Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 14(1): 20-31, 2022 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-34914354

RESUMEN

Tissue microarchitecture imposes physical constraints to the migration of individual cells. Especially in cancer metastasis, three-dimensional structural barriers within the extracellular matrix are known to affect the migratory behavior of cells, regulating the pathological state of the cells. Here, we employed a culture platform with micropillar arrays of 2 µm diameter and 16 µm pitch (2.16 micropillar) as a mechanical stimulant. Using this platform, we investigated how a long-term culture of A549 human lung carcinoma cells on the (2.16) micropillar-embossed dishes would influence the pathological state of the cell. A549 cells grown on the (2.16) micropillar array with 10 µm height exhibited a significantly elongated morphology and enhanced migration even after the detachment and reattachment, as evidenced in the conventional wound-healing assay, single-cell tracking analysis, and in vivo tumor colonization assays. Moreover, the pillar-induced morphological deformation in nuclei was accompanied by cell-cycle arrest in the S phase, leading to suppressed proliferation. While these marked traits of morphology-migration-proliferation support more aggressive characteristics of metastatic cancer cells, typical indices of epithelial-mesenchymal transition were not found, but instead, remarkable traces of amoeboidal transition were confirmed. Our study also emphasizes the importance of mechanical stimuli from the microenvironment during pathogenesis and how gained traits can be passed onto subsequent generations, ultimately affecting their pathophysiological behavior. Furthermore, this study highlights the potential use of pillar-based mechanical stimuli as an in vitro cell culture strategy to induce more aggressive tumorigenic cancer cell models.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Neoplasias Pulmonares/metabolismo , Células A549 , Animales , Técnicas de Cultivo de Célula/instrumentación , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Ácidos Grasos/metabolismo , Femenino , Humanos , Fenómenos Mecánicos , Metabolómica , Ratones Endogámicos BALB C , Ratones Desnudos , Puntos de Control de la Fase S del Ciclo Celular/fisiología
2.
Cell Cycle ; 18(21): 2876-2892, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31522595

RESUMEN

Glioblastoma is the most aggressive brain tumor. Although miR-141 has been demonstrated to primarily function as a tumor suppressor in numerous malignancies, including glioblastoma, the mechanisms involved remain poorly understood. Here, it is shown that miR-141 is downregulated in glioblastoma cell lines and tissues and may exert its biological function via directly targeting myelin transcription factor 1-like (MYT1L). Using two glioblastoma cell lines that differ from each other by the functionality of DNA-dependent protein kinase (DNAPK), a functional involvement of DNAPK in the miR-141 tumor suppression network was observed. In M059K cells with a normal function of DNAPK, the enforced expression of miR-141 attenuated MYT1L expression and suppressed cell proliferation. Conversely, the inhibition of miR-141 expression promoted cell proliferation; however, in M059J cells with a loss-of-function DNAPK, miR-141 constitutively inhibited cell proliferation upon ectopic overexpression or inhibition. An overexpression of miR-141 suppressed M059J cell migration, while it had no effect on M059K. Furthermore, the ectopic expression of miR-141 induced an S-phase arrest in both cell lines, whereas the inhibition of miR-141 caused a G1 arrest in M059J and accelerated the S phase in M059K. An overexpression and suppression of miR-141 resulted in an aberrant expression of cell-cycle proteins, including p21. Moreover, MYT1L may be a transcription factor of p21 in p53-mutant cells, whereas DNAPK may function as a repressor of MYT1L. The findings revealed the crucial role of DNAPK in miR-141-mediated suppression of gliomagenesis and demonstrated that it may be a target molecule in miR-141-associated therapeutic interventions for glioblastoma.


Asunto(s)
Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Proteína Quinasa Activada por ADN/metabolismo , Glioblastoma/patología , MicroARNs/genética , Proteínas del Tejido Nervioso/metabolismo , Factores de Transcripción/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Unión al ADN/metabolismo , Genes Supresores de Tumor/fisiología , Glioblastoma/genética , Glioblastoma/terapia , Humanos , Puntos de Control de la Fase S del Ciclo Celular/fisiología
3.
Mol Biol Cell ; 30(22): 2771-2789, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31509480

