RESUMEN
The UVA component of sunlight induces DNA damage, which are basically responsible for skin cancer formation. Xeroderma Pigmentosum Variant (XP-V) patients are defective in the DNA polymerase pol eta that promotes translesion synthesis after sunlight-induced DNA damage, implying in a clinical phenotype of increased frequency of skin cancer. However, the role of UVA-light in the carcinogenesis of these patients is not completely understood. The goal of this work was to characterize UVA-induced DNA damage and the consequences to XP-V cells, compared to complemented cells. DNA damage were induced in both cells by UVA, but lesion removal was particularly affected in XP-V cells, possibly due to the oxidation of DNA repair proteins, as indicated by the increase of carbonylated proteins. Moreover, UVA irradiation promoted replication fork stalling and cell cycle arrest in the S-phase for XP-V cells. Interestingly, when cells were treated with the antioxidant N-acetylcysteine, all these deleterious effects were consistently reverted, revealing the role of oxidative stress in these processes. Together, these results strongly indicate the crucial role of oxidative stress in UVA-induced cytotoxicity and are of interest for the protection of XP-V patients.
Asunto(s)
Reparación del ADN/efectos de la radiación , Fibroblastos/efectos de la radiación , Puntos de Control de la Fase S del Ciclo Celular/efectos de la radiación , Rayos Ultravioleta/efectos adversos , Acetilcisteína/farmacología , Línea Celular Transformada , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/efectos de la radiación , Daño del ADN , Reparación del ADN/efectos de los fármacos , Replicación del ADN/efectos de los fármacos , Replicación del ADN/efectos de la radiación , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Humanos , Nocodazol/farmacología , Compuestos Onio/farmacología , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/efectos de la radiación , Carbonilación Proteica/efectos de los fármacos , Carbonilación Proteica/efectos de la radiación , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Xerodermia Pigmentosa/genética , Xerodermia Pigmentosa/metabolismo , Xerodermia Pigmentosa/patologíaRESUMEN
One of the most important mechanisms for repairing double-strand breaks (DSBs) in model eukaryotes is homologous recombination (HR). Although the genes involved in HR have been found in Trypanosoma brucei and studies have identified some of the proteins that participate in this HR pathway, the recruitment kinetics of the HR machinery onto DNA during DSB repair have not been clearly elucidated in this organism. Using immunofluorescence, protein DNA-bound assays, and DNA content analysis, we established the recruitment kinetics of the HR pathway in response to the DSBs generated by ionizing radiation (IR) in procyclic forms of T. brucei. These kinetics involved the phosphorylation of histone H2A and the sequential recruitment of the essential HR players Exo1, RPA, and Rad51. The process of DSB repair took approximately 5.5 hours. We found that DSBs led to a decline in the G2/M phase after IR treatment, concomitant with cell cycle arrest in the G1/S phase. This finding suggests that HR repairs DSBs faster than the other possible DSB repair processes that act during the G1/S transition. Taken together, these data suggest that the interplay between DNA damage detection and HR machinery recruitment is finely coordinated, allowing these parasites to repair DNA rapidly after DSBs during the late S/G2 proficient phases.