Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.233
Filtrar
1.
Braz Oral Res ; 38: e037, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38747824

RESUMEN

Dental pulp stem cells (DPSCs) and periodontal ligament stem cells (PDLSCs) can differentiate into osteoblasts, indicating that both are potential candidates for bone tissue engineering. Osteogenesis is influenced by many environmental factors, one of which is lipopolysaccharide (LPS). LPS-induced NF-κB activity affects the osteogenic potencies of different types of MSCs differently. This study evaluated the effect of LPS-induced NF-κB activity and its inhibition in DPSCs and PDLSCs. DPSCs and PDLSCs were cultured in an osteogenic medium, pretreated with/without NF-κB inhibitor Bay 11-7082, and treated with/without LPS. Alizarin red staining was performed to assess bone nodule formation, which was observed under an inverted light microscope. NF-κB and alkaline phosphatase (ALP) activities were measured to examine the effect of Bay 11-7082 pretreatment and LPS supplementation on osteogenic differentiation of DPSCs and PDLSCs. LPS significantly induced NF-κB activity (p = 0.000) and reduced ALP activity (p = 0.000), which inhibited bone nodule formation in DPSCs and PDLSCs. Bay 11-7082 inhibited LPS-induced NF-κB activity, and partially maintained ALP activity and osteogenic potency of LPS-supplemented DPSCs and PDLSCs. Thus, inhibition of LPS-induced NF-κB activity can maintain the osteogenic potency of DPSCs and PDLSCs.


Asunto(s)
Fosfatasa Alcalina , Diferenciación Celular , Pulpa Dental , Lipopolisacáridos , FN-kappa B , Nitrilos , Osteogénesis , Ligamento Periodontal , Células Madre , Humanos , Lipopolisacáridos/farmacología , Ligamento Periodontal/citología , Ligamento Periodontal/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Osteogénesis/fisiología , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , FN-kappa B/metabolismo , Fosfatasa Alcalina/análisis , Diferenciación Celular/efectos de los fármacos , Células Madre/efectos de los fármacos , Células Madre/fisiología , Células Cultivadas , Nitrilos/farmacología , Sulfonas/farmacología , Reproducibilidad de los Resultados , Factores de Tiempo , Adulto Joven , Adolescente
2.
PLoS One ; 19(5): e0303154, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38739591

RESUMEN

BACKGROUND: Flowable resin composites (FRC) are tooth-colored restorative materials that contain a lower filler particle content, and lower viscosity than their bulk counterparts, making them useful for specific clinical applications. Yet, their chemical makeup may impact the cellular population of the tooth pulp. This in-vitro study assessed the cytocompatibility and odontogenic differentiation capacity of dental pulp stem cells (DPSCs) in response to two recent FRC material extracts. METHODS: Extracts of the FRC Aura easyflow (AEF) and Polofil NHT Flow (PNF) were applied to DPSCs isolated from extracted human teeth. Cell viability of DPSCs was assessed using MTT assay on days 1, 3 and 7. Cell migration was assessed using the wound healing assay. DPSCs' capacity for osteo/odontogenic differentiation was assessed by measuring the degree of mineralization by Alizarin Red S staining, alkaline phosphatase enzyme (ALP) activity, and monitoring the expression of osteoprotegerin (OPG), RUNX Family Transcription Factor 2 (RUNX2), and the odontogenic marker dentin sialophosphoprotein (DSPP) by RT-PCR. Monomer release from the FRC was also assessed by High-performance liquid chromatography analysis (HPLC). RESULTS: DPSCs exposed to PNF extracts showed significantly higher cell viability, faster wound closure, and superior odontogenic differentiation. This was apparent through Alizarin Red staining of calcified nodules, elevated alkaline phosphatase activity, and increased expression of osteo/odontogenic markers. Moreover, HPLC analysis revealed a higher release of TEDGMA, UDMA, and BISGMA from AEF. CONCLUSIONS: PNF showed better cytocompatibility and enhancement of odontogenic differentiation than AEF.


Asunto(s)
Diferenciación Celular , Resinas Compuestas , Pulpa Dental , Células Madre , Pulpa Dental/citología , Pulpa Dental/metabolismo , Humanos , Células Madre/citología , Células Madre/efectos de los fármacos , Células Madre/metabolismo , Diferenciación Celular/efectos de los fármacos , Resinas Compuestas/química , Resinas Compuestas/farmacología , Supervivencia Celular/efectos de los fármacos , Odontogénesis/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Células Cultivadas
3.
Int J Oral Sci ; 16(1): 40, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38740746

RESUMEN

Oxidative stress is increasingly recognized as a major contributor to the pathophysiology of Alzheimer's disease (AD), particularly in the early stages of the disease. The multiplicity advantages of stem cell transplantation make it fascinating therapeutic strategy for many neurodegenerative diseases. We herein demonstrated that human dental pulp stem cells (hDPSCs) mediated oxidative stress improvement and neuroreparative effects in in vitro AD models, playing critical roles in regulating the polarization of hyperreactive microglia cells and the recovery of damaged neurons. Importantly, these therapeutic effects were reflected in 10-month-old 3xTg-AD mice after a single transplantation of hDPSCs, with the treated mice showing significant improvement in cognitive function and neuropathological features. Mechanistically, antioxidant and neuroprotective effects, as well as cognitive enhancements elicited by hDPSCs, were at least partially mediated by Nrf2 nuclear accumulation and downstream antioxidant enzymes expression through the activation of the AKT-GSK3ß-Nrf2 signaling pathway. In conclusion, our findings corroborated the neuroprotective capacity of hDPSCs to reshape the neuropathological microenvironment in both in vitro and in vivo AD models, which may be a tremendous potential therapeutic candidate for Alzheimer's disease.


