Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS Chem Biol ; 19(2): 233-242, 2024 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-38271588

RESUMEN

In the field of drug discovery, understanding how small molecule drugs interact with cellular components is crucial. Our study introduces a novel methodology to uncover primary drug targets using Tandem Affinity Purification for identification of Drug-Binding Proteins (TAP-DBP). Central to our approach is the generation of a FLAG-hemagglutinin (HA)-tagged chimeric protein featuring the FKBP12(F36V) adaptor protein and the TurboID enzyme. Conjugation of drug molecules with the FKBP12(F36V) ligand allows for the coordinated recruitment of drug-binding partners effectively enabling in-cell TurboID-mediated biotinylation. By employing a tandem affinity purification protocol based on FLAG-immunoprecipitation and streptavidin pulldown, alongside mass spectrometry analysis, TAP-DBP allows for the precise identification of drug-primary binding partners. Overall, this study introduces a systematic, unbiased method for identification of drug-protein interactions, contributing a clear understanding of target engagement and drug selectivity to advance the mode of action of a drug in cells.


Asunto(s)
Proteínas Portadoras , Purificación por Afinidad en Tándem , Purificación por Afinidad en Tándem/métodos , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas/metabolismo , Cromatografía de Afinidad/métodos
2.
Methods Mol Biol ; 2701: 209-227, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37574485

RESUMEN

Isolation of a protein/complex is important for its biochemical and structural characterization with mechanistic insights. TAP (tandem affinity purification) strategy allows rapid isolation of cellular proteins/complexes with a high level of purity. This methodology involves an immuno-affinity-based purification followed by a conformation-based isolation to obtain a highly homogeneous protein/complex. Here, we describe the TAP-mediated isolation of endogenous FACT (facilitates chromatin transcription; a heterodimer), an essential histone chaperone associated with BER (base excision repair). However, it is not clearly understood how FACT regulates BER. Such knowledge would advance our understanding of BER with implications in disease pathogenesis, since BER is an evolutionarily conserved process that is linked to various diseases including ageing, neurodegenerative disorders, and cancers. Using isolated FACT by TAP methodology, one can study the mechanisms of action of FACT in BER. Further, isolated FACT can be used for studies in other DNA transactions such as transcription and replication, as FACT is involved in these processes. Furthermore, TAP-mediated isolation strategy can be combined with mass spectrometry to identify the protein interaction partners of FACT.


Asunto(s)
Proteínas de Unión al ADN , Espectrometría de Masas , Purificación por Afinidad en Tándem , Purificación por Afinidad en Tándem/métodos , Espectrometría de Masas/métodos , Cromatina , Proteínas de Unión al ADN/química , Proteínas de Unión al ADN/aislamiento & purificación , Proteínas de Unión al ADN/metabolismo , Proteínas del Grupo de Alta Movilidad , Factores de Elongación Transcripcional
3.
Methods Mol Biol ; 2690: 69-80, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37450137

RESUMEN

Proteins often interact with each other to form complexes and play functional roles in almost all cellular processes. The study of protein-protein interactions is therefore critical to understand protein function and biological pathways. Affinity Purification coupled with Mass Spectrometry (AP-MS) is an invaluable technique for identifying the interaction partners in protein complexes. In this approach, the protein of interest is fused to an affinity tag, followed by the expression and purification of the fusion protein. The affinity-purified sample is then analyzed by mass spectrometry to identify the interaction partners of the bait proteins. In this chapter, we detail the protocol for tandem affinity purification (TAP) based on the use of the FLAG (a fusion tag with peptide sequence DYKDDDDK) and hemagglutinin (HA) peptide epitopes. The immunoprecipitation using dual-affinity tags offers the advantage of increasing the specificity of the purification with lower nonspecific-background interactions.


