to fructose and glucose under 1 °C storage, thereby providing ample energy substrate for ATP generation. Moreover, sorbitol acts as a vital signaling molecule, and substantially up-regulated expressions of sorbitol transporters genes (PpeSOT3, PpeSOT5, and PpeSOT7) were observed in fruit stored at 1 °C, which might promote sorbitol transport and improve cold tolerance in peach fruit. Taken together, these findings suggested that 1 °C storage delayed CI by enhancing sorbitol metabolism and transporter activity, promoting sorbitol accumulation, and finally elevating the energy status in yellow peach fruit.


Asunto(s)
Prunus persica , Prunus persica/metabolismo , NAD/metabolismo , Adenosina Trifosfato/metabolismo , Metabolismo Energético/fisiología , Frutas/metabolismo , Sorbitol/metabolismo , Frío
11.
J Food Sci ; 88(11): 4529-4543, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37872835

RESUMEN

Foliar spraying to improve the quality of fruits is a general approach nowadays. In this study, 10 ppm nano-selenium (nano-Se) diluted with distilled water was sprayed on peach leaves every 10 days for a total of 7 sprays during the fruit set period. And then their fruit quality was compared with that of control group. It was found that the firmness, soluble solid concentration, total phenol, and proanthocyanidin content of the peaches were raised after the nano-Se treatment. Moreover, the ascorbic acid glutathione loop (ASA-GSH loop) was fully activated in the nano-Se treated group, and the associated antioxidant capacity and enzyme activity were significantly increased. Metabolomics revealed that nano-Se could upregulate some metabolites, such as phenylalanine, naringenin, and pinocembrin, to fully activate the metabolism of phenylpropanoids. Further, based on transcriptomics, nano-Se treatment was found to affect fruit quality by regulating genes related to phenylpropanoid metabolism, such as arogenate/prephenate dehydratase (ADT), genes related to abscisic acid metabolism such as (+)-abscisic acid 8'-hydroxylase (CYP707A), and some transcription factors such as MYB. Based on the comprehensive analysis of physicochemical indicators, metabolomics, and transcriptomics, it was found that nano-Se improved fruit quality by activating phenylpropanoid metabolism and enhancing antioxidant capacity. This work provides insights into the mechanism of the effect of nano-Se fertilizer on peach fruit quality. PRACTICAL APPLICATION: The firmness and soluble solid concentration of peaches are higher after nano-Se treatment, which is more in line with people's demand for hard soluble peaches like "Yingzui." The antioxidant capacity, antioxidant substance content, and antioxidant enzyme activity of nano-Se-treated peaches are higher, with potential storage resistance and health effects on human body. The mechanism of nano-Se affecting peach quality was analyzed by metabolomics and transcriptomics, which is a reference and guide for the research and application of nano-Se.


Asunto(s)
Prunus persica , Selenio , Humanos , Antioxidantes/análisis , Selenio/análisis , Prunus persica/genética , Prunus persica/metabolismo , Transcriptoma , Ácido Ascórbico/análisis , Frutas/química
12.
J Food Sci ; 88(9): 3725-3736, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37548624

RESUMEN

Low-temperature storage is a widely used method for peach fruit storage. However, the impact of PpCBFs on pectin degradation during low-temperature storage is unclear. As such, in this study, we stored the melting-flesh peach cultivar "Fuli" at low temperature (LT, 6°C) and room temperature (RT, 25°C) to determine the effect of different temperatures on its physiological and biochemical changes. Low-temperature storage can inhibit the softening of "Fuli" peaches by maintaining the stability of the cell wall. It was found that the contents of water-soluble pectin and ionic-soluble pectin in peach fruit stored at RT were higher than those stored at LT. The enzyme activities of polygalacturonase (PG), pectate lyase (PL), and pectin methylesterase (PME) were all inhibited by LT. The expressions of PpPME3, PpPL2, and PpPG were closely related to fruit firmness, but PpCBF2 and PpCBF3 showed higher expression levels at LT than RT. The promoters of PpPL2 and PpPG contain the DER motif, which suggested that PpCBF2 and PpCBF3 might negatively regulate their expression by directly binding to their promoters. These results indicated that LT may maintain firmness by activating PpCBFs to repress pectin-degradation-related enzyme genes during storage.


