RESUMEN
This systematic review aimed to answer the following question: What is the estimated prevalence of pulp canal obliteration in subtypes of traumatic dental injury (TDI) in deciduous and permanent teeth? The searches were conducted in PubMed, Embase, Scopus, Web of Science, LILACS, Grey Literature, and Google Scholar, and complemented by a manual search, until April 16th, 2023. Observational studies were selected based on population, exposure, and outcome (PEO) (P, deciduous or permanent teeth; E, TDI; O, pulp canal obliteration). Two reviewers (kappa 0.90) applied the eligibility criteria, extracted qualitative data, and assessed the methodological quality using the Newcastle-Ottawa tool. A meta-analysis was performed using MedCalc 17.2. Thirty-four articles were selected after screening. The methodological quality was moderate to high. The estimated prevalence of pulp canal obliteration was 27.6% (95%CI: 18.7-37.7) and 21.9% (95%CI:16.0-28.4), for permanent and deciduous teeth, respectively. Considering the TDI subtypes, the prevalence of pulp canal obliteration was higher in root fractures of the permanent teeth (78.6 %, 95%CI: 62.8-90.9) and lateral luxation injuries in deciduous teeth (29.4%, 95%CI:19.1-41.0). Our review of 34 articles of moderate and high methodological quality found that the prevalence of pulpal canal obliteration ranges from 21.9% to 27.6%. Pulp canal obliteration was most frequently detected following lateral luxation injuries of the deciduous teeth and root fractures of the permanent teeth (PROSPERO CRD42020179438).
Asunto(s)
Cavidad Pulpar , Dentición Permanente , Traumatismos de los Dientes , Diente Primario , Humanos , Traumatismos de los Dientes/epidemiología , Diente Primario/lesiones , Prevalencia , Cavidad Pulpar/lesiones , Pulpa Dental/lesionesRESUMEN
OBJECTIVES: This study sought to determine effects of Thai propolis extract mixed in mineral trioxide aggregate (MTA) on matrix metalloproteinase-2 (MMP-2) expression and its activity in inflamed human dental pulp cells (HDPCs). MATERIALS AND METHODS: Interleukin-1ß-primed HDPCs were treated with either the eluate of MTA mixed with distilled water, of MTA mixed with 0.75 mg/ml of the propolis extract, or of Dycal®, 0.75 mg/ml of the propolis extract, or 0.2% (v/v) of chlorhexidine for 24 or 72 h. The viability of HDPCs was determined by the PrestoBlue® cytotoxic assay. HDPCs' lysates were analyzed for MMP-2 mRNA expression by RT-qPCR, while their supernatants were measured for MMP-2 activity by gelatin zymography. RESULTS: At 24 and 72 h, a non-toxic dose of the propolis extract at 0.75 mg/ml by itself or mixed in MTA tended to reduce MMP-2 expression upregulated by MTA, while it further decreased the MMP-2 activity as compared to that of MTA mixed with distilled water. The MMP-2 activity of interleukin-1ß-primed HDPCs treated with the eluate of the propolis extract mixed in MTA was significantly lower than that of interleukin-1ß-primed HDPCs at 24 h (p=0.012). As a control, treatment with chlorhexidine significantly inhibited MMP-2 expression induced by MTA and MMP-2 activity enhanced by interleukin-1ß (p<0.05). Treatment with Dycal® caused a significant increase in HDPC's death, resulting in a significant decrease in MMP-2 expression and activity (p<0.05). CONCLUSIONS: MTA mixed with Thai propolis extract can reduce MMP-2 mRNA expression and activity when compared to MTA mixed with distilled water in inflamed HDPCs.
Asunto(s)
Compuestos de Aluminio , Compuestos de Calcio , Pulpa Dental , Metaloproteinasa 2 de la Matriz , Óxidos , Própolis , Silicatos , Compuestos de Aluminio/farmacología , Compuestos de Calcio/farmacología , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Clorhexidina/farmacología , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Combinación de Medicamentos , Interleucina-1beta , Ensayo de Materiales , Metaloproteinasa 2 de la Matriz/efectos de los fármacos , Óxidos/farmacología , Própolis/farmacología , Própolis/química , Reacción en Cadena en Tiempo Real de la Polimerasa , Reproducibilidad de los Resultados , ARN Mensajero/efectos de los fármacos , Silicatos/farmacología , Tailandia , Factores de Tiempo , HumanosRESUMEN
Human dental tissue mesenchymal stem cells (DT-MSCs) constitute an attractive alternative to bone marrow-derived mesenchymal stem cells (BM-MSCs) for potential clinical applications because of their accessibility and anti-inflammatory capacity. We previously demonstrated that DT-MSCs from dental pulp (DP-MSCs), periodontal ligaments (PDL-MSCs), and gingival tissue (G-MSCs) show immunosuppressive effects similar to those of BM, but to date, the DT-MSC-mediated immunoregulation of T lymphocytes through the purinergic pathway remains unknown. In the present study, we compared DP-MSCs, PDL-MSCs, and G-MSCs in terms of CD26, CD39, and CD73 expression; their ability to generate adenosine (ADO) from ATP and AMP; and whether the concentrations of ADO that they generate induce an immunomodulatory effect on T lymphocytes. BM-MSCs were included as the gold standard. Our results show that DT-MSCs present similar characteristics among the different sources analyzed in terms of the properties evaluated; however, interestingly, they express more CD39 than BM-MSCs; therefore, they generate more ADO from ATP. In contrast to those produced by BM-MSCs, the concentrations of ADO produced by DT-MSCs from ATP inhibited the proliferation of CD3+ T cells and promoted the generation of CD4+CD25+FoxP3+CD39+CD73+ Tregs and Th17+CD39+ lymphocytes. Our data suggest that DT-MSCs utilize the adenosinergic pathway as an immunomodulatory mechanism and that this mechanism is more efficient than that of BM-MSCs.