RESUMEN

Budding yeast treated with hydroxyurea (HU) activate the S phase checkpoint kinase Rad53, which prevents DNA replication forks from undergoing aberrant structural transitions and nuclease processing. Rad53 is also required to prevent premature extension of the mitotic spindle that assembles during a HU-extended S phase. Here we present evidence that checkpoint restraint of spindle extension is directly coupled to Rad53 control of replication fork stability. In budding yeast, centromeres are flanked by replication origins that fire in early S phase. Mutations affecting the Zn2+-finger of Dbf4, an origin activator, preferentially reduce centromere-proximal origin firing in HU, corresponding with suppression of rad53 spindle extension. Inactivating Exo1 nuclease or displacing centromeres from origins provides a similar suppression. Conversely, short-circuiting Rad53 targeting of Dbf4, Sld3, and Dun1, substrates contributing to fork stability, induces spindle extension. These results reveal spindle extension in HU-treated rad53 mutants is a consequence of replication fork catastrophes at centromeres. When such catastrophes occur, centromeres become susceptible to nucleases, disrupting kinetochore function and spindle force balancing mechanisms. At the same time, our data indicate centromere duplication is not required to stabilize S phase spindle structure, leading us to propose a model for how monopolar kinetochore-spindle attachments may contribute to spindle force balance in HU.


Asunto(s)
Proteínas de Caenorhabditis elegans/metabolismo , Replicación del ADN/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Huso Acromático/metabolismo , Puntos de Control del Ciclo Celular , Proteínas de Ciclo Celular/metabolismo , Centrómero/genética , Centrómero/metabolismo , Quinasa de Punto de Control 2/genética , Segregación Cromosómica/efectos de los fármacos , Estructuras Cromosómicas/metabolismo , Daño del ADN/genética , Replicación del ADN/genética , ADN de Hongos/genética , Cinetocoros/metabolismo , Origen de Réplica , Fase S/fisiología , Puntos de Control de la Fase S del Ciclo Celular/genética , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
BMC Mol Cell Biol ; 20(1): 8, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-31041891

RESUMEN

BACKGROUND: Dlx5 and Dlx6 stimulate differentiation of diverse progenitors during embryonic development. Their actions as pro-differentiation transcription factors includes the up-regulation of differentiation markers but the extent to which differentiation may also be stimulated by regulation of the cell cycle has not been addressed. RESULTS: We document that expression of Dlx5 and Dlx6 antagonizes cell proliferation in a variety of cell types without inducing apoptosis or promoting cell cycle exit. Rather, a variety of evidence indicates that elevated Dlx5 and Dlx6 expression reduces the proportion of cells in S phase and affects the length of the cell cycle. CONCLUSIONS: Antagonism of S-phase entry by Dlx5 and Dlx6 proteins likely represents a lineage-independent function to effect Dlx-mediated differentiation in multiple progenitor cell types.


Asunto(s)
División Celular/fisiología , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Proteínas de Homeodominio/genética , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Factores de Transcripción/genética , Animales , Apoptosis/fisiología , Diferenciación Celular/fisiología , Proliferación Celular/fisiología , Embrión de Pollo , Regulación del Desarrollo de la Expresión Génica , Células HEK293 , Humanos , Ratones , Plásmidos/genética , Transfección
5.
Life Sci Alliance ; 2(2)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30979824

RESUMEN

Human CTC1-STN1-TEN1 (CST) is an RPA-like single-stranded DNA-binding protein that interacts with DNA polymerase α-primase (pol α) and functions in telomere replication. Previous studies suggest that CST also promotes replication restart after fork stalling. However, the precise role of CST in genome-wide replication remains unclear. In this study, we sought to understand whether CST alters origin licensing and activation. Replication origins are licensed by loading of the minichromosome maintenance 2-7 (MCM) complex in G1 followed by replisome assembly and origin firing in S-phase. We find that CST directly interacts with the MCM complex and disrupts binding of CDT1 to MCM, leading to decreased origin licensing. We also show that CST enhances replisome assembly by promoting AND-1/pol α chromatin association. Moreover, these interactions are not dependent on exogenous replication stress, suggesting that CST acts as a specialized replication factor during normal replication. Overall, our findings implicate CST as a novel regulator of origin licensing and replisome assembly/fork progression through interactions with MCM, AND-1, and pol α.


Asunto(s)
Cromatina/metabolismo , Replicación del ADN/fisiología , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Proteínas de Ciclo Celular/metabolismo , ADN Polimerasa I/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Técnicas de Silenciamiento del Gen , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Proteínas de Mantenimiento de Minicromosoma/metabolismo , ARN Interferente Pequeño/genética , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Telómero/metabolismo , Proteínas de Unión a Telómeros/genética
6.
FEBS Open Bio ; 9(6): 1109-1118, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30972973