Asunto(s)
Enfermedad de Alzheimer , Pulpa Dental , Glucógeno Sintasa Quinasa 3 beta , Factor 2 Relacionado con NF-E2 , Estrés Oxidativo , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Pulpa Dental/citología , Enfermedad de Alzheimer/terapia , Factor 2 Relacionado con NF-E2/metabolismo , Humanos , Animales , Glucógeno Sintasa Quinasa 3 beta/metabolismo , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Modelos Animales de Enfermedad , Trasplante de Células Madre , Células Madre , Ratones Transgénicos
4.
J Biomed Mater Res B Appl Biomater ; 112(5): e35412, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38701383

RESUMEN

Endodontic therapy, while generally successful, is primarily limited to mature teeth, hence the pressing need to explore regenerative approaches. Gelatin methacryloyl (GelMA) hydrogels have emerged as pivotal biomaterials, promising a bright future for dental pulp regeneration. Despite advancements in tissue engineering and biomaterials, achieving true pulp tissue regeneration remains a formidable task. GelMA stands out for its injectability, rapid gelation, and excellent biocompatibility, serving as the cornerstone of scaffold materials. In the pursuit of dental pulp regeneration, GelMA holds significant potential, facilitating the delivery of stem cells, growth factors, and other vital substances crucial for tissue repair. Presently, in the field of dental pulp regeneration, researchers have been diligently utilizing GelMA hydrogels as engineering scaffolds to transport various effective substances to promote pulp regeneration. However, existing research is relatively scattered and lacks comprehensive reviews and summaries. Therefore, the primary objective of this article is to elucidate the application of GelMA hydrogels as regenerative scaffolds in this field, thereby providing clear direction for future researchers. Additionally, this article provides a comprehensive discussion on the synthesis, characterization, and application of GelMA hydrogels in root canal therapy regeneration. Furthermore, it offers new application strategies and profound insights into future challenges, such as optimizing GelMA formulations to mimic the complex microenvironment of pulp tissue and enhancing its integration with host tissues.


Asunto(s)
Pulpa Dental , Gelatina , Hidrogeles , Endodoncia Regenerativa , Andamios del Tejido , Hidrogeles/química , Humanos , Andamios del Tejido/química , Gelatina/química , Pulpa Dental/citología , Metacrilatos/química , Ingeniería de Tejidos , Regeneración , Materiales Biocompatibles/química , Animales
5.
J Contemp Dent Pract ; 25(3): 267-275, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38690701

RESUMEN

AIM: To study the effect of glycyrrhizin (GA) on the viability and proliferation of dental pulp stem cells (DPSCs) compared with intracanal medicaments. MATERIALS AND METHODS: Third molars of an adult donor were used to obtain the DPSCs. Flow cytometry was utilized to conduct phenotypic analysis for DPSCs. The methyl-thiazol tetrazolium (MTT) test was used to detect the cell viability. Cell proliferation assay was conducted at distinct time intervals: 3, 5, and 7 days. RESULTS: The flow cytometry analysis verified the positive expression of mesenchymal cell surface antigen molecules (CD73, CD90, and CD105) and the absence of hematological markers (CD14, CD34, and CD45) in the DPSCs. The cells that treated with concentrations more than 0.5 mg/mL of Ca(OH2) and triple antibiotic paste (TAP) gave significant decrease in viability in comparison to the untreated cells (p < 0.05). Also, the cells treated with concentrations 50 and 25 µM of GA showed no significant difference compared with the untreated cells (p > 0.05), while concentrations 12.5 and 6.25 µM expressed a significant increase in viability compared with the untreated cells (p < 0.05). At 7 days, cells treated with the three different concentrations of GA (12.5, 25, and 50 µM) demonstrated a significant increase in cell density compared with Ca(OH)2 and TAP-treated cells (p < 0.05). CONCLUSION: Based upon the potential of GA on DPSCs proliferation compared with Ca(OH)2 and TAP, It is conceivable to acknowledge that GA could be used as an intracanal medicaments for revascularization process of necrotic immature teeth. CLINICAL SIGNIFICANCE: This study emphasizes the significance of assessing alternative root canal medicaments and their impact on the proliferation and viability of DPSCs. The results regarding GA, specifically its impact on the viability and growth of DPSCs, provide essential understanding for its potential application as an intracanal medicine. This study adds to the continuous endeavors in identifying safer and more efficient intracanal therapies, which are essential for improving patient outcomes in endodontic operations. How to cite this article: Alrashidi MA, Badawi MF, Elbeltagy MG, et al. The Effect of Glycyrrhizin on the Viability and Proliferation of Dental Pulp Stem Cells Compared to Intracanal Medicaments. J Contemp Dent Pract 2024;25(3):267-275.