Asunto(s)
5'-Nucleotidasa , Adenosina , Apirasa , Pulpa Dental , Células Madre Mesenquimatosas , Ligamento Periodontal , Linfocitos T , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/inmunología , Humanos , Adenosina/metabolismo , Pulpa Dental/citología , Pulpa Dental/inmunología , Pulpa Dental/metabolismo , Linfocitos T/inmunología , Linfocitos T/metabolismo , 5'-Nucleotidasa/metabolismo , Apirasa/metabolismo , Ligamento Periodontal/citología , Ligamento Periodontal/metabolismo , Adenosina Trifosfato/metabolismo , Células Cultivadas , Encía/citología , Encía/metabolismo , Encía/inmunología , Antígenos CD/metabolismo , Inmunomodulación , Diferenciación Celular , Proliferación Celular , Dipeptidil Peptidasa 4/metabolismo , Transducción de Señal , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteínas Ligadas a GPIRESUMEN
OBJECTIVE: Several materials have been developed to preserve pulp vitality. They should have ideal cytocompatibility characteristics to promote the activity of stem cells of human exfoliated deciduous teeth (SHED) and thus heal pulp tissue. OBJECTIVE: To evaluate the cytotoxicity of different dilutions of bioceramic material extracts in SHED. METHODOLOGY: SHED were immersed in αMEM + the material extract according to the following experimental groups: Group 1 (G1) -BBio membrane, Group 2 (G2) - Bio-C Repair, Group 3 (G3) - MTA Repair HP, Group 4 (G4) - TheraCal LC, and Group 5 (G5) - Biodentine. Positive and negative control groups were maintained respectively in αMEM + 10% FBS and Milli-Q Water. The methods to analyze cell viability and proliferation involved MTT and Alamar Blue assays at 24, 48, and 72H after the contact of the SHED with bioceramic extracts at 1:1 and 1:2 dilutions. Data were analyzed by the three-way ANOVA, followed by Tukey's test (p<0.05). RESULTS: At 1:1 dilution, SHED in contact with the MTA HP Repair extract showed statistically higher cell viability than the other experimental groups and the negative control (p<0.05), except for TheraCal LC (p> 0.05). At 1:2 dilution, BBio Membrane and Bio-C showed statistically higher values in intra- and intergroup comparisons (p<0.05). BBio Membrane, Bio-C Repair, and Biodentine extracts at 1:1 dilution showed greater cytotoxicity than 1:2 dilution in all periods (p<0.05). CONCLUSION: MTA HP Repair showed the lowest cytotoxicity even at a 1:1 dilution. At a 1:2 dilution, the SHED in contact with the BBio membrane extract showed high cell viability. Thus, the BBio membrane would be a new non-cytotoxic biomaterial for SHED. Results offer possibilities of biomaterials that can be indicated for use in clinical regenerative procedures of the dentin-pulp complex.
Asunto(s)
Compuestos de Aluminio , Materiales Biocompatibles , Compuestos de Calcio , Proliferación Celular , Supervivencia Celular , Cerámica , Pulpa Dental , Combinación de Medicamentos , Ensayo de Materiales , Óxidos , Silicatos , Células Madre , Diente Primario , Humanos , Diente Primario/efectos de los fármacos , Silicatos/química , Silicatos/toxicidad , Silicatos/farmacología , Supervivencia Celular/efectos de los fármacos , Compuestos de Calcio/química , Compuestos de Calcio/farmacología , Compuestos de Calcio/toxicidad , Células Madre/efectos de los fármacos , Factores de Tiempo , Óxidos/química , Óxidos/toxicidad , Proliferación Celular/efectos de los fármacos , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Cerámica/química , Cerámica/toxicidad , Compuestos de Aluminio/química , Compuestos de Aluminio/toxicidad , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Análisis de Varianza , Reproducibilidad de los Resultados , Bismuto/química , Bismuto/toxicidad , Bismuto/farmacología , Células Cultivadas , Valores de Referencia , Sales de Tetrazolio , Xantenos/química , OxazinasRESUMEN
Mesenchymal stem-cell-derived extracellular vesicles (MSC-EVs) have been increasingly investigated for cancer therapy and drug delivery, and they offer an advanced cell-free therapeutic option. However, their overall effects and efficacy depend on various factors, including the MSC source and cargo content. In this study, we isolated EVs from the conditioned medium of human immature dental pulp stem cells (hIDPSC-EVs) and investigated their effects on two papillary thyroid cancer (PTC) cell lines (BCPAP and TPC1). We observed efficient uptake of hIDPSC-EVs by both PTC cell lines, with a notable impact on gene regulation, particularly in the Wnt signaling pathway in BCPAP cells. However, no significant effects on cell proliferation were observed. Conversely, hIDPSC-EVs significantly reduced the invasive capacity of both PTC cell lines after 120 h of treatment. These in vitro findings suggest the therapeutic potential of hIDPSC-EVs in cancer management and emphasize the need for further research to develop novel and effective treatment strategies. Furthermore, the successful internalization of hIDPSC-EVs by PTC cell lines underscores their potential use as nanocarriers for anti-cancer agents.
