Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
Más filtros










Intervalo de año de publicación
1.
World J Microbiol Biotechnol ; 40(6): 183, 2024 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-38722449

RESUMEN

Heterologous production of proteins in Escherichia coli has raised several challenges including soluble production of target proteins, high levels of expression and purification. Fusion tags can serve as the important tools to overcome these challenges. SUMO (small ubiquitin-related modifier) is one of these tags whose fusion to native protein sequence can enhance its solubility and stability. In current research, a simple, efficient and cost-effective method is being discussed for the construction of pET28a-SUMO vector. In order to improve the stability and activity of lysophospholipase from Pyrococcus abyssi (Pa-LPL), a 6xHis-SUMO tag was fused to N-terminal of Pa-LPL by using pET28a-SUMO vector. Recombinant SUMO-fused enzyme (6 H-S-PaLPL) works optimally at 35 °C and pH 6.5 with remarkable thermostability at 35-95 °C. Thermo-inactivation kinetics of 6 H-S-PaLPL were also studied at 35-95 °C with first order rate constant (kIN) of 5.58 × 10- 2 h-1 and half-life of 12 ± 0 h at 95 °C. Km and Vmax for the hydrolysis of 4-nitrophenyl butyrate were calculated to be 2 ± 0.015 mM and 3882 ± 22.368 U/mg, respectively. 2.4-fold increase in Vmax of Pa-LPL was observed after fusion of 6xHis-SUMO tag to its N-terminal. It is the first report on the utilization of SUMO fusion tag to enhance the overall stability and activity of Pa-LPL. Fusion of 6xHis-SUMO tag not only aided in the purification process but also played a crucial role in increasing the thermostability and activity of the enzyme. SUMO-fused enzyme, thus generated, can serve as an important candidate for degumming of vegetable oils at industrial scale.


Asunto(s)
Estabilidad de Enzimas , Escherichia coli , Pyrococcus abyssi , Proteínas Recombinantes de Fusión , Temperatura , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes de Fusión/química , Escherichia coli/genética , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Cinética , Pyrococcus abyssi/genética , Pyrococcus abyssi/enzimología , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/genética , Vectores Genéticos/metabolismo , Proteína SUMO-1/genética , Proteína SUMO-1/metabolismo , Proteína SUMO-1/química , Clonación Molecular , Solubilidad
2.
Carbohydr Res ; 539: 109122, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38657354

RESUMEN

The genomic screening of hyper-thermophilic Pyrococcus abyssi showed uncharacterized novel α-amylase sequences. Homology modelling analysis revealed that the α-amylase from P. abyssi consists of an N-terminal GH57 catalytic domain, α-amylase central, and C-terminal domain. Current studies emphasize in-silico structural and functional analysis, recombinant expression, characterization, structural studies through CD spectroscopy, and ligand binding studies of the novel α-amylase from P. abyssi. The soluble expression of PaAFG was observed in the E. coli Rosetta™ (DE3) pLysS strain upon incubation overnight at 18 °C in an orbital shaker. The optimum temperature and pH of the PaAFG were observed at 90 °C in 50 mM phosphate buffer pH 6. The Km value for PaAFG against wheat starch was determined as 0.20 ± 0.053 mg while the corresponding Vmax value was 25.00 ± 0.67 µmol min-1 mg-1 in the presence of 2 mM CaCl2 and 12.5 % glycerol. The temperature ramping experiments through CD spectroscopy reveal no significant change in the secondary structures and positive and negative ellipticities of the CD spectra showing the proper folding and optimal temperature of PaAFG protein. The RMSD and RMSF of the PaAFG enzyme determined through molecular dynamic simulation show the significant protein's stability and mobility. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various industrial applications.