Asunto(s)
Proliferación Celular , Supervivencia Celular , Pulpa Dental , Ácido Glicirrínico , Irrigantes del Conducto Radicular , Células Madre , Humanos , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Ácido Glicirrínico/farmacología , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Irrigantes del Conducto Radicular/farmacología , Células Madre/efectos de los fármacos , Citometría de Flujo , Hidróxido de Calcio/farmacología , Células Cultivadas , Adulto
6.
ACS Biomater Sci Eng ; 10(5): 3316-3330, 2024 May 13.
Artículo en Inglés | MEDLINE | ID: mdl-38619014

RESUMEN

In this study, we propose a spatially patterned 3D-printed nanohydroxyapatite (nHA)/beta-tricalcium phosphate (ß-TCP)/collagen composite scaffold incorporating human dental pulp-derived mesenchymal stem cells (hDP-MSCs) for bone regeneration in critical-sized defects. We investigated angiogenesis and osteogenesis in a rabbit critical-sized mandibular defect model treated with this engineered construct. The critical and synergistic role of collagen coating and incorporation of stem cells in the regeneration process was confirmed by including a cell-free uncoated 3D-printed nHA/ß-TCP scaffold, a stem cell-loaded 3D-printed nHA/ß-TCP scaffold, and a cell-free collagen-coated 3D-printed nHA/ß-TCP scaffold in the experimental design, in addition to an empty defect. Posteuthanasia evaluations through X-ray analysis, histological assessments, immunohistochemistry staining, histomorphometry, and reverse transcription-polymerase chain reaction (RT-PCR) suggest the formation of substantial woven and lamellar bone in the cell-loaded collagen-coated 3D-printed nHA/ß-TCP scaffolds. Histomorphometric analysis demonstrated a significant increase in osteoblasts, osteocytes, osteoclasts, bone area, and vascularization compared to that observed in the control group. Conversely, a significant decrease in fibroblasts/fibrocytes and connective tissue was observed in this group compared to that in the control group. RT-PCR indicated a significant upregulation in the expression of osteogenesis-related genes, including BMP2, ALPL, SOX9, Runx2, and SPP1. The findings suggest that the hDP-MSC-loaded 3D-printed nHA/ß-TCP/collagen composite scaffold is promising for bone regeneration in critical-sized defects.


Asunto(s)
Regeneración Ósea , Fosfatos de Calcio , Cerámica , Hidrogeles , Mandíbula , Neovascularización Fisiológica , Impresión Tridimensional , Andamios del Tejido , Animales , Conejos , Regeneración Ósea/efectos de los fármacos , Andamios del Tejido/química , Humanos , Cerámica/química , Fosfatos de Calcio/química , Hidrogeles/química , Osteogénesis/efectos de los fármacos , Células Madre Mesenquimatosas/metabolismo , Colágeno/química , Durapatita/química , Ingeniería de Tejidos/métodos , Pulpa Dental/citología , Modelos Animales de Enfermedad , Masculino , Angiogénesis
7.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artículo en Inglés | MEDLINE | ID: mdl-38673923

RESUMEN

Dental tissue stem cells (DTSCs) are well known for their multipotent capacity and regenerative potential. They also play an important role in the immune response of inflammatory processes derived from caries lesions, periodontitis, and gingivitis. These oral diseases are triggered by toxins known as lipopolysaccharides (LPS) produced by gram-negative bacteria. LPS present molecular patterns associated with pathogens and are recognized by Toll-like receptors (TLRs) in dental stem cells. In this review, we describe the effect of LPS on the biological behavior of DTSCs. We also focus on the molecular sensors, signaling pathways, and emerging players participating in the interaction of DTSCs with lipopolysaccharides. Although the scientific advances generated provide an understanding of the immunomodulatory potential of DTSCs, there are still new reflections to explore with regard to their clinical application in the treatment of oral inflammatory diseases.


Asunto(s)
Pulpa Dental , Lipopolisacáridos , Células Madre , Animales , Humanos , Pulpa Dental/citología , Pulpa Dental/metabolismo , Lipopolisacáridos/metabolismo , Transducción de Señal , Células Madre/metabolismo , Receptores Toll-Like/metabolismo , Infecciones Bacterianas/inmunología , Infecciones Bacterianas/metabolismo
8.
Biomed Mater ; 19(4)2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38653259

RESUMEN

The decellularized matrix has a great potential for tissue remodeling and regeneration; however, decellularization could induce host immune rejection due to incomplete cell removal or detergent residues, thereby posing significant challenges for its clinical application. Therefore, the selection of an appropriate detergent concentration, further optimization of tissue decellularization technique, increased of biosafety in decellularized tissues, and reduction of tissue damage during the decellularization procedures are pivotal issues that need to be investigated. In this study, we tested several conditions and determined that 0.1% Sodium dodecyl sulfate and three decellularization cycles were the optimal conditions for decellularization of pulp tissue. Decellularization efficiency was calculated and the preparation protocol for dental pulp decellularization matrix (DPDM) was further optimized. To characterize the optimized DPDM, the microstructure, odontogenesis-related protein and fiber content were evaluated. Our results showed that the properties of optimized DPDM were superior to those of the non-optimized matrix. We also performed the 4D-Label-free quantitative proteomic analysis of DPDM and demonstrated the preservation of proteins from the natural pulp. This study provides a optimized protocol for the potential application of DPDM in pulp regeneration.