Asunto(s)
Proliferación Celular , Pulpa Dental , Vesículas Extracelulares , Cáncer Papilar Tiroideo , Neoplasias de la Tiroides , Humanos , Pulpa Dental/citología , Vesículas Extracelulares/metabolismo , Cáncer Papilar Tiroideo/terapia , Cáncer Papilar Tiroideo/patología , Cáncer Papilar Tiroideo/metabolismo , Neoplasias de la Tiroides/terapia , Neoplasias de la Tiroides/metabolismo , Neoplasias de la Tiroides/patología , Línea Celular Tumoral , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Vía de Señalización Wnt , Medios de Cultivo Condicionados/farmacologíaRESUMEN
The objective of this study was to create injectable photo-crosslinkable biomaterials, using gelatin methacryloyl (GelMA) hydrogel, combined with a decellularized bone matrix (BMdc) and a deproteinized (BMdp) bovine bone matrix. These were intended to serve as bioactive scaffolds for dentin regeneration. The parameters for GelMA hydrogel fabrication were initially selected, followed by the incorporation of BMdc and BMdp at a 1% (w/v) ratio. Nano-hydroxyapatite (nHA) was also included as a control. A physicochemical characterization was conducted, with FTIR analysis indicating that the mineral phase was complexed with GelMA, and BMdc was chemically bonded to the amide groups of gelatin. The porous structure was preserved post-BMdc incorporation, with bone particles incorporated alongside the pores. Conversely, the mineral phase was situated inside the pore opening, affecting the degree of porosity. The mineral phase did not modify the degradability of GelMA, even under conditions of type I collagenase-mediated enzymatic challenge, allowing hydrogel injection and increased mechanical strength. Subsequently, human dental pulp cells (HDPCs) were seeded onto the hydrogels. The cells remained viable and proliferative, irrespective of the GelMA composition. All mineral phases resulted in a significant increase in alkaline phosphatase activity and mineralized matrix deposition. However, GelMA-BMdc exhibited higher cell expression values, significantly surpassing those of all other formulations. In conclusion, our results showed that GelMA-BMdc produced a porous and stable hydrogel, capable of enhancing odontoblastic differentiation and mineral deposition when in contact with HDPCs, thereby showing potential for dentin regeneration.
Asunto(s)
Pulpa Dental , Dentina , Gelatina , Ingeniería de Tejidos , Dentina/química , Ingeniería de Tejidos/métodos , Animales , Bovinos , Gelatina/química , Humanos , Pulpa Dental/citología , Metacrilatos/química , Reactivos de Enlaces Cruzados/química , Hidrogeles/química , Andamios del Tejido/química , Huesos , Células Cultivadas , PorosidadRESUMEN
OBJECTIVES: To evaluate the effects of dentin biomodification agents (Proanthocyanidin (PAC), Cardol (CD) and Cardol-methacrylate (CDMA) on dentin hydrophilicity by contact angle measurement, viability of dental pulp stem cells (DPSCs) and nanomechanical properties of the hybrid layer (HL). METHODS: CDMA monomer was synthesized from cardol through methacrylic acid esterification. Human extracted third molars were used for all experiments. For nanomechanical tests, specimens were divided in four groups according to the primer solutions (CD, CDMA, PAC and control) were applied before adhesive and composite coating. Nanomechanical properties of the HL were analyzed by nanoindentation test using a Berkovich probe in a nanoindenter. Wettability test was performed on dentin surfaces after 1 min biomodification and measured by contact angle analysis. Cytotoxicity was assessed by a MTT assay with DPSCs after 48 and 72 h. Data were analyzed with Student's t test or Two-way ANOVA and Tukey HSD test (p < 0.05). RESULTS: CD and CDMA solutions achieved greater hydrophobicity and increased the water-surface contact angles when compared to PAC and control groups (p < 0.05). PAC group showed a greater reduction of elastic modulus in nanoindentation experiments when compared to CD and CDMA groups (p < 0.05) after 4 months of aging. CD inhibited cell proliferation compared to all further materials (p < 0.05), whilst CDMA and PAC indicated no cell cytotoxicity to human DPSCs. SIGNIFICANCE: Cardol-methacrylate provided significantly higher hydrophobicity to dentin and demonstrated remarkable potential as collagen crosslinking, attaining the lowest decrease of HL's mechanical properties. Furthermore, such monomer did not affect pulp cytotoxicity, thereby highlighting promising feasibility for clinical applications.