Asunto(s)
Hemaglutininas , Purificación por Afinidad en Tándem , Purificación por Afinidad en Tándem/métodos , Proteínas/química , Cromatografía de Afinidad/métodos , Espectrometría de Masas
4.
STAR Protoc ; 3(3): 101569, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-35874475

RESUMEN

Identification of protein interactors is fundamental to understanding their functions. Here, we describe a modified protocol for tandem affinity purification coupled with mass spectrometry (TAP/MS), which includes two-step purification. We detail the S-, 2×FLAG-, and Streptavidin-Binding Peptide (SBP)- tandem tags (SFB-tag) system for protein purification. This protocol can be used to identify protein interactors and establish a high-confidence protein-protein interaction network based on computational models. This is particularly useful for identifying bona fide interacting proteins for subsequent functional studies. For complete details on the use and execution of this protocol, please refer to Bian et al. (2021).


Asunto(s)
Mapas de Interacción de Proteínas , Purificación por Afinidad en Tándem , Animales , Cromatografía de Afinidad/métodos , Mamíferos/metabolismo , Proteínas/química , Purificación por Afinidad en Tándem/métodos , Espectrometría de Masas en Tándem/métodos
5.
Int J Mol Sci ; 22(13)2021 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-34281155

RESUMEN

The study of protein-protein interactions (PPIs) is fundamental in understanding the unique role of proteins within cells and their contribution to complex biological systems. While the toolkit to study PPIs has grown immensely in mammalian and unicellular eukaryote systems over recent years, application of these techniques in plants remains under-utilized. Affinity purification coupled to mass spectrometry (AP-MS) and proximity labeling coupled to mass spectrometry (PL-MS) are two powerful techniques that have significantly enhanced our understanding of PPIs. Relying on the specific binding properties of a protein to an immobilized ligand, AP is a fast, sensitive and targeted approach used to detect interactions between bait (protein of interest) and prey (interacting partners) under near-physiological conditions. Similarly, PL, which utilizes the close proximity of proteins to identify potential interacting partners, has the ability to detect transient or hydrophobic interactions under native conditions. Combined, these techniques have the potential to reveal an unprecedented spatial and temporal protein interaction network that better understands biological processes relevant to many fields of interest. In this review, we summarize the advantages and disadvantages of two increasingly common PPI determination techniques: AP-MS and PL-MS and discuss their important application to plant systems.


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Mapas de Interacción de Proteínas/fisiología , Purificación por Afinidad en Tándem/métodos , Cromatografía de Afinidad/métodos , Espectrometría de Masas/métodos , Plantas/metabolismo , Proteínas/química
6.
STAR Protoc ; 1(3): 100109, 2020 12 18.
Artículo en Inglés | MEDLINE | ID: mdl-33377005

RESUMEN

Protein-protein interactions (PPIs) play essential roles in almost all aspects of cellular processes. However, PPIs remain challenging to study due to their substoichiometry, low affinity, dynamic nature, and context dependence. Here, we present a protocol for the capture and identification of PPIs in live mammalian cells, which relies on site-specific photo-crosslinking in live cells, affinity purification, and quantitative proteomics. The protocol facilitates efficient and reliable identification of the interacting proteins of a given protein of interest in live cells. For complete details on the use and execution of this protocol, please refer to Wu et al. (2020).


Asunto(s)
Mapeo de Interacción de Proteínas/métodos , Proteómica/métodos , Animales , Línea Celular , Cromatografía de Afinidad/métodos , Reactivos de Enlaces Cruzados , Humanos , Mamíferos , Espectrometría de Masas/métodos , Unión Proteica , Mapas de Interacción de Proteínas/fisiología , Proteínas/metabolismo , Purificación por Afinidad en Tándem/métodos
7.
Nat Protoc ; 15(10): 3182-3211, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32778839