Asunto(s)
Matriz Extracelular Descelularizada , Pulpa Dental , Proteómica , Ingeniería de Tejidos , Andamios del Tejido , Pulpa Dental/citología , Proteómica/métodos , Animales , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Matriz Extracelular Descelularizada/química , Dodecil Sulfato de Sodio/química , Humanos , Odontogénesis , Matriz Extracelular/metabolismo , Matriz Extracelular/química
9.
Sci Rep ; 14(1): 9444, 2024 04 24.
Artículo en Inglés | MEDLINE | ID: mdl-38658667

RESUMEN

One of the biggest challenges in tissue engineering and regenerative medicine is to ensure oxygen supply of cells in the (temporary) absence of vasculature. With the vision to exploit photosynthetic oxygen production by microalgae, co-cultivated in close vicinity to oxygen-consuming mammalian cells, we are searching for culture conditions that are compatible for both sides. Herein, we investigated the impact of long-term illumination on mammalian cells which is essential to enable photosynthesis by microalgae: four different cell types-primary human fibroblasts, dental pulp stem cells, and osteoblasts as well as the murine beta-cell line INS-1-were continuously exposed to warm white light, red or blue light over seven days. We observed that illumination with red light has no adverse effects on viability, metabolic activity and growth of the cells whereas exposure to white light has deleterious effects that can be attributed to its blue light portion. Quantification of intracellular glutathione did not reveal a clear correlation of this effect with an enhanced production of reactive oxygen species. Finally, our data indicate that the cytotoxic effect of short-wavelength light is predominantly a direct effect of cell illumination; photo-induced changes in the cell culture media play only a minor role.


Asunto(s)
Fibroblastos , Luz , Especies Reactivas de Oxígeno , Humanos , Animales , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Fibroblastos/citología , Ratones , Especies Reactivas de Oxígeno/metabolismo , Supervivencia Celular/efectos de la radiación , Pulpa Dental/citología , Pulpa Dental/efectos de la radiación , Osteoblastos/metabolismo , Osteoblastos/efectos de la radiación , Osteoblastos/citología , Células Cultivadas , Línea Celular , Células Madre/metabolismo , Células Madre/efectos de la radiación , Células Madre/citología , Glutatión/metabolismo
10.
Biomolecules ; 14(4)2024 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-38672423

RESUMEN

BACKGROUND: Dysregulation of the endo-lysosomal-autophagy pathway has been identified as a critical factor in the pathology of various demyelinating neurodegenerative diseases, including peripheral neuropathies. This pathway plays a crucial role in transporting newly synthesized myelin proteins to the plasma membrane in myelinating Schwann cells, making these cells susceptible to lysosome-related dysfunctions. Nevertheless, the specific impact of lysosomal dysfunction in Schwann cells and its contribution to neurodegeneration remain poorly understood. METHODS: We aim to mimic lysosomal dysfunction in Schwann cells using chloroquine, a lysosomal dysfunction inducer, and to monitor lysosomal leakiness, Schwann cell viability, and apoptosis over time. Additionally, due to the ethical and experimental issues associated with cell isolation and the culturing of human Schwann cells, we use human dental pulp stem cell-derived Schwann cells (DPSC-SCs) as a model in our study. RESULTS: Chloroquine incubation boosts lysosomal presence as demonstrated by an increased Lysotracker signal. Further in-depth lysosomal analysis demonstrated an increased lysosomal size and permeability as illustrated by a TEM analysis and GAL3-LAMP1 staining. Moreover, an Alamar blue assay and Caspase-3 staining demonstrates a reduced viability and increased apoptosis, respectively. CONCLUSIONS: Our data indicate that prolonged lysosomal dysfunction leads to lysosomal permeability, reduced viability, and eventually apoptosis in human DPSC-SCs.


Asunto(s)
Apoptosis , Supervivencia Celular , Cloroquina , Pulpa Dental , Lisosomas , Células de Schwann , Células Madre , Células de Schwann/metabolismo , Células de Schwann/patología , Lisosomas/metabolismo , Humanos , Pulpa Dental/citología , Pulpa Dental/metabolismo , Cloroquina/farmacología , Células Madre/metabolismo , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas
11.
Biomed Mater ; 19(3)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38636498

RESUMEN

Dental cement residues exacerbate peri-implant tissue irritation and peri-implantitis. The present study aims to evaluate the cytotoxicity, physiochemical, optical, and rheological properties of carbon quantum dots (CQDs) impregnated glass ionomer cement (GIC). Surface passivated fluorescent CQDs were synthesized using citric acid via thermal decomposition and blended with GIC. Characterization studies and rheological measurements were made to evaluate their performance. 3D-printed dental implant models cemented with GIC and GIC-CQD were compared to analyze excess cement residues. MTT assay was performed with human dental pulp stem cells (hDPSCs) and statistically analyzed using ANOVA and Tukey's test. CQDs with a particle dimension of ∼2 nm were synthesized. The amorphous property of GIC-CQD was confirmed through XRD. The fluorescence properties of GIC-CQD showed three times higher emission intensity than conventional GIC. GIC-CQD attained maturation with a setting time extended by 64 s than GIC. Cement residue of size 2 mm was detected with a UV light excitation at a distance between 5 to 10 cm. Biocompatibility at 0.125 mg ml-1dilution concentrations of GIC-CQD showed viability greater than 80% to hDPSCs. For the first time, we report that CQDs-impregnated GIC is a unique and cost-effective strategy for in-situ detection of excess cement rapidly using a hand-held device. A novel in-situ rapid detection method enables the dentist to identify residual cement of size less than 2 mm during the implantation. Therefore, GIC-CQD would replace conventional GIC and help in the prevention of peri-implant diseases.