Asunto(s)
Supervivencia Celular , Dentina , Metacrilatos , Humectabilidad , Humanos , Supervivencia Celular/efectos de los fármacos , Metacrilatos/química , Metacrilatos/farmacología , Dentina/química , Proantocianidinas/farmacología , Proantocianidinas/química , Ensayo de Materiales , Pulpa Dental/citología , Tercer Molar , Células Madre/efectos de los fármacos , Propiedades de Superficie , Interacciones Hidrofóbicas e Hidrofílicas , Técnicas In VitroRESUMEN
Bone tissue regeneration strategies have incorporated the use of natural polymers, such as hydroxyapatite (nHA), chitosan (CH), gelatin (GEL), or alginate (ALG). Additionally, platelet concentrates, such as platelet-rich fibrin (PRF) have been suggested to improve scaffold biocompatibility. This study aimed to develop scaffolds composed of nHA, GEL, and CH, with or without ALG and lyophilized PRF, to evaluate the scaffold's properties, growth factor release, and dental pulp stem cells (DPSC), and osteoblast (OB) derived from DPSC viability. Four scaffold variations were synthesized and lyophilized. Then, degradation, swelling profiles, and morphological analysis were performed. Furthermore, PDGF-BB and FGF-B growth factors release were quantified by ELISA, and cytotoxicity and cell viability were evaluated. The swelling and degradation profiles were similar in all scaffolds, with pore sizes ranging between 100 and 250 µm. FGF-B and PDGF-BB release was evidenced after 24 h of scaffold immersion in cell culture medium. DPSC and OB-DPSC viability was notably increased in PRF-supplemented scaffolds. The nHA-CH-GEL-PRF scaffold demonstrated optimal physical-biological characteristics for stimulating DPSC and OB-DPSC cell viability. These results suggest lyophilized PRF improves scaffold biocompatibility for bone tissue regeneration purposes.
Asunto(s)
Alginatos , Supervivencia Celular , Quitosano , Pulpa Dental , Durapatita , Gelatina , Osteoblastos , Fibrina Rica en Plaquetas , Células Madre , Andamios del Tejido , Humanos , Pulpa Dental/citología , Quitosano/química , Quitosano/farmacología , Gelatina/química , Fibrina Rica en Plaquetas/química , Fibrina Rica en Plaquetas/metabolismo , Andamios del Tejido/química , Células Madre/efectos de los fármacos , Células Madre/citología , Células Madre/metabolismo , Supervivencia Celular/efectos de los fármacos , Durapatita/química , Durapatita/farmacología , Alginatos/química , Alginatos/farmacología , Osteoblastos/efectos de los fármacos , Osteoblastos/citología , Adhesión Celular/efectos de los fármacos , Ingeniería de Tejidos/métodos , Células CultivadasRESUMEN
Studies regarding cytotoxic effects attributed to the use of adhesive bonding agents on pulp tissue are not conclusive. To point out whether these materials are safe for clinical use, in vivo exposure of dental pulp to adhesive bonding agents was simulated using an experimental setup in which Human Dental Pulp Stem Cells (hDPSC) are exposed to the action of two kinds of adhesives: self-etching adhesives and two-step bonding agents through a dentine barrier. Cytotoxic effects on these cells were evaluated by MTT assay protocol and fluorescence microscopy, and their results were contrasted to those obtained through Raman spectra taken on single hDPSCs. Overall, no significant cytotoxic effects were observed by combining all the techniques, and cell viability close to 90% was achieved for a dentine barrier of at least 1 mm thick. Moreover, Raman spectroscopy was able to detect structural DNA damage in some dental pulp cells when exposed to two-step bonding agents, suggesting that this technique could be considered a complementary tool with the potential to evaluate cell toxicity beyond cell viability.
Asunto(s)
Supervivencia Celular , Pulpa Dental , Recubrimientos Dentinarios , Espectrometría Raman , Células Madre , Humanos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Células Madre/efectos de los fármacos , Recubrimientos Dentinarios/toxicidad , Supervivencia Celular/efectos de los fármacos , Microscopía Fluorescente , Células CultivadasRESUMEN
OBJECTIVES: This study aimed to assess antimicrobial efficacy, cytotoxicity, and cytokine release (IL-1b, IL-6, IL-10, TNF-α) from human dental pulp stem cells (hDPSCs) of chitosan (CH) and hydroxyapatite (HAp)-modified glass ionomer cements (GIC). METHODS: GICs with varied CH and HAp concentrations (0 %, 0.16 %, 2 %, 5 %, 10 %) were tested against S. mutans for 24 h or 7 days. Antimicrobial activity was measured using an MTT test. Cytotoxicity evaluation followed for optimal concentrations, analyzing mitochondrial activity and apoptosis in hDPSCs. Cytokine release was assessed with MAGPIX. Antimicrobial analysis used Shapiro-Wilk, Kruskal-Wallis, and Dunnett tests. Two-way ANOVA, Tukey, and Dunnett tests were applied for hDP metabolism and cytokine release. RESULTS: CH 2 % and HAp 5 % significantly enhanced GIC antimicrobial activity, especially after seven days. In immediate analysis, all materials showed reduced mitochondrial activity compared to the control. After 24 h, CH demonstrated mitochondrial metabolism similar to the control. All groups exhibited mild cytotoxicity (â¼30 % cell death). Only IL-6 was influenced, with reduced release in experimental groups. SIGNIFICANCE: CH 2 % and HAp 5 % were most effective for antibacterial effects. GIC-CH 2 % emerged as the most promising formula, displaying significant antibacterial effects with reduced hDPSC toxicity.