Asunto(s)
Pyrococcus abyssi , Almidón , alfa-Amilasas , alfa-Amilasas/metabolismo , alfa-Amilasas/química , alfa-Amilasas/genética , Estabilidad de Enzimas , Concentración de Iones de Hidrógeno , Modelos Moleculares , Pyrococcus abyssi/enzimología , Almidón/metabolismo , Almidón/química , Temperatura
3.
Int J Biol Macromol ; 266(Pt 2): 131310, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38569986

RESUMEN

Alpha amylase belonging to starch hydrolyzing enzymes has significant contributions to different industrial processes. The enzyme production through recombinant DNA technology faces certain challenges related to their expression, solubility and purification, which can be overcome through fusion tags. This study explored the influence of SUMO, a protein tag reported to enhance the solubility and stability of target proteins when fused to the N-terminal of the catalytic domain of amylase from Pyrococcus abyssi (PaAD). The insoluble expression of PaAD in E. coli was overcome when the enzyme was expressed in a fusion state (S-PaAD) and culture was cultivated at 18 °C. Moreover, the activity of S-PaAD increased by 1.5-fold as compared to that of PaAD. The ligand binding and enzyme activity assays against different substrates demonstrated that it was more active against 1 % glycogen and amylopectin. The analysis of the hydrolysates through HPLC demonstrated that the enzyme activity is mainly amylolytic, producing longer oligosaccharides as the major end product. The secondary structure analyses by temperature ramping in CD spectroscopy and MD simulation demonstrated the enzymes in the free, as well as fusion state, were stable at 90 °C. The soluble production, thermostability and broad substrate specificity make this enzyme a promising choice for various foods, feed, textiles, detergents, pharmaceuticals, and many industrial applications.


Asunto(s)
Dominio Catalítico , Estabilidad de Enzimas , Pyrococcus abyssi , Proteínas Recombinantes de Fusión , Solubilidad , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Especificidad por Sustrato , Pyrococcus abyssi/enzimología , Amilasas/química , Amilasas/metabolismo , Amilasas/genética , Hidrólisis , Escherichia coli/genética , Temperatura , Almidón/química , Almidón/metabolismo
4.
Braz. j. biol ; 82: e244735, 2022. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1249280

RESUMEN

L-Asparaginase catalysing the breakdown of L-Asparagine to L-Aspartate and ammonia is an enzyme of therapeutic importance in the treatment of cancer, especially the lymphomas and leukaemia. The present study describes the recombinant production, properties and anticancer potential of enzyme from a hyperthermophilic archaeon Pyrococcus abyssi. There are two genes coding for asparaginase in the genome of this organism. A 918 bp gene encoding 305 amino acids was PCR amplified and cloned in BL21 (DE3) strain of E. coli using pET28a (+) plasmid. The production of recombinant enzyme was induced under 0.5mM IPTG, purified by selective heat denaturation and ion exchange chromatography. Purified enzyme was analyzed for kinetics, in silico structure and anticancer properties. The recombinant enzyme has shown a molecular weight of 33 kDa, specific activity of 1175 U/mg, KM value 2.05mM, optimum temperature and pH 80°C and 8 respectively. No detectable enzyme activity found when L-Glutamine was used as the substrate. In silico studies have shown that the enzyme exists as a homodimer having Arg11, Ala87, Thr110, His112, Gln142, Leu172, and Lys232 being the putative active site residues. The free energy change calculated by molecular docking studies of enzyme and substrate was found as ∆G ­ 4.5 kJ/mole indicating the affinity of enzyme with the substrate. IC50 values of 5U/mL to 7.5U/mL were determined for FB, caco2 cells and HepG2 cells. A calculated amount of enzyme (5U/mL) exhibited 78% to 55% growth inhibition of caco2 and HepG2 cells. In conclusion, the recombinant enzyme produced and characterized in the present study offers a good candidate for the treatment of cancer. The procedures adopted in the present study can be prolonged for in vivo studies.