Asunto(s)
Carbono , Pulpa Dental , Cementos de Ionómero Vítreo , Ensayo de Materiales , Puntos Cuánticos , Puntos Cuánticos/química , Humanos , Carbono/química , Cementos de Ionómero Vítreo/química , Pulpa Dental/citología , Supervivencia Celular/efectos de los fármacos , Implantes Dentales , Periimplantitis/prevención & control , Células Madre/citología , Impresión Tridimensional , Materiales Biocompatibles/química , Reología , Ácido Cítrico/química
12.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 444-452, 2024 May 09.
Artículo en Chino | MEDLINE | ID: mdl-38636998

RESUMEN

Objective: To investigate the impact of intermittent senescent cell clearance on the proliferation and differentiation of dental pulp stem cells (DPSC) in long-term, large-scale expansion, and to explore strategies for maintaining the youthful state of DPSC in vitro. Methods: Human-derived dental pulp stem cells were isolated from healthy permanent teeth extracted for orthodontic or impeding eruption reasons, provided by the Department of Oral and Maxillofacial Surgery at West China Hospital of Stomatology, Sichuan University. Long-term, large-scale in vitro expansion of DPSC was conducted. The study compared young DPSC (passage 5) with aged DPSC (passage 25) using cellular senescence-associated ß-galactosidase staining, colony formation assay, and Alizarin Red S staining for osteogenic differentiation induction. To assess the differences between the two cell populations in terms of senescence and amplification and differentiation ability. Medicine screening for the most effective senolytic was compared among 5 common senolytics [Navitoclax (ABT-263), curcumin, dasatinib, fisetin, and quercetin]. The clearance efficacy was compared using cellular senescence-associated ß-galactosidase staining to reflect the changes in senescent cell ratio. The senolytic with the highest efficacy was chosen for further experiments. The passage at which the proportion of senescent cells significantly increased was identified, and the selected senolytic was administered three times at three-generation intervals from that passage to remove senescent cells. Both the control and senolytic-treated groups were estimated by fluorescence cellular senescence-associated ß-galactosidase staining, real-time fluorescence quantitative PCR (RT-qPCR), colony formation assay, wound healing assay, and Alizarin Red S staining for osteogenic differentiation induction. Subcutaneous heterotopic osteogenesis was performed in nude mice and the grafts were analyzed by HE staining and alkaline phosphatase (ALP) immunohistochemical staining. Results: The proportion of senescent cells increased as the expansion extended, leading to decreased proliferation and osteogenic differentiation ability of senescent DPSC compared to young DPSC (P<0.05). Senescent DPSC exhibited altered mRNA expression levels of senescence-related genes, including p21, p16INK4a, IL-6, and Ki67 (P<0.001). Among the five senolytics, ABT-263 had the biggest decreases in the proportion of senescent cells. After intermittent ABT-263 treatment during expansion, the proportion of senescent cells in the senolytic-treated group [(6.72±2.34)%] was significantly lower than that in the control group [(31.82±0.57)%] (P<0.001). RT-qPCR confirmed that compared with the control group, mRNA expressions of p21, p16INK4a, and IL-6 in the senolytic-treated group were significantly decreased (P<0.05), while mRNA expressions of Ki67 were significantly increased (P<0.01). Furthermore, the cell healing ability and osteogenic differentiation ability of the senolytic-treated group were higher than those of the control group (P<0.05). In vivo experimental results indicated that the relative new bone area [(2.36±0.48)%] after DPSC transplantation in the senolytic-treated group was greater than that in the control group [(1.00±0.46)%] (P<0.05), and the expression of ALP was higher than that in the control group (P<0.01). Conclusions: ABT-263 can effectively eliminate senescent cells in long-term large-scale DPSC expansion. Continuous treatment with ABT-263 during cultivation can maintain the proliferation and differentiation ability of DPSC both in vivo and in vitro.


Asunto(s)
Diferenciación Celular , Proliferación Celular , Senescencia Celular , Pulpa Dental , Osteogénesis , Células Madre , Pulpa Dental/citología , Humanos , Células Madre/citología , Osteogénesis/efectos de los fármacos , Animales , Ratones , Dasatinib/farmacología , Ratones Desnudos , Quercetina/farmacología , beta-Galactosidasa/metabolismo
13.
Zhonghua Kou Qiang Yi Xue Za Zhi ; 59(5): 496-501, 2024 May 09.
Artículo en Chino | MEDLINE | ID: mdl-38637004

RESUMEN

Regenerating tissues similar to dental structure with normal function are putatively to be the aim in tooth regeneration filed. Currently, researchers preliminarily achieved tooth regeneration by applying dental pulp stem cells (DPSC) and stem cells from human exfoliated deciduous teeth (SHED). However, the regeneration efficiency remains unstable and needs further investigation. The development of single-cell RNA sequencing and organoid culture system provide potential of precise, targeted and controllable functional regeneration. This article reviews the current state of DPSC/SHED on tooth regeneration, and analyzes characteristics and hotspots of them, aiming to shed light on clinical translational application of stable and efficient tooth regeneration.