RESUMEN

Bone morphogenetic protein 4 (BMP4) has been reported to regulate adipose development, but its role in preadipocyte proliferation has not been explored in vitro. Here, we investigated the effect of BMP4 on chicken preadipocyte proliferation using immortalized chicken preadipocytes (ICP1 cells) as a cell model. We report that BMP4 expression increases during preadipocyte proliferation. Overexpression and knockdown of BMP4 promotes and inhibits preadipocyte proliferation, respectively. In addition, overexpression of BMP4 decreased the number of preadipocytes at the G0/G1 phase of the cell cycle, and increased the proportion of cells at S phase. In contrast, knockdown of BMP4 increased the number of preadipocytes at the G0/G1 phase of the cell cycle, and decreased the proportion of cells at the S and G2 phases. Furthermore, overexpression of BMP4 promoted the expression of proliferating cell nuclear antigen (PCNA), Id2, cyclin E, and cyclin-dependent kinase 2 (CDK2), while knockdown of BMP4 inhibited the expression of Id2, cyclin E, and CDK2. Finally, neither BMP4 overexpression nor BMP4 knockdown affected cell apoptosis. Taken together, our results suggest that BMP4 may promote proliferation of ICP1 cells by driving cell cycle transition from G1 to S phase.


Asunto(s)
Proteína Morfogenética Ósea 4/genética , Proteína Morfogenética Ósea 4/metabolismo , Proliferación Celular/fisiología , Pollos , Fibroblastos/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Animales , Apoptosis , Línea Celular , Ciclina E/metabolismo , Quinasa 2 Dependiente de la Ciclina/metabolismo , Técnicas de Silenciamiento del Gen , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Antígeno Nuclear de Célula en Proliferación/metabolismo , Transfección , Regulación hacia Arriba
7.
Life Sci Alliance ; 2(2)2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30988162

RESUMEN

The precise coordination of growth and proliferation has a universal prevalence in cell homeostasis. As a prominent property, cell size is modulated by the coordination between these processes in bacterial, yeast, and mammalian cells, but the underlying molecular mechanisms are largely unknown. Here, we show that multifunctional chaperone systems play a concerted and limiting role in cell-cycle entry, specifically driving nuclear accumulation of the G1 Cdk-cyclin complex. Based on these findings, we establish and test a molecular competition model that recapitulates cell-cycle-entry dependence on growth rate. As key predictions at a single-cell level, we show that availability of the Ydj1 chaperone and nuclear accumulation of the G1 cyclin Cln3 are inversely dependent on growth rate and readily respond to changes in protein synthesis and stress conditions that alter protein folding requirements. Thus, chaperone workload would subordinate Start to the biosynthetic machinery and dynamically adjust proliferation to the growth potential of the cell.


Asunto(s)
Aumento de la Célula , Tamaño de la Célula , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Respuesta al Choque Térmico/fisiología , Chaperonas Moleculares/metabolismo , Estrés Salino/fisiología , Proteína Quinasa CDC28 de Saccharomyces cerevisiae/metabolismo , Nucléolo Celular/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/metabolismo , Proteínas del Choque Térmico HSP40/metabolismo , Modelos Moleculares , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Saccharomyces cerevisiae/citología , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
Pharm Biol ; 56(1): 422-432, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30301390

RESUMEN

CONTEXT: Dicranopteris linearis (Burm.f.) Underw. (Gleicheniaceae) has been scientifically proven to exert various pharmacological activities. Nevertheless, its anti-proliferative potential has not been extensively investigated. OBJECTIVE: To investigate the anti-proliferative potential of D. linearis leaves and determine possible mechanistic pathways. MATERIALS AND METHODS: MTT assay was used to determine the cytotoxic effects of D. linearis methanol (MEDL) and petroleum ether (PEEDL) extracts at concentrations of 100, 50, 25, 12.5, 6.25 and 3.125 µg/mL against a panel of cancer cell lines (breast [MCF-7 and MDA-MB-231], cervical [HeLa], colon [HT-29], hepatocellular [HepG2] and lung [A549]), as compared to negative (untreated) and positive [5-fluorouracil (5-FU)-treated] control groups. Mouse fibroblast cells (3T3) were used as normal cells. The mode of cell death was examined using morphological analysis via acridine orange (AO) and propidium iodide (PI) double staining. Cell cycle arrest was determined using flow cytometer, followed by annexin V-PI apoptosis detection kit. RESULTS: MEDL demonstrated the most significant growth inhibition against MDA-MB-231 cells (IC50 22.4 µg/mL). PEEDL showed no cytotoxic effect. Induction of apoptosis by MEDL was evidenced via morphological analysis and acridine orange propidium iodide staining. MEDL could induce S phase cell cycle arrest after 72 h of incubation. Early apoptosis induction in MDA-MB-231 cells was confirmed by annexin V-FITC and PI staining. Significant increase in apoptotic cells were detected after 24 h of treatment with 15.07% cells underwent apoptosis, and the amount escalated to 18.24% with prolonged 48 h incubation. CONCLUSIONS: MEDL has potential as a potent cytotoxic agent against MDA-MB-231 adenocarcinoma.