Asunto(s)
Prunus persica , Prunus persica/metabolismo , Temperatura , Frutas/metabolismo , Pectinas/metabolismo , Poligalacturonasa/genética , Poligalacturonasa/metabolismo , Pared Celular/metabolismo
13.
Tree Physiol ; 43(11): 1933-1949, 2023 11 13.
Artículo en Inglés | MEDLINE | ID: mdl-37561416

RESUMEN

The ß-cyclocitric acid (ß-CCA) is a bioactive apocarotenoid previously shown to improve drought tolerance in annual plants. However, the underlying molecular mechanism of this process remains largely elusive. Moreover, the question about the activity of ß-CCA in perennial fruit crops is still open. Here, we found that treatment of ß-CCA enhances drought tolerance in peach seedlings. The application of ß-CCA significantly increased the relative water content and root activity and reduced the electrolyte leakage of peach seedlings under drought stress. Moreover, treatment with ß-CCA under drought stress increased chlorophyll fluorescence, indicating a positive effect on photosynthesis, while also enhancing superoxide dismutase and peroxidase activity and reducing reactive oxygen species (ROS) levels. Consistent with these alterations, transcriptome analysis revealed an up-regulation of photosynthesis and antioxidant-related genes upon the application of ß-CCA under drought stress. We also detected an induction in genes related to detoxification, environmental adaptation, primary metabolism, phytohormone, phenylpropanoid and the biosynthesis of cutin, suberine and wax, which might contribute to the induction of drought resistance. Altogether, our study reveals that ß-CCA positively modulates peach drought tolerance, which is mainly mediated by enhancing photosynthesis and reducing ROS, indicating the potential of utilizing ß-CCA for drought control in peach and perhaps other fruit crops.


Asunto(s)
Prunus persica , Prunus persica/metabolismo , Resistencia a la Sequía , Plantones/genética , Plantones/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Fotosíntesis/fisiología , Antioxidantes/metabolismo , Sequías , Estrés Fisiológico/genética
14.
Bioresour Technol ; 386: 129559, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37506930

RESUMEN

In this study, explored the influence of different proportion (0%, 2.5%, 5%, 7.5%, and 10%) peach shell biochar (PSB) with microbial agents (EM) on the carbon transformation, humification process and fungal community dynamics during sheep manure (SM) composting. And no additives were used as control. The results manifested that the CO2 and CH4 emissions were effectively reduced 8.23%∼13.10% and 17.92%∼33.71%. The degradation rate of fulvic acid increased by 17.12%∼23.08% and the humic acid contents were enhanced by 27.27%∼33.97% so that accelerated the composting. Besides, the dominant fungal phylum was Ascomycota (31.43%∼52.54%), Basidiomycota (3.12%∼13.85%), Mucoromycota (0.40%∼7.61%) and Mortierellomycota (0.97%∼2.39%). Pearson correlation analysis and network indicated that there were different correlations between physicochemical indexes and fungal community under different additive concentrations. In brief, the two modifiers application promoted the SM degradation and affected the fungal community structure.


Asunto(s)
Ascomicetos , Compostaje , Prunus persica , Animales , Ovinos , Suelo/química , Estiércol/microbiología , Prunus persica/metabolismo , Carbón Orgánico/química , Ascomicetos/metabolismo
15.
J Food Sci ; 88(8): 3323-3331, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37458299

RESUMEN

In this study, "Xiahui 6" peaches were treated with 10 µL/L 1-methylcyclopropene (1-MCP) for 12 h and then stored at 20°C for 9 days; the regulation of 1-MCP on organic acids during storage was investigated through transcriptomic and metabolite analyses. Results showed that 1-MCP maintained higher gene expression of malate synthesis (PpPEPC1, PpPEPC2, and PpNAD-cytMDH) at the end of storage but extremely inhibited the gene expression of malate degradation (PpNADP-cytME) during storage, resulting that malate content in treated peaches was twice that of control group at day 7. Besides, the increasement of citrate synthesis and degradation-related genes (PpmitCS, PpcytACO, PpNAD-mitIDH, and PpNADP-cytIDH) at days 3 and 5 was postponed by 1-MCP treatment, accompanied by 0.5 times higher citrate content at day 7. Our results suggested that 1-MCP has inhibitory effects on both the synthesis and degradation of organic acids; however, the inhibitory effect of 1-MCP on organic acid degradation may be greater than that on organic acid synthesis. Practical Application: This study provides a theoretical basis for the application of 1-methylcyclopropene (1-MCP) in fruit preservation.


Asunto(s)
Prunus persica , Prunus persica/metabolismo , Transcriptoma , Malatos/metabolismo , Ciclopropanos/farmacología , Ciclopropanos/metabolismo , Ácido Cítrico/farmacología , Frutas/metabolismo
16.
Plant Physiol ; 192(4): 3134-3151, 2023 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-37165714