Asunto(s)
Pulpa Dental , Regeneración , Células Madre , Diente Primario , Pulpa Dental/citología , Humanos , Células Madre/citología , Diente Primario/citología , Ingeniería de Tejidos/métodos , Organoides/citología , Diferenciación Celular
14.
BMC Oral Health ; 24(1): 511, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38689279

RESUMEN

BACKGROUND: Decellularized extracellular matrix (dECM) from several tissue sources has been proposed as a promising alternative to conventional scaffolds used in regenerative endodontic procedures (REPs). This systematic review aimed to evaluate the histological outcomes of studies utilizing dECM-derived scaffolds for REPs and to analyse the contributing factors that might influence the nature of regenerated tissues. METHODS: The PRISMA 2020 guidelines were used. A search of articles published until April 2024 was conducted in Google Scholar, Scopus, PubMed and Web of Science databases. Additional records were manually searched in major endodontic journals. Original articles including histological results of dECM in REPs and in-vivo studies were included while reviews, in-vitro studies and clinical trials were excluded. The quality assessment of the included studies was analysed using the ARRIVE guidelines. Risk of Bias assessment was done using the (SYRCLE) risk of bias tool. RESULTS: Out of the 387 studies obtained, 17 studies were included for analysis. In most studies, when used as scaffolds with or without exogenous cells, dECM showed the potential to enhance angiogenesis, dentinogenesis and to regenerate pulp-like and dentin-like tissues. However, the included studies showed heterogeneity of decellularization methods, animal models, scaffold source, form and delivery, as well as high risk of bias and average quality of evidence. DISCUSSION: Decellularized ECM-derived scaffolds could offer a potential off-the-shelf scaffold for dentin-pulp regeneration in REPs. However, due to the methodological heterogeneity and the average quality of the studies included in this review, the overall effectiveness of decellularized ECM-derived scaffolds is still unclear. More standardized preclinical research is needed as well as well-constructed clinical trials to prove the efficacy of these scaffolds for clinical translation. OTHER: The protocol was registered in PROSPERO database #CRD42023433026. This review was funded by the Science, Technology and Innovation Funding Authority (STDF) under grant number (44426).


Asunto(s)
Matriz Extracelular , Endodoncia Regenerativa , Andamios del Tejido , Endodoncia Regenerativa/métodos , Animales , Matriz Extracelular Descelularizada , Pulpa Dental/citología , Pulpa Dental/fisiología , Modelos Animales , Ingeniería de Tejidos/métodos , Regeneración/fisiología
15.
J Cell Mol Med ; 28(9): e18340, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38685681

RESUMEN

This study delves into the impact of mesenchymal stem cells derived from bone marrow (BM-MSCs) and those sourced from dental pulp (DP-MSCs) on the recovery of motor function and morphological aspects of the rat's sciatic nerve after crush injuries. The findings highlight that the groups treated with BM-MSCs, DP-MSCs or a combination of both (BM + DP-MSCs) displayed enhanced sciatic functional index values when juxtaposed with the sham group. This points to bettered motor functionalities. A deeper morphological analysis showed that all the groups had retained perineurium structure and fascicular arrangement. Notably, the sham and BM-MSCs groups had very few inconsistencies. All groups showed standard vascular density. Remarkably, the combined treatment group (BM + DP-MSCs) presented diminished oedema and a lower count of inflammatory cells. Through immunohistochemical methods, the presence of S100 expression was noted in the groups that underwent treatment. In summation, the study suggests that both BM-MSCs and DP-MSCs, whether used singly or in combination, can significantly aid in motor function restoration and morphological enhancements. An interesting observation from our research and earlier studies is that stem cells from dental pulp, which are sourced with less discomfort from milk and wisdom teeth, show a heightened propensity to evolve into nerve cells. This is in contrast to the more uncomfortably acquired BM-MSCs.


Asunto(s)
Células de la Médula Ósea , Pulpa Dental , Trasplante de Células Madre Mesenquimatosas , Células Madre Mesenquimatosas , Recuperación de la Función , Nervio Ciático , Animales , Pulpa Dental/citología , Células Madre Mesenquimatosas/metabolismo , Células Madre Mesenquimatosas/citología , Nervio Ciático/lesiones , Trasplante de Células Madre Mesenquimatosas/métodos , Ratas , Células de la Médula Ósea/metabolismo , Células de la Médula Ósea/citología , Masculino , Regeneración Nerviosa , Ratas Wistar
16.
Toxicology ; 504: 153788, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38527609

RESUMEN

Cisplatin is a highly effective chemotherapy drug used to treat most solid tumors. However, one of its side effects is testicular toxicity, which can lead to fertility abnormalities. This study investigated the effectiveness of dental pulp mesenchymal stem cells conditioned medium (DPSC-CM) on cisplatin-induced testicular toxicity. In this study, 36 eight-week-old male Wistar rats were randomly divided into three groups equally (n = 12). Group 1 control "CTR", which received normal saline (0.5 ml) intraperitoneally (i.p), group 2 "Cis" which received an intraperitoneal dose of cisplatin (7 mg/kg), and group 3 "Cis+CM" which received an i.p injection of DPSC-CM (0.5 mg/kg) after cisplatin injection. Biochemical, histomorphometric, and histopathological studies were performed on the testis. Our results exhibited that cis administration led to a decline in total body weight, testis weight, diameter, and volume. A decrease in testosterone and IL-6 serum levels, as well as a decrease in IL-6 and TNFα levels, the activity of catalase and SOD enzymes, and an increase in MDA in testicular tissue were detected. Testicular tissue damage was associated with a significant decrease in tube diameter, germinal epithelium height, number of spermatogonia and Sertoli cells, along with a noticeable increase in basement membrane thickness, and perivascular fibrosis. DMSC-CM improved all the mentioned parameters. Taken together, our results demonstrated that DMSC-CM due to its antioxidant and anti-inflammatory properties, could be effective in reversing cisplatin-induced testicular toxicity.