RESUMEN

Affinity purification coupled with mass spectrometry (AP-MS) and proximity-dependent biotinylation identification (BioID) methods have made substantial contributions to interaction proteomics studies. Whereas AP-MS results in the identification of proteins that are in a stable complex, BioID labels and identifies proteins that are in close proximity to the bait, resulting in overlapping yet distinct protein identifications. Integration of AP-MS and BioID data has been shown to comprehensively characterize a protein's molecular context, but interactome analysis using both methods in parallel is still labor and resource intense with respect to cell line generation and protein purification. Therefore, we developed the Multiple Approaches Combined (MAC)-tag workflow, which allows for both AP-MS and BioID analysis with a single construct and with almost identical protein purification and mass spectrometry (MS) identification procedures. We have applied the MAC-tag workflow to a selection of subcellular markers to provide a global view of the cellular protein interactome landscape. This localization database is accessible via our online platform ( http://proteomics.fi ) to predict the cellular localization of a protein of interest (POI) depending on its identified interactors. In this protocol, we present the detailed three-stage procedure for the MAC-tag workflow: (1) cell line generation for the MAC-tagged POI; (2) parallel AP-MS and BioID protein purification followed by MS analysis; and (3) protein interaction data analysis, data filtration and visualization with our localization visualization platform. The entire procedure can be completed within 25 d.


Asunto(s)
Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas/métodos , Purificación por Afinidad en Tándem/métodos , Biotinilación , Línea Celular , Cromatografía de Afinidad/métodos , Humanos , Mapas de Interacción de Proteínas/fisiología , Proteínas/metabolismo , Proteómica/métodos , Flujo de Trabajo
8.
Methods Mol Biol ; 2116: 161-176, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32221921

RESUMEN

Determining variations in protein abundance and/or posttranslational modification as a function of time or upon induction by a signal in a particular cell type is central to quantitative proteomics. Isobaric labeling methodologies now allow for parallel quantification of proteins at various conditions concurrently or multiplexing in relatively quantitative proteomics workflows. Hence, mapping the protein expression profiles of various developmental stages of Leishmania parasites is possible with high-resolution mass spectrometry. To analyze global changes in protein expression and cellular signaling pathways during Leishmania differentiation and development is possible with a quantitative proteomics approach. The tandem mass tags (TMT) approach provides a chemical labeling method based on the principle of amine reactive tags; the maximum number of conditions that can be multiplexed is 10-plex. We describe herein a detailed method for sample preparation, TMT-labeling, mass spectrometry and data analysis of different developmental stages of Leishmania donovani parasites. This quantitative proteomic approach is useful to study dynamic changes in protein expression levels during L. donovani differentiation, and also allows in-depth analysis of signaling pathways via phosphoproteomics.


Asunto(s)
Leishmania donovani/fisiología , Fosfoproteínas/análisis , Proteómica/métodos , Proteínas Protozoarias/análisis , Regulación del Desarrollo de la Expresión Génica , Estadios del Ciclo de Vida/genética , Parasitología/métodos , Fosfoproteínas/metabolismo , Fosforilación/fisiología , Proteínas Protozoarias/metabolismo , Coloración y Etiquetado/métodos , Purificación por Afinidad en Tándem/métodos , Espectrometría de Masas en Tándem/métodos
9.
Methods Mol Biol ; 1998: 227-238, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31250306

RESUMEN

Most endosomal sorting complex required for transport (ESCRT)-III proteins are not fully functional when expressed as fusion of fluorescent or epitope tags, frequently making the use of specific antibodies the only available method for their detection. Heterologous expression of ESCRT-III proteins in bacteria often results in the formation of insoluble aggregates or inclusion bodies that interfere with their purification. However, inclusion bodies are usually pure protein aggregates with high antigenicity. In addition, since proteins within inclusion bodies are presented in a range of folding states, immunization with inclusion bodies can potentially result in antibodies with specificity for different folding states of the protein under study. We describe here a protocol to isolate bacterial inclusion bodies of plant ESCRT-III proteins for production of polyclonal antibodies. We also describe a nitrocellulose-based immunoaffinity purification method that allows the immobilization of ESCRT-III proteins and the subsequent isolation of specific antibodies from a crude serum.