Asunto(s)
Apoptosis/efectos de los fármacos , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Extractos Vegetales/farmacología , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos , Células 3T3 , Células A549 , Animales , Apiaceae , Apoptosis/fisiología , Neoplasias de la Mama/tratamiento farmacológico , Puntos de Control del Ciclo Celular/fisiología , Línea Celular Tumoral , Proliferación Celular/fisiología , Células HeLa , Células Hep G2 , Humanos , Células MCF-7 , Ratones , Extractos Vegetales/aislamiento & purificación , Puntos de Control de la Fase S del Ciclo Celular/fisiología
9.
Mol Microbiol ; 110(2): 191-203, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30084240

RESUMEN

Candida albicans is an opportunistic fungal pathogen. In immunocompromised individuals, it can cause bloodstream infections with high mortality rates. The ability to switch between yeast and hyphal morphologies is a critical virulence factor of C. albicans. In response to diverse environmental cues, several signaling pathways are activated resulting in filamentous growth. Interestingly, cell cycle arrest can also trigger filamentous growth although the pathways involved are not well-understood. Here, we demonstrate that the cAMP-PKA pathway is involved in the filamentous growth caused by G1 arrest due to the depletion of the G1 cyclin Cln3 and S phase arrest due to hydroxyurea treatment. The downstream mechanisms involved in filamentation are different between the two cell cycle arrest phenomena. Cln3-depleted cells require HGC1 and UME6 for filamentous growth, but hydroxyurea-induced filamentation does not. Also, the hyphal repressor Nrg1 is not involved in the suppression of Cln3-depletion and hydroxyurea-induced filamentous growth. The findings highlight the complexity of the signaling networks that control filamentous growth in which different mechanisms downstream of the cAMP-PKA pathway are activated based on the nature of the inducing signals.


Asunto(s)
Candida albicans/crecimiento & desarrollo , Ciclinas/metabolismo , Proteínas Fúngicas/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Hifa/crecimiento & desarrollo , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Candida albicans/efectos de los fármacos , Candida albicans/genética , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Ciclinas/genética , Proteínas Fúngicas/genética , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Eliminación de Gen , Humanos , Hidroxiurea/farmacología , Hifa/efectos de los fármacos , Plásmidos , Proteínas Represoras/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos
10.
Nat Commun ; 9(1): 2221, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880867

RESUMEN

Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CIIlow, serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CIIlow leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CIIlow is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Paraganglioma/patología , Estrés Fisiológico , Animales , Vías Biosintéticas/fisiología , Línea Celular Tumoral , Complejo II de Transporte de Electrones/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Paraganglioma/genética , ARN Interferente Pequeño/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
11.
FASEB J ; 31(7): 2925-2936, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-28360195

RESUMEN

Polo-like kinase 1 (PLK1) is a serine/threonine kinase involved in several stages of the cell cycle, including the entry and exit from mitosis, and cytokinesis. Furthermore, it has an essential role in the regulation of DNA replication. Together with cyclin A, PLK1 also promotes CDH1 phosphorylation to trigger its ubiquitination and degradation, allowing cell cycle progression. The PLK1 levels in different type of tumors are very high compared to normal tissues, which is consistent with its role in promoting proliferation. Therefore, several PLK1 inhibitors have been developed and tested for the treatment of cancer. Here, we further analyzed PLK1 degradation and found that cytoplasmic PLK1 is ubiquitinated and subsequently degraded by the SCFßTrCP/proteasome. This procedure is triggered when heat shock protein (HSP) 90 is inhibited with geldanamycin, which results in misfolding of PLK1. We also identified CDK1 as the major kinase involved in this degradation. Our work shows for the first time that HSP90 inhibition arrests cell cycle progression at the G1/S transition. This novel mechanism inhibits CDH1 degradation through CDK1-dependent PLK1 destruction by the SCFßTrCP/proteasome. In these conditions, CDH1 substrates do not accumulate and cell cycle arrests, providing a novel pathway for regulation of the cell cycle at the G1-to-S boundary.-Giráldez, S., Galindo-Moreno, M., Limón-Mortés, M. C., Rivas, A. C., Herrero-Ruiz, J., Mora-Santos, M., Sáez, C., Japón, M. Á., Tortolero, M., Romero, F. G1/S phase progression is regulated by PLK1 degradation through the CDK1/ßTrCP axis.