Asunto(s)
Quitosano , Citocinas , Pulpa Dental , Durapatita , Cementos de Ionómero Vítreo , Quitosano/química , Quitosano/farmacología , Cementos de Ionómero Vítreo/toxicidad , Cementos de Ionómero Vítreo/farmacología , Cementos de Ionómero Vítreo/química , Humanos , Durapatita/química , Durapatita/farmacología , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Citocinas/metabolismo , Streptococcus mutans/efectos de los fármacos , Antiinfecciosos/farmacología , Antiinfecciosos/química , Ensayo de Materiales , Células Cultivadas , Células Madre/efectos de los fármacos , Apoptosis/efectos de los fármacosRESUMEN
BACKGROUND: In recent years, dental pulp stromal cells (DPSCs) have emerged as a promising therapeutic approach for Parkinson's disease (PD), owing to their inherent neurogenic potential and the lack of neuroprotective treatments for this condition. However, uncertainties persist regarding the efficacy of these cells in an undifferentiated state versus a neuronally-induced state. This study aims to delineate the distinct therapeutic potential of uninduced and neuronally-induced DPSCs in a rodent model of PD induced by 6-Hydroxydopamine (6-OHDA). METHODS: DPSCs were isolated from human teeth, characterized as mesenchymal stromal cells, and induced to neuronal differentiation. Neuronal markers were assessed before and after induction. DPSCs were transplanted into the substantia nigra pars compacta (SNpc) of rats 7 days following the 6-OHDA lesion. In vivo tracking of the cells, evaluation of locomotor behavior, dopaminergic neuron survival, and the expression of essential proteins within the dopaminergic system were conducted 7 days postgrafting. RESULTS: Isolated DPSCs exhibited typical characteristics of mesenchymal stromal cells and maintained a normal karyotype. DPSCs consistently expressed neuronal markers, exhibiting elevated expression of ßIII-tubulin following neuronal induction. Results from the animal model showed that both DPSC types promoted substantial recovery in dopaminergic neurons, correlating with enhanced locomotion. Additionally, neuronally-induced DPSCs prevented GFAP elevation, while altering DARPP-32 phosphorylation states. Conversely, uninduced DPSCs reduced JUN levels. Both DPSC types mitigated the elevation of glycosylated DAT. CONCLUSIONS: Our results suggested that uninduced DPSCs and neuronally-induced DPSCs exhibit potential in reducing dopaminergic neuron loss and improving locomotor behavior, but their underlying mechanisms differ.
Asunto(s)
Diferenciación Celular , Pulpa Dental , Modelos Animales de Enfermedad , Neuronas Dopaminérgicas , Células Madre Mesenquimatosas , Oxidopamina , Enfermedad de Parkinson , Humanos , Animales , Pulpa Dental/citología , Oxidopamina/farmacología , Ratas , Neuronas Dopaminérgicas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Enfermedad de Parkinson/terapia , Masculino , Células del Estroma/metabolismo , Trasplante de Células Madre Mesenquimatosas/métodos , Células CultivadasRESUMEN
Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) can differentiate into osteoblasts, indicating that both are potential candidates for bone tissue engineering. Osteogenesis is influenced by many environmental factors, one of which is lipopolysaccharide (LPS). LPS-induced NF-κB activity affects the osteogenic potencies of different types of MSCs differently. This study evaluated the effect of LPS-induced NF-κB activity and its inhibition in DPSCs and PDLSCs. DPSCs and PDLSCs were cultured in an osteogenic medium, pretreated with/without NF-κB inhibitor Bay 11-7082, and treated with/without LPS. Alizarin red staining was performed to assess bone nodule formation, which was observed under an inverted light microscope. NF-κB and alkaline phosphatase (ALP) activities were measured to examine the effect of Bay 11-7082 pretreatment and LPS supplementation on osteogenic differentiation of DPSCs and PDLSCs. LPS significantly induced NF-κB activity (p = 0.000) and reduced ALP activity (p = 0.000), which inhibited bone nodule formation in DPSCs and PDLSCs. Bay 11-7082 inhibited LPS-induced NF-κB activity, and partially maintained ALP activity and osteogenic potency of LPS-supplemented DPSCs and PDLSCs. Thus, inhibition of LPS-induced NF-κB activity can maintain the osteogenic potency of DPSCs and PDLSCs.