A L-asparaginase, que catalisa a degradação da L-asparagina em L-aspartato e amônia, é uma enzima de importância terapêutica no tratamento do câncer, especialmente dos linfomas e da leucemia. O presente estudo descreve a produção recombinante, propriedades e potencial anticancerígeno da enzima de Pyrococcus abyssi, um archaeon hipertermofílico. Existem dois genes que codificam para a asparaginase no genoma desse organismo. Um gene de 918 bp, que codifica 305 aminoácidos, foi amplificado por PCR e clonado na cepa BL21 (DE3) de E. coli usando o plasmídeo pET28a (+). A produção da enzima recombinante foi induzida sob 0,5mM de IPTG, purificada por desnaturação seletiva por calor e cromatografia de troca iônica. A enzima purificada foi analisada quanto à cinética, estrutura in silico e propriedades anticancerígenas. A enzima recombinante apresentou peso molecular de 33 kDa, atividade específica de 1.175 U / mg, valor de KM 2,05 mM, temperatura ótima de 80º C e pH 8. Nenhuma atividade enzimática detectável foi encontrada quando a L-glutamina foi usada como substrato. Estudos in silico mostraram que a enzima existe como um homodímero, com Arg11, Ala87, Thr110, His112, Gln142, Leu172 e Lys232 sendo os resíduos do local ativo putativo. A mudança de energia livre calculada por estudos de docking molecular da enzima e do substrato foi encontrada como ∆G ­ 4,5 kJ / mol, indicando a afinidade da enzima com o substrato. Valores de IC50 de 5U / mL a 7,5U / mL foram determinados para células FB, células caco2 e células HepG2. Uma quantidade de enzima (5U / mL) apresentou inibição de crescimento de 78% a 55% das células caco2 e HepG2, respectivamente. Em conclusão, a enzima recombinante produzida e caracterizada no presente estudo é uma boa possibilidade para o tratamento do câncer. Os procedimentos adotados na presente pesquisa podem ser aplicados para estudos in vivo.


Asunto(s)
Humanos , Asparaginasa/biosíntesis , Asparaginasa/farmacología , Pyrococcus abyssi/enzimología , Antineoplásicos/farmacología , Especificidad por Sustrato , Estabilidad de Enzimas , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/farmacología , Células CACO-2 , Escherichia coli/genética , Simulación del Acoplamiento Molecular , Concentración de Iones de Hidrógeno
5.
Braz. j. biol ; 82: 1-9, 2022. ilus, graf, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468507

RESUMEN

L-Asparaginase catalysing the breakdown of L-Asparagine to L-Aspartate and ammonia is an enzyme of therapeutic importance in the treatment of cancer, especially the lymphomas and leukaemia. The present study describes the recombinant production, properties and anticancer potential of enzyme from a hyperthermophilic archaeon Pyrococcus abyssi. There are two genes coding for asparaginase in the genome of this organism. A 918 bp gene encoding 305 amino acids was PCR amplified and cloned in BL21 (DE3) strain of E. coli using pET28a (+) plasmid. The production of recombinant enzyme was induced under 0.5mM IPTG, purified by selective heat denaturation and ion exchange chromatography. Purified enzyme was analyzed for kinetics, in silico structure and anticancer properties. The recombinant enzyme has shown a molecular weight of 33 kDa, specific activity of 1175 U/mg, KM value 2.05mM, optimum temperature and pH 80°C and 8 respectively. No detectable enzyme activity found when L-Glutamine was used as the substrate. In silico studies have shown that the enzyme exists as a homodimer having Arg11, Ala87, Thr110, His112, Gln142, Leu172, and Lys232 being the putative active site residues. The free energy change calculated by molecular docking studies of enzyme and substrate was found as ∆G – 4.5 kJ/mole indicating the affinity of enzyme with the substrate. IC50 values of 5U/mL to 7.5U/mL were determined for FB, caco2 cells and HepG2 cells. A calculated amount of enzyme (5U/mL) exhibited 78% to 55% growth inhibition of caco2 and HepG2 cells. In conclusion, the recombinant enzyme produced and characterized in the present study offers a good candidate for the treatment of cancer. The procedures adopted in the present study can be prolonged for in vivo studies.