Asunto(s)
Cisplatino , Pulpa Dental , Ratas Wistar , Testículo , Animales , Masculino , Cisplatino/toxicidad , Medios de Cultivo Condicionados/farmacología , Testículo/efectos de los fármacos , Testículo/patología , Testículo/metabolismo , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Ratas , Testosterona/sangre , Antineoplásicos/toxicidad , Estrés Oxidativo/efectos de los fármacos , Células Madre Mesenquimatosas/efectos de los fármacos
17.
Photobiomodul Photomed Laser Surg ; 42(4): 306-313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38546858

RESUMEN

Background: This investigation set out to compare the impacts of low-level diode laser (LLDL) and red light-emitting diode (LED) on the survival of human dental pulp stem cells (hDPSCs) and osteogenic/odontogenic differentiation. Methods and materials: In this ex vivo experimental study, the experimental groups underwent the irradiation of LLDL (4 J/cm2 energy density) and red LED in the osteogenic medium. Survival of hDPSCs was assessed after 24 and 48 h (n = 9) using the methyl thiazolyl tetrazolium (MTT) assay. The assessment of osteogenic/odontogenic differentiation was conducted using alizarin red staining (ARS; three repetitions). The investigation of osteogenic and odontogenic gene expression was performed at two time points, specifically 24 and 48 h (n = 12). This analysis was performed utilizing real-time reverse-transcription polymerase chain reaction (RT-PCR). The groups were compared at each time point using SPSS version 24. To analyze the data, the Mann-Whitney U test, analysis of variance, Tukey's test, and t-test were utilized. Results: The MTT assay showed that LLDL significantly decreased the survival of hDPSCs after 48 h, compared with other groups (p < 0.05). The qualitative results of ARS revealed that LLDL and red LED increased the osteogenic differentiation of hDPSCs. LLDL and red LED both upregulated the expression of osteogenic/odontogenic genes, including bone sialoprotein (BSP), alkaline phosphatase (ALP), dentin matrix protein 1 (DMP1), and dentin sialophosphoprotein (DSPP), in hDPSCs. The LLDL group exhibited a higher level of gene upregulation (p < 0.0001). Conclusions: The cell survival of hDPSCs was reduced, despite an increase in osteogenic/odontogenic activity. Clinical relevance: Introduction of noninvasive methods in regenerative endodontic treatments.


Asunto(s)
Diferenciación Celular , Supervivencia Celular , Pulpa Dental , Láseres de Semiconductores , Terapia por Luz de Baja Intensidad , Odontogénesis , Osteogénesis , Células Madre , Humanos , Pulpa Dental/citología , Pulpa Dental/efectos de la radiación , Diferenciación Celular/efectos de la radiación , Osteogénesis/efectos de la radiación , Células Madre/efectos de la radiación , Células Madre/citología , Supervivencia Celular/efectos de la radiación , Odontogénesis/efectos de la radiación , Células Cultivadas , Luz Roja
18.
Int Endod J ; 57(6): 727-744, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436622

RESUMEN

AIMS: This study aimed to investigate the anti-inflammatory and odontoblastic effects of cerium-containing mesoporous bioactive glass nanoparticles (Ce-MBGNs) on dental pulp cells as novel pulp-capping agents. METHODOLOGY: Ce-MBGNs were synthesized using a post-impregnation strategy based on the antioxidant properties of Ce ions and proposed the first use of Ce-MBGNs for pulp-capping application. The biocompatibility of Ce-MBGNs was analysed using the CCK-8 assay and apoptosis detection. Additionally, the reactive oxygen species (ROS) scavenging ability of Ce-MBGNs was measured using the 2,7-Dichlorofuorescin Diacetate (DCFH-DA) probe. The anti-inflammatory effect of Ce-MBGNs on THP-1 cells was further investigated using flow cytometry and quantitative real-time polymerase chain reaction (RT-qPCR). Moreover, the effect of Ce-MBGNs on the odontoblastic differentiation of the dental pulp cells (DPCs) was assessed by combined scratch assays, RT-qPCR, western blotting, immunocytochemistry, Alizarin Red S staining and tissue-nonspecific alkaline phosphatase staining. Analytically, the secretions of tumour necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) were detected with enzyme-linked immunosorbent assay (ELISA). RESULTS: Ce-MBGNs were confirmed to effectively scavenge ROS in THP-1-derived macrophages and DPCs. Flow cytometry and RT-qPCR assays revealed that Ce-MBGNs significantly inhibited the M1 polarization of macrophages (Mφ). Furthermore, the protein levels of TNF-α and IL-1ß were downregulated in THP-1-derived macrophages after stimulation with Ce-MBGNs. With a step-forward virtue of promoting the odontoblastic differentiation of DPCs, we further confirmed that Ce-MBGNs could regulate the formation of a conductive immune microenvironment with respect to tissue repair in DPCs, which was mediated by macrophages. CONCLUSIONS: Ce-MBGNs protected cells from self-produced oxidative damage and exhibited excellent immunomodulatory and odontoblastic differentiation effects on DPCs. As a pulp-capping agent, this novel biomaterial can exert anti-inflammatory effects and promote restorative dentine regeneration in clinical treatment. We believe that this study will stimulate further correlative research on the development of advanced pulp-capping agents.