Asunto(s)
Proteína Quinasa CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Proteínas con Repetición de beta-Transducina/metabolismo , Animales , Proteína Quinasa CDC2/genética , Proteínas de Ciclo Celular/genética , Línea Celular , Clonación Molecular , Regulación Enzimológica de la Expresión Génica/fisiología , Técnicas de Silenciamiento del Gen , Humanos , Plásmidos , Mutación Puntual , Proteínas Serina-Treonina Quinasas/genética , Proteínas Proto-Oncogénicas/genética , Técnicas del Sistema de Dos Híbridos , Proteínas con Repetición de beta-Transducina/genética , Quinasa Tipo Polo 1
12.
Am J Physiol Cell Physiol ; 312(3): C341-C353, 2017 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-28100484

RESUMEN

Activating transcription factor 6 (ATF6), a sensor protein located in the endoplasmic reticulum (ER) membrane, is an important factor in the ER stress signaling pathway. ER stress is known to be involved in folliculogenesis, follicular growth, and ovulation; however, the physiological function of ATF6 in mouse granulosa cells remains largely unknown. The aim of this study was to assess the role of ATF6 in mouse granulosa cells with respect to apoptosis, the cell cycle, and steroid hormone production, as well as several key genes related to follicular development, via RNA interference, immunohistochemical staining, real-time quantitative PCR, Western blotting, flow cytometry, terminal deoxynucleotidyltransferase-mediated deoxy-UTP nick end labeling (TUNEL) assay, and ELISA. Immunohistochemical staining revealed that ATF6 was extensively distributed in the granulosa cells of various ovarian follicles and oocytes in adult female mice. FSH or LH treatment significantly increased ATF6 protein levels in mouse granulosa cells. In the meantime, a recombinant plasmid was used to deplete ATF6 successfully using short hairpin RNA-mediated interference technology, which was verified at both the mRNA and protein levels. Flow cytometry and TUNEL assay analysis indicated that ATF6 depletion decreased apoptosis and arrested the S phase of the cell cycle in mouse granulosa cells. Consistent with these results, p53, caspase-3, B cell lymphoma 2 (Bcl-2)-associated X protein, CCAAT-enhancer-binding protein homologous protein, cyclin A1, cyclin B1, and cyclin D2 mRNA expression decreased, whereas Bcl-2 and glucose-regulated protein 78 kDa mRNA expression increased. Interestingly, ATF6 knockdown obviously increased progesterone and estradiol production in mouse granulosa cells. Cytochrome P450 1b1 (Cyp1b1) mRNA levels were downregulated, whereas Cyp11a1, steroidogenic acute regulatory, and Cyp19a1 mRNA levels were upregulated, in keeping with the changes in steroid hormones. Furthermore, ATF6 disruption remarkably increased insulin-like growth factor binding protein4 (Igfbp4) expression and decreased hyaluronan synthase 2 (Has2), prostaglandin-endoperoxide synthase 2 (Ptgs2), and prostaglandin F receptor (Ptgfr) expression in mouse granulosa cells, which are proteins crucial for follicular development. But, after treating with tunicamycin, the levels of Has2, Ptgs2, and Ptgfr increased relatively, whereas Igfbp4 expression decreased. Collectively, these results imply that ATF6, as a key player in ER stress signaling, may regulate apoptosis, the cell cycle, steroid hormone synthesis, and other modulators related to folliculogenesis in mouse granulosa cells, which may indirectly be involved in the development, ovulation, and atresia of ovarian follicles by affecting the physiological function of granulosa cells. The present study extends our understanding and provides new insights into the physiological significance of ATF6, a key signal transducer of ER stress, in ovarian granulosa cells.


Asunto(s)
Factor de Transcripción Activador 6/metabolismo , Apoptosis/fisiología , Hormonas Esteroides Gonadales/metabolismo , Células de la Granulosa/citología , Células de la Granulosa/fisiología , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Animales , Células Cultivadas , Femenino , Técnicas de Silenciamiento del Gen , Ratones
13.
Biomed Pharmacother ; 86: 74-80, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27939522

RESUMEN

Noscapine is an alkaloid present in the latex of Papaver somniferum. It has been known for its anticancer efficacy and lack of severe toxicities to normal tissues. Structural alterations in noscapine core architecture have produced a number of potent analogues of noscapine. Here, we report an unusual activity of a novel noscapine analogue, 9-(4-vinylphenyl)noscapine (VinPhe-Nos) on cancer cells. As we reported earlier, VinPhe-Nos inhibited MDA-MB-231 cell proliferation with an IC50 of 6µM. The present study elucidated a possible antiproliferative mechanism of action of VinPhe-Nos. The noscapinoid significantly inhibited clonogenic propagation of MDA-MB-231 cells. However, unlike the majority of tubulin-binding agents, it did not induce mitotic arrest; instead, it prolonged S-phase. Although prolonged presence of the drug show some disruption of cellular microtubule architecture, it did not affect microtubule recovery after cold-induced depolymerization. VinPhe-Nos, nevertheless, induced acetylation and bundling of microtubules. Our data suggest that rational modification of parent compound can alter its mechanism of action on cell cycle and that VinPhe-Nos can be investigated further as a less-toxic, S-phase-preferred, cytostatic anticancer agent.