A L-asparaginase, que catalisa a degradação da L-asparagina em L-aspartato e amônia, é uma enzima de importância terapêutica no tratamento do câncer, especialmente dos linfomas e da leucemia. O presente estudo descreve a produção recombinante, propriedades e potencial anticancerígeno da enzima de Pyrococcus abyssi, um archaeon hipertermofílico. Existem dois genes que codificam para a asparaginase no genoma desse organismo. Um gene de 918 bp, que codifica 305 aminoácidos, foi amplificado por PCR e clonado na cepa BL21 (DE3) de E. coli usando o plasmídeo pET28a (+). A produção da enzima recombinante foi induzida sob 0,5mM de IPTG, purificada por desnaturação seletiva por calor e cromatografia de troca iônica. A enzima purificada foi analisada quanto à cinética, estrutura in silico e propriedades anticancerígenas. A enzima recombinante apresentou peso molecular de 33 kDa, atividade específica de 1.175 U / mg, valor de KM 2,05 mM, temperatura ótima de 80º C e pH 8. Nenhuma atividade enzimática detectável foi encontrada quando a L-glutamina foi usada como substrato. Estudos in silico mostraram que a enzima existe como um homodímero, com Arg11, Ala87, Thr110, His112, Gln142, Leu172 e Lys232 sendo os resíduos do local ativo putativo. A mudança de energia livre calculada por estudos de docking molecular da enzima e do substrato foi encontrada como ∆G – 4,5 kJ / mol, indicando a afinidade da enzima com o substrato. Valores de IC50 de 5U / mL a 7,5U / mL foram determinados para células FB, células caco2 e células HepG2. Uma quantidade de enzima (5U / mL) apresentou inibição de crescimento de 78% a 55% das células caco2 e HepG2, respectivamente. Em conclusão, a enzima recombinante produzida e caracterizada no presente estudo é uma boa possibilidade para o tratamento do câncer. Os procedimentos adotados na presente pesquisa podem ser aplicados para estudos in vivo.


Asunto(s)
Anticarcinógenos/análisis , Asparaginasa/genética , Leucemia/tratamiento farmacológico , Linfoma/tratamiento farmacológico , Pyrococcus abyssi/enzimología
6.
Braz J Biol ; 82: e244735, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34076169

RESUMEN

L-Asparaginase catalysing the breakdown of L-Asparagine to L-Aspartate and ammonia is an enzyme of therapeutic importance in the treatment of cancer, especially the lymphomas and leukaemia. The present study describes the recombinant production, properties and anticancer potential of enzyme from a hyperthermophilic archaeon Pyrococcus abyssi. There are two genes coding for asparaginase in the genome of this organism. A 918 bp gene encoding 305 amino acids was PCR amplified and cloned in BL21 (DE3) strain of E. coli using pET28a (+) plasmid. The production of recombinant enzyme was induced under 0.5mM IPTG, purified by selective heat denaturation and ion exchange chromatography. Purified enzyme was analyzed for kinetics, in silico structure and anticancer properties. The recombinant enzyme has shown a molecular weight of 33 kDa, specific activity of 1175 U/mg, KM value 2.05mM, optimum temperature and pH 80°C and 8 respectively. No detectable enzyme activity found when L-Glutamine was used as the substrate. In silico studies have shown that the enzyme exists as a homodimer having Arg11, Ala87, Thr110, His112, Gln142, Leu172, and Lys232 being the putative active site residues. The free energy change calculated by molecular docking studies of enzyme and substrate was found as ∆G - 4.5 kJ/mole indicating the affinity of enzyme with the substrate. IC50 values of 5U/mL to 7.5U/mL were determined for FB, caco2 cells and HepG2 cells. A calculated amount of enzyme (5U/mL) exhibited 78% to 55% growth inhibition of caco2 and HepG2 cells. In conclusion, the recombinant enzyme produced and characterized in the present study offers a good candidate for the treatment of cancer. The procedures adopted in the present study can be prolonged for in vivo studies.


Asunto(s)
Antineoplásicos/farmacología , Asparaginasa , Pyrococcus abyssi , Asparaginasa/biosíntesis , Asparaginasa/farmacología , Células CACO-2 , Estabilidad de Enzimas , Escherichia coli/genética , Humanos , Concentración de Iones de Hidrógeno , Simulación del Acoplamiento Molecular , Pyrococcus abyssi/enzimología , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/farmacología , Especificidad por Sustrato
7.
Biochemistry ; 59(26): 2459-2467, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32559373

RESUMEN

Protein splicing is a post-translational process mediated by an intein, whereby the intein excises itself from a precursor protein with concomitant ligation of the two flanking polypeptides. The intein that interrupts the DNA polymerase II in the extreme hyperthermophile Pyrococcus abyssi has a ß-hairpin that extends the central ß-sheet of the intein. This ß-hairpin is mostly found in inteins from archaea, as well as halophilic eubacteria, and is thus called the extremophile hairpin (EXH) motif. The EXH is stabilized by multiple favorable interactions, including electrostatic interactions involving Glu29, Glu31, and Arg40. Mutations of these residues diminish the extent of N-terminal cleavage and the extent of protein splicing, likely by interfering with the coordination of the steps of splicing. These same mutations decrease the global stability of the intein fold as measured by susceptibility to thermolysin cleavage. 15N-1H heteronuclear single-quantum coherence demonstrated that these mutations altered the chemical environment of active site residues such as His93 (B-block histidine) and Ser166 (F-block residue 4). This work again underscores the connected and coordinated nature of intein conformation and dynamics, where remote mutations can disturb a finely tuned interaction network to inhibit or enhance protein splicing.