Asunto(s)
Pulpa Dental , Lipopolisacáridos , FN-kappa B , Nitrilos , Osteogénesis , Ligamento Periodontal , Sulfonas , Humanos , Antraquinonas/química , Células Cultivadas , Pulpa Dental/citología , Pulpa Dental/metabolismo , Lipopolisacáridos/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Nitrilos/farmacología , Osteogénesis/efectos de los fármacos , Ligamento Periodontal/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Sulfonas/farmacologíaRESUMEN
OBJECTIVE: To compare the effect of submucosal cryotherapy using cold saline to dexamethasone sodium phosphate and diclofenac sodium injections on substance P and interleukin 6 release in experimentally induced pulpal inflammation in rabbits' molar teeth. METHODOLOGY: Fifteen rabbits were randomly classified into 3 groups according to the submucosal injection given: cold saline, dexamethasone sodium phosphate, and diclofenac sodium. A split-mouth design was adopted, the right mandibular molars were experimental, and the left molars served as the control without injections. Intentional pulp exposures were created and left for 6 hours to induce pulpitis. Pulpal tissue was extracted and examined for SP and IL-6 levels using ELISA. Within each group, the level of cytokines released was measured for both control and experimental groups for intragroup comparison to determine the effect of injection. The percentage reduction of each mediator was calculated compared with the control side for intergroup comparison then the correlation between SP and IL-6 levels was analyzed using Spearman's rank order correlation coefficient. Statistical analysis was performed, and the significance level was set at p<0.05. RESULTS: Submucosal cryotherapy, dexamethasone sodium phosphate, and diclofenac sodium significantly reduced SP and IL-6 pulpal release. Submucosal cryotherapy significantly reduced SP more than and IL-6 more than dexamethasone sodium phosphate and diclofenac sodium. Pulpal reduction of SP and IL-6 showed a strong positive significant correlation. CONCLUSIONS: Submucosal cryotherapy reduces the pulpal release of SP and IL-6 and could be tested as an alternative to premedication to potentiate the effect of anesthesia and control postoperative endodontic pain.
Asunto(s)
Antiinflamatorios no Esteroideos , Crioterapia , Pulpa Dental , Dexametasona , Diclofenaco , Ensayo de Inmunoadsorción Enzimática , Interleucina-6 , Pulpitis , Distribución Aleatoria , Sustancia P , Animales , Conejos , Pulpitis/terapia , Diclofenaco/farmacología , Dexametasona/farmacología , Dexametasona/análogos & derivados , Interleucina-6/análisis , Crioterapia/métodos , Sustancia P/análisis , Antiinflamatorios no Esteroideos/farmacología , Pulpa Dental/efectos de los fármacos , Factores de Tiempo , Reproducibilidad de los Resultados , Resultado del Tratamiento , Masculino , Estadísticas no Paramétricas , Modelos Animales de Enfermedad , Antiinflamatorios/farmacología , Solución Salina , Valores de ReferenciaRESUMEN
Dental tissue stem cells (DTSCs) are well known for their multipotent capacity and regenerative potential. They also play an important role in the immune response of inflammatory processes derived from caries lesions, periodontitis, and gingivitis. These oral diseases are triggered by toxins known as lipopolysaccharides (LPS) produced by gram-negative bacteria. LPS present molecular patterns associated with pathogens and are recognized by Toll-like receptors (TLRs) in dental stem cells. In this review, we describe the effect of LPS on the biological behavior of DTSCs. We also focus on the molecular sensors, signaling pathways, and emerging players participating in the interaction of DTSCs with lipopolysaccharides. Although the scientific advances generated provide an understanding of the immunomodulatory potential of DTSCs, there are still new reflections to explore with regard to their clinical application in the treatment of oral inflammatory diseases.
Asunto(s)
Pulpa Dental , Lipopolisacáridos , Células Madre , Animales , Humanos , Pulpa Dental/citología , Pulpa Dental/metabolismo , Lipopolisacáridos/metabolismo , Transducción de Señal , Células Madre/metabolismo , Receptores Toll-Like/metabolismo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismoRESUMEN
OBJECTIVES: To evaluate the feasibility of using the pulp volume (Pv) to total volume (Tv) ratio (Pv:Tv), obtained from cone beam computed tomography (CBCT) scans of single-rooted teeth, for age estimation in a Brazilian population sample. METHODS: After obtaining approval from the ethics committee, the study commenced by applying inclusion criteria to screen CBCT scans, resulting in a probability-based sample of participants aged 18 years and older (ranging from 18 to 82 years, with a mean age of 46.44 years). A total of 517 single-rooted teeth, including maxillary central incisors (CI), mandibular canines (C), and mandibular first premolars (FP), were chosen based on excellent agreement values (> 0.9). Pv and Tv measurements were conducted using semi-automatic segmentation with ITK-SNAP 3.8 software. Statistical analysis was performed using Jamovi software, with a significance level set at 5% (α = 0.05). RESULTS: A strong negative correlation (r > -0.7) was observed between chronological age and the Pv:Tv ratio across all examined teeth. However, when conducting regression analysis with Pv:Tv data and chronological age as the independent variable, only the mandibular FP teeth exhibited a normal distribution. The resulting linear model demonstrated moderate predictive value (approximately 64%) in explaining the variance in chronological age, but caution should be exercised when interpreting these findings. CONCLUSIONS: The method of measuring individual tooth volume using CBCT to estimate chronological age via Pv:Tv has been demonstrated as effective and reproducible within the Brazilian population sample.