Asunto(s)
Puntos de Control del Ciclo Celular/fisiología , Microtúbulos/fisiología , Noscapina/análogos & derivados , Noscapina/farmacología , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Acetilación/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Humanos , Microtúbulos/efectos de los fármacos , Puntos de Control de la Fase S del Ciclo Celular/efectos de los fármacos
14.
Korean J Parasitol ; 54(2): 147-54, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27180572

RESUMEN

Toxoplasma gondii infection induces alteration of the host cell cycle and cell proliferation. These changes are not only seen in directly invaded host cells but also in neighboring cells. We tried to identify whether this alteration can be mediated by exosomes secreted by T. gondii-infected host cells. L6 cells, a rat myoblast cell line, and RH strain of T. gondii were selected for this study. L6 cells were infected with or without T. gondii to isolate exosomes. The cellular growth patterns were identified by cell counting with trypan blue under confocal microscopy, and cell cycle changes were investigated by flow cytometry. L6 cells infected with T. gondii showed decreased proliferation compared to uninfected L6 cells and revealed a tendency to stay at S or G2/M cell phase. The treatment of exosomes isolated from T. gondii-infected cells showed attenuation of cell proliferation and slight enhancement of S phase in L6 cells. The cell cycle alteration was not as obvious as reduction of the cell proliferation by the exosome treatment. These changes were transient and disappeared at 48 hr after the exosome treatment. Microarray analysis and web-based tools indicated that various exosomal miRNAs were crucial for the regulation of target genes related to cell proliferation. Collectively, our study demonstrated that the exosomes originating from T. gondii could change the host cell proliferation and alter the host cell cycle.


Asunto(s)
Proliferación Celular , Exosomas/metabolismo , Puntos de Control de la Fase M del Ciclo Celular/fisiología , MicroARNs/biosíntesis , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Toxoplasma/metabolismo , Toxoplasmosis/patología , Animales , Línea Celular , Citometría de Flujo , Interacciones Huésped-Parásitos , Ratas , Toxoplasma/patogenicidad , Toxoplasmosis/parasitología
15.
Int J Radiat Oncol Biol Phys ; 94(5): 1207-18, 2016 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-27026320

RESUMEN

PURPOSE: To determine how low-dose ionizing radiation (LDIR) regulates B lympho-proliferation and its molecular mechanism related with Ikaros, transcription factor. METHODS AND MATERIALS: Splenocytes and IM-9 cells were uniformly irradiated with various doses of a (137)Cs γ-source, and cell proliferation was analyzed. To determine the LDIR-specific phosphorylation of Ikaros, immunoprecipitation and Western blot analysis were performed. To investigate the physiologic function of LDIR-mediatied Ikaros phosphorylation, Ikaros mutants at phosphorylation sites were generated, and cell cycle analysis was performed. RESULTS: First, we found that LDIR enhances B lymphoblast proliferation in an Ikaros-dependent manner. Moreover, we found that LDIR elevates the phosphorylation level of Ikaros protein. Interestingly, we showed that CK2 and AKT are involved in LDIR-induced Ikaros phosphorylation and capable of regulating DNA binding activity of Ikaros via specific phosphorylation. Finally, we identified LDIR-specific Ikaros phosphorylation sites at S391/S393 and showed that the Ikaros phosphorylations at these sites control Ikaros's ability to regulate G1/S cell cycle progression. CONCLUSION: Low-dose ionizing radiation specifically phosphorylates Ikaros protein at Ser 391/393 residues to regulate cell cycle progression in B lymphoblast.


Asunto(s)
Linfocitos B/efectos de la radiación , Quinasa de la Caseína II/metabolismo , Puntos de Control de la Fase G1 del Ciclo Celular/fisiología , Factor de Transcripción Ikaros/metabolismo , Proteínas Proto-Oncogénicas c-akt/fisiología , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Linfocitos B/citología , Linfocitos B/fisiología , Línea Celular , Proliferación Celular/efectos de la radiación , ADN/metabolismo , Humanos , Factor de Transcripción Ikaros/genética , Mutación , Fosforilación/genética , Fosforilación/efectos de la radiación , Dosis de Radiación , Radiación Ionizante
16.
Oncogene ; 35(5): 567-76, 2016 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-25893301