Asunto(s)
Anticuerpos/aislamiento & purificación , Proteínas de Arabidopsis/aislamiento & purificación , Complejos de Clasificación Endosomal Requeridos para el Transporte/aislamiento & purificación , Cuerpos de Inclusión/metabolismo , Proteínas de Transporte Vesicular/aislamiento & purificación , Animales , Anticuerpos/inmunología , Proteínas de Arabidopsis/administración & dosificación , Proteínas de Arabidopsis/inmunología , Proteínas de Arabidopsis/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/administración & dosificación , Complejos de Clasificación Endosomal Requeridos para el Transporte/inmunología , Complejos de Clasificación Endosomal Requeridos para el Transporte/metabolismo , Escherichia coli/genética , Vectores Genéticos/genética , Inmunización/métodos , Plásmidos/genética , Pliegue de Proteína , Proteínas Recombinantes/administración & dosificación , Proteínas Recombinantes/inmunología , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Purificación por Afinidad en Tándem/métodos , Transformación Bacteriana , Proteínas de Transporte Vesicular/administración & dosificación , Proteínas de Transporte Vesicular/inmunología , Proteínas de Transporte Vesicular/metabolismo
10.
Cold Spring Harb Protoc ; 2019(2)2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30710027

RESUMEN

The immunoaffinity purification of target proteins followed by the identification and characterization of associated proteins by mass spectrometry is a widely used technique. An immunoaffinity purification bears resemblance to a standard immunoprecipitation; however, the end product for mass spectrometric analysis in the femtomole (10-15) to attomole (10-18) range is required to be of exceptional purity. This high degree of sensitivity in detection renders it of extreme importance to eliminate most if not all of the nonspecific background proteins and can be achieved by performing a tandem affinity purification (TAP). In TAP, the cDNA of the target protein is engineered to contain at least two different epitope tags, and the target protein is extracted under nondenaturing conditions upon expression using an appropriate protein expression platform (CHO cells, HEK 293 cells, or yeast). The expressed protein is initially immunoprecipitated using an antibody against one epitope tag and is eluted in the presence of excess peptide by competition for antibody-binding sites, before being reimmunoprecipitated using an antibody that specifically recognizes the second epitope. These sequential immunoprecipitations significantly reduce the presence of associated nonspecific proteins. Numerous combinations of epitope tags have been applied for tandem affinity purification, and this protocol illustrates the use of tandem hemagglutinin (HA) and FLAG epitope tags. The first immunoprecipitation uses an anti-FLAG antibody followed by the elution in the presence of a competing FLAG peptide before the reimmunoprecipitation of the protein using an anti-HA antibody. Numerous high-quality antiepitope tag antibodies are commercially available from different antibody manufacturers.


Asunto(s)
Hemaglutininas/inmunología , Oligopéptidos/inmunología , Proteínas Recombinantes de Fusión/aislamiento & purificación , Purificación por Afinidad en Tándem/métodos , Animales , Células CHO , Cricetulus , Epítopos/genética , Epítopos/inmunología , Células HEK293 , Hemaglutininas/genética , Humanos , Inmunoprecipitación/métodos , Oligopéptidos/genética , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Levaduras
11.
Curr Protoc Protein Sci ; 96(1): e84, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30706993

RESUMEN

Affinity purification followed by mass spectrometry has become the technique of choice to identify binding partners in biochemical complexes isolated from a physiologic cellular context. In this report we detail our protocol for tandem affinity purification (TAP) primarily based on the use of the FLAG and HA peptide epitopes, with a particular emphasis on factors affecting yield and specificity, as well as steps to implement an automated version of the TAP procedure. © 2019 by John Wiley & Sons, Inc.