RESUMEN

Gummosis is 1 of the most common and destructive diseases threatening global peach (Prunus persica) production. Our previous studies have revealed that ethylene and methyl jasmonate enhance peach susceptibility to Lasiodiplodia theobromae, a virulent pathogen inducing gummosis; however, the underlying molecular mechanisms remain obscure. Here, 2 ethylene response factors (ERFs), PpERF98 and PpERF1, were identified as negative regulators in peach response to L. theobromae infection. Expression of 2 putative paralogs, PpERF98-1/2, was dramatically induced by ethylene and L. theobromae treatments and accumulated highly in the gummosis-sensitive cultivar. Silencing of PpERF98-1/2 increased salicylic acid (SA) content and pathogenesis-related genes PpPR1 and PpPR2 transcripts, conferring peach resistance to L. theobromae, whereas peach and tomato (Solanum lycopersicum) plants overexpressing either of PpERF98-1/2 showed opposite changes. Also, jasmonic acid markedly accumulated in PpERF98-1/2-silenced plants, but reduction in PpPR3, PpPR4, and PpCHI (Chitinase) transcripts indicated a blocked signaling pathway. PpERF98-1 and 2 were further demonstrated to directly bind the promoters of 2 putative paralogous PpERF1 genes and to activate the ERF branch of the jasmonate/ethylene signaling pathway, thus attenuating SA-dependent defenses. The lesion phenotypes of peach seedlings overexpressing PpERF1-1/2 and PpERF98-1/2 were similar. Furthermore, PpERF98-1/2 formed homodimers/heterodimers and interacted with the 2 PpERF1 proteins to amplify the jasmonate/ethylene signaling pathway, as larger lesions were observed in peach plants cooverexpressing PpERF98 with PpERF1 relative to individual PpERF98 overexpression. Overall, our work deciphers an important regulatory network of ethylene-mediated peach susceptibility to L. theobromae based on a PpERF98-PpERF1 transcriptional cascade, which could be utilized as a potential target for genetic engineering to augment protection against L. theobromae-mediated diseases in crops and trees.


Asunto(s)
Prunus persica , Prunus persica/genética , Prunus persica/metabolismo , Etilenos/metabolismo , Plantas
17.
Food Chem ; 423: 136227, 2023 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-37201255

RESUMEN

Peach is a common plant-derived allergenic food and ultrahigh-pressure treatment is often used in peach products. In our study, an in-depth analysis of the structural and allergenicity changes of peach allergenic proteins after UHP treatment was performed by spectroscopy, mass spectrometry combined with serology and cytology. The results indicated that UHP treatment could reduce the content of peach soluble proteins and cause changes in secondary and tertiary structures. In addition, more hydrophobic residues were exposed and proteins tended to polymerize after UHP-treatment. The results of immunological assays showed that UHP treatment could reduce the IgE binding capacity of peach proteins and affect the ability of basophil degranulation, the upregulation of some cytokines may contribute to the reduction of peach protein allergenicity. Notably, UHP treatment may lead to the masking of some digestion sites in Pru p 3 epitopes, thus impeding human digestion and increasing the potential risk of allergenicity.


Asunto(s)
Hipersensibilidad a los Alimentos , Prunus persica , Humanos , Alérgenos , Prunus persica/metabolismo , Proteínas de Plantas/metabolismo , Antígenos de Plantas/química
18.
Molecules ; 28(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37241845

RESUMEN

Exposure to ultraviolet light can cause oxidative damage and accelerate skin aging and is one of the main causes of skin aging. Peach gum polysaccharide (PG) is a natural edible plant component that has many biological activities, such as regulating blood glucose and blood lipids and improving colitis, as well as antioxidant and anticancer properties. However, there are few reports on the antiphotoaging effect of peach gum polysaccharide. Therefore, in this paper, we study the basic composition of the raw material peach gum polysaccharide and its ability to improve UVB-induced skin photoaging damage in vivo and in vitro. The results show that peach gum polysaccharide is mainly composed of mannose, glucuronic acid, galactose, xylose, and arabinose, and its molecular weight (Mw) is 4.10 × 106 g/mol. The results of the in vitro cell experiments show that PG could significantly alleviate UVB-induced apoptosis of human skin keratinocytes, promote cell growth repair, reduce the expression of intracellular oxidative factors and matrix metal collagenase, and improve the extent of oxidative stress repair. Moreover, the results from the in vivo animal experiments showed that PG could not only effectively improve the phenotype of UVB-induced photoaged skin in model mice but also significantly improve their oxidative stress status, regulate the contents of ROS and the levels of SOD and CAT, and repair the oxidative skin damage induced by UVB in vivo. In addition, PG improved UVB-induced photoaging-mediated collagen degradation in mice by inhibiting the secretion of matrix metalloproteinases. The above results indicate that peach gum polysaccharide has the ability to repair UVB-induced photoaging and may be used as a potential drug and antioxidant functional food to resist photoaging in the future.