RESUMEN

The main risk factor for skin cancer is ultraviolet (UV) exposure, which causes DNA damage. Cells respond to UV-induced DNA damage by activating the intra-S-phase checkpoint, which prevents replication fork collapse, late origin firing and stabilizes fragile sites. Recently, the 54-kDa multifunctional protein NONO was found to be involved in the non-homologous end-joining DNA repair process and in poly ADP-ribose polymerase 1 activation. Interestingly, NONO is mutated in several tumour types and emerged as a crucial factor underlying both melanoma development and progression. Therefore, we set out to evaluate whether NONO could be involved in the DNA-damage response to UV radiations. We generated NONO-silenced HeLa cell clones and found that lack of NONO decreased cell growth rate. Then, we challenged NONO-silenced cells with exposure to UV radiations and found that NONO-silenced cells, compared with control cells, continued to synthesize DNA, failed to block new origin firing and impaired CHK1S345 phosphorylation showing a defective checkpoint activation. Consistently, NONO is present at the sites of UV-induced DNA damage where it localizes to RAD9 foci. To position NONO in the DNA-damage response cascade, we analysed the loading onto chromatin of various intra-S-phase checkpoint mediators and found that NONO favours the loading of topoisomerase II-binding protein 1 acting upstream of the ATM and Rad3-related kinase activity. Strikingly, re-expression of NONO, through an sh-resistant mRNA, rescued CHK1S345 phosphorylation in NONO-silenced cells. Interestingly, NONO silencing affected cell response to UV radiations also in a melanoma cell line. Overall, our data uncover a new role for NONO in mediating the cellular response to UV-induced DNA damage.


Asunto(s)
Daño del ADN , Proteínas Asociadas a Matriz Nuclear/fisiología , Factores de Transcripción de Octámeros/fisiología , Proteínas de Unión al ARN/fisiología , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Puntos de Control de la Fase S del Ciclo Celular/efectos de la radiación , ADN/metabolismo , Reparación del ADN , Proteínas de Unión al ADN , Células HeLa , Humanos , Proteínas Asociadas a Matriz Nuclear/genética , Proteínas Asociadas a Matriz Nuclear/metabolismo , Factores de Transcripción de Octámeros/genética , Factores de Transcripción de Octámeros/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/genética , Transfección , Rayos Ultravioleta
17.
PLoS One ; 10(3): e0119865, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25822823

RESUMEN

Tau is a microtubule-associated protein implicated in neurodegenerative tauopathies. Six tau isoforms are generated from a single gene through alternative splicing of exons 2, 3 and 10 in human brain. Differential expression of tau isoforms has been detected in different brain areas, during neurodevelopment and in neurodegenerative disorders. However, the biological significance of different tau isoforms is not clear. Here, we investigated the individual effect of six different isoforms of tau on cell proliferation and the possible mechanisms by transient expression of eGFP-labeled tau isoform plasmid in N2a cells. Our study showed the transfection efficiency was comparable between different isoforms of tau by examining GFP expression. Compared with other isoforms, we found expression of 1N3R-tau significantly inhibited cell proliferation by Cell Counting Kit-8 assay and BrdU incorporation. Flow cytometry analysis further showed expression of 1N3R-tau induced S phase arrest. Compared with the longest isoform of tau, expression of 1N3R-tau induced cyclin E translocation from the nuclei to cytoplasm, while it did not change the level of cell cycle checkpoint proteins. These data indicate that 1N3R-tau inhibits cell proliferation through inducing S phase arrest.


Asunto(s)
Puntos de Control de la Fase S del Ciclo Celular/fisiología , Proteínas tau/genética , Proteínas tau/fisiología , Transporte Activo de Núcleo Celular , Empalme Alternativo , Animales , Línea Celular , Proliferación Celular/genética , Proliferación Celular/fisiología , Supervivencia Celular , Ciclina E/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Ratones , Neuronas/metabolismo , Neuronas/patología , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiología , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/genética , Tauopatías/etiología , Tauopatías/patología , Tauopatías/fisiopatología , Transfección
18.
Anim Reprod Sci ; 155: 80-8, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25728901