Asunto(s)
Retroviridae/aislamiento & purificación , Purificación por Afinidad en Tándem/métodos , Espectrometría de Masas en Tándem/métodos , Células HEK293 , Células HeLa , Humanos , Oligopéptidos/química , Proteómica , Retroviridae/química , Retroviridae/genética
12.
Nat Protoc ; 14(2): 556-575, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30610240

RESUMEN

A big challenge in proteomics is the identification of cell-type-specific proteomes in vivo. This protocol describes how to label, purify and identify cell-type-specific proteomes in living mice. To make this possible, we created a Cre-recombinase-inducible mouse line expressing a mutant methionyl-tRNA synthetase (L274G), which enables the labeling of nascent proteins with the non-canonical amino acid azidonorleucine (ANL). This amino acid can be conjugated to different affinity tags by click chemistry. After affinity purification (AP), the labeled proteins can be identified by tandem mass spectrometry (MS/MS). With this method, it is possible to identify cell-type-specific proteomes derived from living animals, which was not possible with any previously published method. The reduction in sample complexity achieved by this protocol allows for the detection of subtle changes in cell-type-specific protein content in response to environmental changes. This protocol can be completed in ~10 d (plus the time needed to generate the mouse lines, the desired labeling period and MS analysis).


Asunto(s)
Azidas/metabolismo , Química Clic/métodos , Metionina-ARNt Ligasa/genética , Norleucina/análogos & derivados , Proteoma/aislamiento & purificación , Proteómica/métodos , Coloración y Etiquetado/métodos , Animales , Expresión Génica , Integrasas/genética , Integrasas/metabolismo , Metionina-ARNt Ligasa/metabolismo , Ratones , Ratones Transgénicos , Mutación , Norleucina/metabolismo , Especificidad de Órganos , Proteoma/biosíntesis , Proteoma/genética , Purificación por Afinidad en Tándem/métodos , Espectrometría de Masas en Tándem
13.
Proteomics ; 18(24): e1800004, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30508278

RESUMEN

Heat shock protein 90 (HSP90) is a highly abundant molecular chaperone that interacts with many other intracellular proteins to regulate various cellular processes. However, compositions of the HSP90-interacting complex remain underinvestigated. This study thus aims to characterize such complex in human embryonic kidney (HEK293T) cells under normal physiologic state using tandem affinity purification (TAP) followed by protein identification using an ultrahigh-resolution tandem mass spectrometer (Qq-TOF MS/MS). A total of 32 proteins, including four forms of HSP90 and 16 novel HSP90-interacting partners, are successfully identified from this complex using TAP control to subtract nonspecific binders. Co-immunoprecipitation followed by immunoblotting and immunofluorescence co-staining confirms the association of HSP90 with known (HSP70, α-tubulin, and ß-actin) and novel (vimentin, calpain-1, and importin-ß1) partners. Knockdown of HSP90 by small-interfering RNA (siHSP90) causes significant changes in levels of HSP70, α-tubulin, ß-actin, vimentin, and calpain-1, all of which are calcium oxalate (CaOx) crystal-binding proteins that play significant roles in kidney stone formation. Moreover, crystal-binding capability is significantly decreased in siHSP90-transfected cells as compared to non-transfected control and siControl-transfected cells. In summary, herein, a number of novel HSP90-interacting proteins in renal cells is reported and the potential role of HSP90-interacting complex in kidney stone formation is demonstrated.


Asunto(s)
Oxalato de Calcio/química , Proteínas HSP90 de Choque Térmico/metabolismo , Cálculos Renales/patología , Mapeo de Interacción de Proteínas , Purificación por Afinidad en Tándem/métodos , Espectrometría de Masas en Tándem/métodos , Células HEK293 , Humanos , Cálculos Renales/metabolismo , Unión Proteica
14.
J Vis Exp ; (141)2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30451223