Asunto(s)
Determinación de la Edad por los Dientes , Tomografía Computarizada de Haz Cónico , Humanos , Persona de Mediana Edad , Adulto , Anciano , Femenino , Adolescente , Masculino , Anciano de 80 o más Años , Determinación de la Edad por los Dientes/métodos , Brasil , Estudios de Factibilidad , Adulto Joven , Pulpa Dental/diagnóstico por imagenRESUMEN
OBJECTIVES: This study evaluated the influence of hydrogen peroxide (HP) with or without titanium dioxide nanotubes (TiO2) associated with violet LED (VL) regarding: a) the temperature change in the pulp chamber and facial surface; b) the decomposition of HP; and c) the cytotoxicity of the gels on pulp cells. METHODS AND MATERIALS: The experimental groups were: HP35 (35% HP/Whiteness HP, FGM); HP35+VL; HP35T (HP35+TiO2); HP35T+VL; HP7 (7.5% HP/White Class 7.5%, FGM); HP7+VL; HP7T (HP7+TiO2); and HP7T+VL. TiO2 was incorporated into the bleaching gels at 1%. Eighty bovine incisors were evaluated to determine temperature change in 8 experimental groups (n=10/group). A k-type thermocouple was used to evaluate the temperatures of the facial surface and in the pulp chamber, achieved by enabling endodontic access to the palatal surface, throughout the 30-minute session. HP decomposition (n=3) of gels was evaluated by using an automatic potentiometric titrator at the initial and 30-minute time points. Trans-enamel and trans-dentinal cell viability were assessed with a pulp chamber device as well as enamel and dentin discs (n=6), and the treatment extracts (culture medium + diffused components) were collected and applied to MDPC-23 odontoblast cells to evaluate cell viability according to the MTT test. RESULTS: A temperature increase in the pulp chamber was observed in the presence of VL at 30 minutes (p<0.05) (Mann-Whitney test). Also at 30 minutes, HP35 showed greater decomposition in the presence of VL rather than in its absence (p<0.05) (mixed linear models and the Tukey-Kramer test). HP7 provided greater cell viability than the groups treated with HP35 (p<0.05) (generalized linear models test). Cell viability was significantly lower for HP7 in the presence of VL (p<0.05). CONCLUSION: Pulpal temperature increased with VL (maximum of 1.9°C), but did not exceed the critical limit to cause pulp damage. Less concentrated HP resulted in higher cell viability, even when associated with VL.
Asunto(s)
Pulpa Dental , Peróxido de Hidrógeno , Blanqueamiento de Dientes , Animales , Blanqueamiento de Dientes/métodos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Bovinos , Peróxido de Hidrógeno/farmacología , Supervivencia Celular/efectos de los fármacos , Blanqueadores Dentales/farmacología , Titanio , Temperatura Corporal , Cavidad Pulpar/efectos de los fármacosRESUMEN
Desde o incremento das pesquisas das células-tronco em 1961, por cientistas canadenses, os avanços em estudos, pesquisas e o desenvolvimento de novos tratamentos com esse tipo de recurso se mostram promissores. O uso de células-tronco é uma grande aposta tanto para a medicina quanto para a odontologia regenerativa. Os tratamentos com essa terapia podem oferecer mais qualidade de vida para as pessoas. O potencial dessas células tão especiais se encontra em duas características peculiares: elas são capazes de se multiplicarem e de se diferenciarem em outros tipos de células, como de tecidos, cartilagens e neurônios. É dessa maneira que elas têm um papel fundamental para estudos e tratamentos relacionados à regeneração. O uso de células-tronco na Odontologia torna possível diferentes processos odontológicos que oferecem mais qualidade de vida ao paciente. Isso porque fatores como defeitos genéticos, hábitos nocivos, cáries dentárias e perdas precoces dos dentes contribuem com a perda de dentes ao longo da vida. No início do século XXI, por volta dos anos de 2005, 2006, pesquisadores começaram a publicar em revistas internacionais da área uma nova técnica baseada no uso de célulastronco existentes no osso de sustentação dos dentes e na articulação dento alveolar. Esta técnica, chamada de Revascularização, promove o aparecimento de um novo tecido pulpar sadio, devolvendo ao dente sua vitalidade e higidez(AU)
Since the increase in stem cell research in 1961 by Canadian scientists, advances in studies, research and the development of new treatments with this type of resource have shown promise. The use of stem cells is a big bet for both medicine and regenerative dentistry. Treatments with this therapy can offer more quality of life for people. The potential of these very special cells lies in two peculiar characteristics: they are able to multiply and differentiate into other types of cells, such as tissues, cartilage and neurons. It is in this way that they play a key role for studies and treatments related to regeneration. The use of stem cells in dentistry makes possible different dental processes that offer more quality of life to the patient. That's because factors such as genetic defects, harmful habits, tooth decay, and early tooth loss all contribute to lifelong tooth loss. At the beginning of the twenty-first century, around the years 2005, 2006, researchers began to publish in international journals of the area a new technique based on the use of existing stem cells in the supporting bone of the teeth and in the alveolar tooth joint. This technique, called Revascularization, promotes the appearance of a new healthy pulp tissue, returning to the tooth its vitality and hygiene(AU)
Asunto(s)
Pulpa Dental , Odontología , Pérdida de DienteRESUMEN
SUMMARY: Despite comprehensive studies and reports about the properties of dental pulp stem cells (DPSCs) in vitro, we still need to confirm whether these in vitro characteristics coincide with the nature of DPSCs in situ. The anatomical location of DPSCs populations in the dental pulp has yet to be investigated. Moreover, the mesenchymal DPSCs have been much more studied than the neural crest-derived DPSCs. In this study, well-recognized neural/neural crest stem cell markers NCAM1, Nestin, SNAIL/SLUG, SOX9, and S100 are being investigated by immunohistochemistry to localize the precise location of these populations of DPSCs within the human adult dental pulp.All previously mentioned markers were expressed in the dental pulp, and their intensity and location of expression were reported.