RESUMEN

Follistatin (FST), a local regulator of gonadal functions is a powerful inhibitor of follicle stimulating hormone (FSH) secretion. In the present study, the expression of FST was partially silenced at both transcriptional and translational levels by RNAi-Ready pSIREN-RetroQ-ZsGreen Vector mediated recombinant pshRNA vectors in bovine granulosa cells (bGCs). The results showed that transfection with FST-1 and FST-2 vectors significantly down-regulated mRNA and protein expressions of follistatin by 51% (P = 0.0093) and 72% (P = 0.0078) respectively. After down-regulation of FST in bGCs, cell cycle was arrested at S-phase (9.2 ± 0.6 vs 12.5 ± 0.2, P = 0.0055), and apoptosis was significantly (21.3 ± 2.7 vs 13.9 ± 2.5, P = 0.0051) increased. These findings were further verified by down-regulation of protein level of B-cell leukemia/lymphoma 2 (Bcl2, P = 0.0423), and up-regulation of caspase-3 (P = 0.0362), p21 (P = 0.0067) and mRNA levels of Bcl2-associated X protein (Bax, P = 0.041). Knockdown of FST in bGCs significantly increased activin A concentration in culture medium, while level of estradiol (E2) was suppressed without affecting progesterone production. In addition, mRNA levels of all activin receptor subtypes [activin receptor types I (ACRI) and II (ACRIIA and ACRIIB)] and inhibin α-subunit were augmented (P < 0.05) without altering both inhibin ß-subunits. These findings suggest that follistatin may participate in caspase3-dependent apoptosis through Bcl2/Bax gene family in bovine GCs, whereas, activin and its receptors are associated with its regulation. Activin-induced up-regulation of inhibin-α subunit in bGCs seems to be involved in the regulation of steroidogenesis.


Asunto(s)
Apoptosis/fisiología , Bovinos/fisiología , Estradiol/metabolismo , Folistatina/metabolismo , Interferencia de ARN , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Activinas/metabolismo , Animales , Células Cultivadas , Femenino , Folistatina/genética , Células de la Granulosa/metabolismo , Plásmidos , Progesterona/metabolismo
19.
Cell Cycle ; 13(15): 2349-58, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25483186

RESUMEN

Keap1 negatively controls the activity of transcription factor Nrf2. This Keap1/Nrf2 pathway plays a critical role in combating oxidative stress. We aimed at determining whether and how Keap1 modulates the cell cycle of replicating hepatocytes during liver regeneration. Two-thirds partial hepatectomy (PH) was performed on wild-type mice and Keap1+/- (Keap1 knockdown) mice. We found that, following PH, Keap1 knockdown resulted in a delay in S-phase entry, disruption of S-phase progression, and loss of mitotic rhythm of replicating hepatocytes. These events are associated with dysregulation of c-Met, EGFR, Akt1, p70S6K, Cyclin A2, and Cyclin B1 in regenerating livers. Astonishingly, normal regenerating livers exhibited the redox fluctuation coupled with hepatocyte cell cycle progression, while keeping Nrf2 quiescent. Keap1 knockdown caused severe disruption in both the redox cycle and the cell cycle of replicating hepatocytes. Thus, we demonstrate that Keap1 is a potent regulator of hepatic redox cycle and hepatocyte cell cycle during liver regeneration.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Ciclo Celular/fisiología , Proteínas del Citoesqueleto/metabolismo , Hepatocitos/citología , Regeneración Hepática/fisiología , Hígado/fisiología , Proteínas Adaptadoras Transductoras de Señales/genética , Animales , Proteínas de Ciclo Celular/metabolismo , Proteínas del Citoesqueleto/genética , Hepatectomía , Hepatocitos/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch , Hígado/citología , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Factor 2 Relacionado con NF-E2/metabolismo , Oxidación-Reducción , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Transducción de Señal
20.
Int J Biol Sci ; 10(10): 1193-202, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25516717

RESUMEN

SIRT1, the mammalian homolog of yeast Sir2, is a founding member of a family of 7 protein and histone deacetylases that are involved in numerous biological functions. Previous studies revealed that SIRT1 deficiency results in genome instability, which eventually leads to cancer formation, yet the underlying mechanism is unclear. To investigate this, we conducted a proteomics study and found that SIRT1 interacted with many proteins involved in replication fork protection and origin firing. We demonstrated that loss of SIRT1 resulted in increased replication origin firing, asymmetric fork progression, defective intra-S-phase checkpoint, and chromosome damage. Mechanistically, SIRT1 deacetylates and affects the activity of TopBP1, which plays an essential role in DNA replication fork protection and replication origin firing. Our study demonstrated that ectopic over-expression of the deacetylated form of TopBP1 in SIRT1 mutant cells repressed replication origin firing, while the acetylated form of TopBP1 lost this function. Thus, SIRT1 acts upstream of TopBP1 and plays an essential role in maintaining genome stability by modulating DNA replication fork initiation and the intra-S-phase cell cycle checkpoint.


Asunto(s)
Proteínas Portadoras/metabolismo , Inestabilidad Genómica/genética , Origen de Réplica/fisiología , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Sirtuina 1/metabolismo , Acetilación , Animales , Western Blotting , Bromodesoxiuridina , Análisis Citogenético , Vectores Genéticos/genética , Células HEK293 , Humanos , Inmunoprecipitación , Lentivirus , Espectrometría de Masas , Ratones , Ratones Noqueados , ARN Interferente Pequeño/genética , Sirtuina 1/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...