RESUMEN

Chloroplast biogenesis requires the import of thousands of nucleus-encoded proteins into the plastid. The import of these proteins depends on the translocon at the outer (TOC) and inner (TIC) chloroplast membranes. The TOC and TIC complexes are multimeric and probably contain yet unknown components. One of the main goals in the field is to establish the complete inventory of TOC and TIC components. For the isolation of TOC-TIC complexes and the identification of new components, the preprotein receptor TOC159 has been modified N-terminally by the addition of the tandem affinity purification (TAP) tag resulting in TAP-TOC159. The TAP-tag is designed for two sequential affinity purification steps (hence "tandem affinity"). The TAP-tag used in these studies consists of a N-terminal IgG-binding domain derived from Staphylococcus aureus Protein A (ProtA) followed by a calmodulin-binding peptide (CBP). Between these two affinity tags, a tobacco etch virus (TEV) protease cleavage site has been included. Therefore, TEV protease can be used for gentle elution of TOC159-containing complexes after binding to IgG beads. In the protocol presented here, the second Calmodulin-affinity purification step was omitted. The purification protocol starts with the preparation and solubilization of total cellular membranes. After the detergent-treatment, the solubilized membrane proteins are incubated with IgG beads for the immunoisolation of TAP-TOC159-containing complexes. Upon binding and extensive washing, TAP-TOC159 containing complexes are cleaved and released from the IgG beads using the TEV protease whereby the S. aureus IgG-binding domain is removed. Western blotting of the isolated TOC159-containing complexes can be used to confirm the presence of known or suspected TOC and TIC proteins. More importantly, the TOC159-containing complexes have been used successfully to identify new components of the TOC and TIC complexes by mass spectrometry. The protocol that we present potentially allows the efficient isolation of any membrane-bound protein complex to be used for the identification of yet unknown components by mass spectrometry.


Asunto(s)
Proteínas de Cloroplastos/aislamiento & purificación , Cromatografía de Afinidad/métodos , Purificación por Afinidad en Tándem/métodos , Endopeptidasas/metabolismo , Espectrometría de Masas , Unión Proteica
15.
Biosci Rep ; 38(6)2018 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-30413608

RESUMEN

Fluorescence-based assays are extremely diverse, sensitive and robust experimental methods for investigating the conformational changes, enzyme kinetics, dynamics and molecular interactions. A prerequisite for most of these experimental approaches is to label the protein of interest with one or more extrinsic fluorophores with desired photophysical properties. Fluorescein isothiocyanate (FITC), due to its high quantum efficiency and conjugate stability, is most widely used fluorescence labelling reagent for such experimental approaches. However, the bottlenecks in this labelling reaction is requirement of high protein concentration, maintenance of protein stability during the labelling process as well as high background fluorescence due to ineffective removal of unreacted FITC, prior to fluorescence studies. Therefore, to overcome these inadequacies or limitations, we have modified the existing protocol by introducing tandem affinity purification tags at the N- and C-terminus of target protein. Using this modified method, we have efficiently labelled target protein with significant decrease in precipitation, degradation and background fluorescence of unreacted FITC. This facile and rapid technique may also be used as a basis for labelling procedures with other fluorophores and hence has a broad application in spectroscopic studies.


Asunto(s)
Fluoresceína-5-Isotiocianato/química , Colorantes Fluorescentes/química , Proteínas/aislamiento & purificación , Purificación por Afinidad en Tándem/métodos , Clonación Molecular/métodos , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/aislamiento & purificación , Fluorescencia , Proteínas de Unión a Maltosa/química , Proteínas de Unión a Maltosa/genética , Proteínas de Unión a Maltosa/aislamiento & purificación , Estabilidad Proteica , Proteínas/química , Proteínas/genética , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/aislamiento & purificación , Purificación por Afinidad en Tándem/economía
16.
Methods Mol Biol ; 1794: 297-309, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29855967

RESUMEN

Tandem affinity purification (TAP) coupled to mass spectrometry has become a powerful approach to identify protein-protein interactions from different biological systems, including plants, in a proteome-wide manner. By using two sequential affinity purification steps, TAP allows for isolation of high-purity TAP-tagged proteins of interest and their associated proteins. Here we describe optimized procedures to use the GSRhino TAP technology for protein complex isolation from Arabidopsis cell suspension cultures.


Asunto(s)
Proteínas de Arabidopsis/aislamiento & purificación , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Mapeo de Interacción de Proteínas/métodos , Purificación por Afinidad en Tándem/métodos , Células Cultivadas , Unión Proteica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...