Asunto(s)
Prunus persica , Envejecimiento de la Piel , Ratones , Humanos , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Prunus persica/metabolismo , Piel/metabolismo , Estrés Oxidativo , Polisacáridos/farmacología , Polisacáridos/metabolismo , Rayos Ultravioleta/efectos adversos , Fibroblastos
19.
Plant Physiol ; 193(1): 448-465, 2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37217835

RESUMEN

Bud dormancy is crucial for winter survival and is characterized by the inability of the bud meristem to respond to growth-promotive signals before the chilling requirement (CR) is met. However, our understanding of the genetic mechanism regulating CR and bud dormancy remains limited. This study identified PpDAM6 (DORMANCY-ASSOCIATED MADS-box) as a key gene for CR using a genome-wide association study analysis based on structural variations in 345 peach (Prunus persica (L.) Batsch) accessions. The function of PpDAM6 in CR regulation was demonstrated by transiently silencing the gene in peach buds and stably overexpressing the gene in transgenic apple (Malus × domestica) plants. The results showed an evolutionarily conserved function of PpDAM6 in regulating bud dormancy release, followed by vegetative growth and flowering, in peach and apple. The 30-bp deletion in the PpDAM6 promoter was substantially associated with reducing PpDAM6 expression in low-CR accessions. A PCR marker based on the 30-bp indel was developed to distinguish peach plants with non-low and low CR. Modification of the H3K27me3 marker at the PpDAM6 locus showed no apparent change across the dormancy process in low- and non-low- CR cultivars. Additionally, H3K27me3 modification occurred earlier in low-CR cultivars on a genome-wide scale. PpDAM6 could mediate cell-cell communication by inducing the expression of the downstream genes PpNCED1 (9-cis-epoxycarotenoid dioxygenase 1), encoding a key enzyme for ABA biosynthesis, and CALS (CALLOSE SYNTHASE), encoding callose synthase. We shed light on a gene regulatory network formed by PpDAM6-containing complexes that mediate CR underlying dormancy and bud break in peach. A better understanding of the genetic basis for natural variations of CR can help breeders develop cultivars with different CR for growing in different geographical regions.


Asunto(s)
Malus , Prunus persica , Prunus , Prunus persica/genética , Prunus persica/metabolismo , Prunus/genética , Prunus/metabolismo , Histonas/metabolismo , Estudio de Asociación del Genoma Completo , Malus/genética , Regulación de la Expresión Génica de las Plantas , Latencia en las Plantas/genética
20.
Protoplasma ; 260(5): 1375-1388, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37010630

RESUMEN

Waterlogging occurs due to poor soil drainage or excessive rainfall. It is a serious abiotic stress factor that negatively affects crop growth. Waterlogging often causes plants to shed leaves, fruits, and, ultimately, to die. Peach (Prunus persica) trees are generally intolerant to waterlogging, and the primary peach rootstock used in Chinais "Maotao," which has very poor resistance to sensitivity. Therefore, waterlogging has become a restriction on the development of the peach industry in many regions. In this experiment, we tested the waterlogging resistance of "Maotao (Prunus persica (L.) Batsch)" (MT), "Shannong1 (GF677 × Cadaman)" (SN1), and "Mirabolano 29C (Prunus cerasifera)" (M29C) rootstocks. Using a simulated waterlogging method, the effects of waterlogging on the photosynthetic system, leaf pigments, osmotic adjustment, lipid membrane peroxidation, and antioxidant system of these three peach rootstocks were studied, and the changes of chlorophyll fluorescence parameters and fluorescence imaging were observed. The results showed that, with prolonged waterlogging, the photosynthetic pigment content and photosynthesis of the three peach rootstocks decreased rapidly, but the decomposition rate of SN1 and M29C chlorophyll was slower, and it still had high light energy absorption and energy transfer capabilities under waterlogging stress, which reduced the damage caused by waterlogging stress; under the stress of flooding, the osmoregulatory substances of the three rootstocks increased to varying degrees compared with normal conditions. At the same time, the enzyme activity of superoxide dismutase (SOD) activity, peroxidase (POD) activity, and catalase (CAT) activity in the leaves of the three rootstocks under flooding stress all increased and then decreased; during this period, malondialdehyde (MDA) continued to increase, and SN1 and M29C were significantly lower than MT; and chlorophyll fluorescence parameters, including the maximum photochemical efficiency (Fv/Fm), actual photochemical efficiency (ΦPSII), photochemical quenching coefficient (qP), non-photochemical quenching (NPQ), and electron transfer rate (ETR) decreased significantly. The tolerance of SN1 and M29C to waterlogging was significantly better than that of MT rootstocks. The rootstock and grafted seedlings of SN1 have good waterlogging tolerance.


Asunto(s)
Prunus persica , Prunus persica/metabolismo , Clorofila , Fotosíntesis/fisiología , Antioxidantes/metabolismo , Hojas de la Planta/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...