Asunto(s)
Antiinflamatorios , Cerio , Pulpa Dental , Nanopartículas , Pulpa Dental/citología , Pulpa Dental/efectos de los fármacos , Cerio/farmacología , Humanos , Antiinflamatorios/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Cerámica/farmacología , Diferenciación Celular/efectos de los fármacos , Vidrio , Odontoblastos/efectos de los fármacos , Regeneración/efectos de los fármacos , Células THP-1 , Materiales de Recubrimiento Pulpar y Pulpectomía/farmacología , Interleucina-1beta/metabolismo , Apoptosis/efectos de los fármacos , Porosidad , Células Cultivadas
19.
Int Endod J ; 57(6): 759-768, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38436525

RESUMEN

AIM: Among numerous constituents of Panax ginseng, a constituent named Ginsenoside Rb1 (G-Rb1) has been studied to diminish inflammation associated with diseases. This study investigated the anti-inflammatory properties of G-Rb1 on human dental pulp cells (hDPCs) exposed to lipopolysaccharide (LPS) and aimed to determine the underlying molecular mechanisms. METHODOLOGY: The KEGG pathway analysis was performed after RNA sequencing in G-Rb1- and LPS-treated hDPCs. Reverse-transcription polymerase chain reaction (RT-PCR) and western blot analysis were used for the assessment of cell adhesion molecules and inflammatory cytokines. Statistical analysis was performed with one-way ANOVA and the Student-Newman-Keuls test. RESULTS: G-Rb1 did not exhibit any cytotoxicity within the range of concentrations tested. However, it affected the levels of TNF-α, IL-6 and IL-8, as these showed reduced levels with exposure to LPS. Additionally, less mRNA and protein expressions of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1) were shown. With the presence of G-Rb1, decreased levels of PI3K/Akt, phosphorylated IκBα and p65 were also observed. Furthermore, phosphorylated ERK and JNK by LPS were diminished within 15, 30 and 60 min of G-Rb1 exposure; however, the expression of non-phosphorylated ERK and JNK remained unchanged. CONCLUSIONS: G-Rb1 suppressed the LPS-induced increase of cell adhesion molecules and inflammatory cytokines, while also inhibiting PI3K/Akt, phosphorylation of NF-κB transcription factors, ERK and JNK of MAPK signalling in hDPCs.


Asunto(s)
Pulpa Dental , Ginsenósidos , Lipopolisacáridos , FN-kappa B , Fosfatidilinositol 3-Quinasas , Proteínas Proto-Oncogénicas c-akt , Transducción de Señal , Ginsenósidos/farmacología , Humanos , Pulpa Dental/efectos de los fármacos , Pulpa Dental/citología , Pulpa Dental/metabolismo , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , FN-kappa B/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Transducción de Señal/efectos de los fármacos , Inflamación/metabolismo , Células Cultivadas , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Citocinas/metabolismo , Western Blotting
20.
Int Endod J ; 57(6): 745-758, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38477421

RESUMEN

AIM: Loss-of-function mutations in FAM20A result in amelogenesis imperfecta IG (AI1G) or enamel-renal syndrome, characterized by hypoplastic enamel, ectopic calcification, and gingival hyperplasia, with some cases reporting spontaneous tooth infection. Despite previous reports on the consequence of FAM20A reduction in gingival fibroblasts and transcriptome analyses of AI1G pulp tissues, suggesting its involvement in mineralization and infection, its role in deciduous dental pulp cells (DDP) remains unreported. The aim of this study was to evaluate the properties of DDP obtained from an AI1G patient, providing additional insights into the effects of FAM20A on the mineralization of DDP. METHODOLOGY: DDP were obtained from a FAM20A-AI1G patient (mutant cells) and three healthy individuals. Cellular behaviours were examined using flow cytometry, MTT, attachment and spreading, colony formation, and wound healing assays. Osteogenic induction was applied to DDP, followed by alizarin red S staining to assess their osteogenic differentiation. The expression of FAM20A-related genes, osteogenic genes, and inflammatory genes was analysed using real-time PCR, Western blot, and/or immunolocalization. Additionally, STRING analysis was performed to predict potential protein-protein interaction networks. RESULTS: The mutant cells exhibited a significant reduction in FAM20A mRNA and protein levels, as well as proliferation, migration, attachment, and colony formation. However, normal FAM20A subcellular localization was maintained. Additionally, osteogenic/odontogenic genes, OSX, OPN, RUNX2, BSP, and DSPP, were downregulated, along with upregulated ALP. STRING analysis suggested a potential correlation between FAM20A and these osteogenic genes. After osteogenic induction, the mutant cells demonstrated reduced mineral deposition and dysregulated expression of osteogenic genes. Remarkably, FAM20A, FAM20C, RUNX2, OPN, and OSX were significantly upregulated in the mutant cells, whilst ALP, and OCN was downregulated. Furthermore, the mutant cells exhibited a significant increase in inflammatory gene expression, that is, IL-1ß and TGF-ß1, whereas IL-6 and NFκB1 expression was significantly reduced. CONCLUSION: The reduction of FAM20A in mutant DDP is associated with various cellular deficiencies, including delayed proliferation, attachment, spreading, and migration as well as altered osteogenic and inflammatory responses. These findings provide novel insights into the biology of FAM20A in dental pulp cells and shed light on the molecular mechanisms underlying AI1G pathology.


Asunto(s)
Amelogénesis Imperfecta , Diferenciación Celular , Proteínas del Esmalte Dental , Pulpa Dental , Nefrocalcinosis , Osteogénesis , Diente Primario , Humanos , Células Cultivadas , Proteínas del Esmalte Dental/genética , Proteínas del Esmalte Dental/metabolismo , Pulpa Dental/citología , Pulpa Dental/metabolismo , Expresión Génica , Mutación , Osteogénesis/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...