A pesar de estudios e informes exhaustivos sobre las propiedades de las células madre de la pulpa dental (DPSC) in vitro, todavía necesitamos confirmar si estas características in vitro coinciden con la naturaleza de las DPSC in situ. La ubicación anatómica de las poblaciones de DPSC en la pulpa dental aún no se ha investigado. Además, las DPSC mesenquimales han sido mucho más estudiadas que las DPSC derivadas de la cresta neural. En este estudio, se están investigando mediante inmunohisto química marcadores de células madre de la cresta neural/ neural NCAM1, Nestin, SNAIL/SLUG, SOX9 y S100 para localizar la ubicación precisa de estas poblaciones de DPSC dentro de la pulpa dental humana adulta. Todos los marcadores mencionados anteriormente se expresaron en la pulpa dental y se informó su intensidad y ubicación de expresión.
Asunto(s)
Humanos , Adolescente , Adulto Joven , Células Madre/metabolismo , Pulpa Dental/citología , Cresta Neural/citología , Inmunohistoquímica , Proteínas S100 , Antígeno CD56 , Factor de Transcripción SOX9 , NestinaRESUMEN
The use of bleaching agents to remove stains is one of the main dental procedures to improve the aesthetics of teeth. This review presents the main agents used for tooth whitening, existing clinical protocols, and the structural changes that may occur through their use. The main bleaching agents consist of hydrogen peroxide and carbamide peroxide, which are used in bleaching techniques for vital teeth. These techniques can be performed in the office by a professional or by the individual in a home en-vironment under professional guidance. Bleaching agents come in a variety of concentrations and there are over-the-counter products available on the market with lower concentrations of hydrogen peroxide. Due to the chemical characteristics of the agents, changes in the organic and inorganic content of the tooth structure can be observed. These changes are related to morphological changes characterized by in-creased permeability and surface roughness, such changes compromise the mechanical resistance of the tooth. Furthermore, bleaching agents can promote molecular changes after reaching the dental pulp, resulting in oxidative stress of pulp cells and the release of pro-inflammatory mediators. Despite the bleaching effectiveness, tooth sensitivity is considered the main side effect of use. Therefore, among the heterogeneity of protocols, those that used the bleaching agent for a prolonged time and in lower con-centrations presented more harmful effects on the tooth structure.
Asunto(s)
Blanqueadores Dentales , Blanqueamiento de Dientes , Diente , Humanos , Blanqueamiento de Dientes/métodos , Blanqueamiento de Dientes/efectos adversos , Blanqueadores Dentales/farmacología , Diente/efectos de los fármacos , Peróxido de Hidrógeno , Peróxido de Carbamida , Pulpa Dental/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , PeróxidosRESUMEN
BACKGROUND: Although several studies indicate the harmful effects of bleaching on pulp tissue, the demand for this procedure using high concentrations of hydrogen peroxide (HP) is high. OBJECTIVES: To investigate the influence of bleaching on the pulp tissue. METHODS: Electronic searches were conducted (PubMed/MEDLINE, Scopus, Cochrane Library and grey literature) until February 2021. Only in vivo studies that evaluated the effects of HP and/or carbamide peroxide (CP) bleaching gels on the inflammatory response in the pulp tissue compared with a non-bleached group were included. Risk of bias was performed according to a modified Methodological Index for Non-Randomized Studies scale for human studies and the Systematic Review Centre for Laboratory Animal Experimentation's RoB tool for animal studies. Meta-analysis was unfeasible. RESULTS: Of the 1311 studies, 30 were eligible. Of these, 18 studies evaluated the inflammatory response in animal models. All these studies reported a moderate-to-strong inflammatory response in the superficial regions of pulp, characterized by cell disorganization and necrotic areas, particularly during the initial periods following exposure to 35%-38% HP, for 30-40 min. In the evaluation of human teeth across 11 studies, seven investigated inflammatory responses, with five observing significant inflammation in the pulp of bleached teeth. In terms of tertiary dentine deposition, 11 out of 12 studies noted its occurrence after bleaching with 35%-38% HP in long-term assessments. Additionally, three studies reported significant levels of osteocalcin/osteopontin at 2 or 10 days post-treatment. Other studies indicated an increase in pro-inflammatory cytokines ranging from immediately up to 10 days after bleaching. Studies using humans' teeth had a low risk of bias, whereas animal studies had a high risk of bias. DISCUSSION: Despite the heterogeneity in bleaching protocols among studies, High-concentrations of HP shows the potential to induce significant pulp damage. CONCLUSIONS: High-concentrations of bleaching gel increases inflammatory response and necrosis in the pulp tissue at short periods after bleaching, mainly in rat molars and in human incisors, in addition to greater hard tissue deposition over time. However, further well-described histological studies with long-term follow-up are encouraged due to the methodological limitations of these studies. REGISTRATION: PROSPERO (CRD42021230937).