Asunto(s)
Proteínas Arqueales/metabolismo , ADN Polimerasa II/metabolismo , Inteínas , Empalme de Proteína , Pyrococcus abyssi/enzimología , Secuencias de Aminoácidos , Proteínas Arqueales/genética , ADN Polimerasa II/genética , Pyrococcus abyssi/genética
8.
Nucleic Acids Res ; 48(7): 3832-3847, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32030412

RESUMEN

A network of RNA helicases, endoribonucleases and exoribonucleases regulates the quantity and quality of cellular RNAs. To date, mechanistic studies focussed on bacterial and eukaryal systems due to the challenge of identifying the main drivers of RNA decay and processing in Archaea. Here, our data support that aRNase J, a 5'-3' exoribonuclease of the ß-CASP family conserved in Euryarchaeota, engages specifically with a Ski2-like helicase and the RNA exosome to potentially exert control over RNA surveillance, at the vicinity of the ribosome. Proteomic landscapes and direct protein-protein interaction analyses, strengthened by comprehensive phylogenomic studies demonstrated that aRNase J interplay with ASH-Ski2 and a cap exosome subunit. Finally, Thermococcus barophilus whole-cell extract fractionation experiments provide evidences that an aRNase J/ASH-Ski2 complex might exist in vivo and hint at an association of aRNase J with the ribosome that is emphasised in absence of ASH-Ski2. Whilst aRNase J homologues are found among bacteria, the RNA exosome and the Ski2-like RNA helicase have eukaryotic homologues, underlining the mosaic aspect of archaeal RNA machines. Altogether, these results suggest a fundamental role of ß-CASP RNase/helicase complex in archaeal RNA metabolism.


Asunto(s)
Euryarchaeota/enzimología , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , ARN Helicasas/metabolismo , Procesamiento Postranscripcional del ARN , ARN de Archaea/metabolismo , Mapeo de Interacción de Proteínas , Pyrococcus abyssi/enzimología , Thermococcus/enzimología
9.
Extremophiles ; 23(6): 669-679, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31363851

RESUMEN

Self-splicing inteins are mobile genetic elements invading host genes via nested homing endonuclease (HEN) domains. All HEN domains residing within inteins are inserted at a highly conserved insertion site. A purifying selection mechanism directing the location of the HEN insertion site has not yet been identified. In this work, we solved the three-dimensional crystal structures of two inteins inserted in the cell division control protein 21 of the hyperthermophilic archaea Pyrococcus abyssi and Pyrococcus horikoshii. A comparison between the structures provides the structural basis for the thermo-stabilization mechanism of inteins that have lost the HEN domain during evolution. The presence of an entire extein domain in the intein structure from Pyrococcus horikoshii suggests the selection mechanism for the highly conserved HEN insertion point.


Asunto(s)
Proteínas Arqueales/química , Endonucleasas/química , Inteínas , Pyrococcus abyssi/enzimología , Pyrococcus horikoshii/enzimología , Proteínas Arqueales/genética , Endonucleasas/genética , Estabilidad de Enzimas , Calor , Dominios Proteicos , Pyrococcus abyssi/genética , Pyrococcus horikoshii/genética
10.
Biochimie ; 164: 37-44, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31212038

RESUMEN

Circular RNAs (circRNAs) differ structurally from other types of RNAs and are resistant against exoribonucleases. Although they have been detected in all domains of life, it remains unclear how circularization affects or changes functions of these ubiquitous nucleic acid circles. The biogenesis of circRNAs has been mostly described as a backsplicing event, but in archaea, where RNA splicing is a rare phenomenon, a second pathway for circRNA formation was described in the cases of rRNAs processing, tRNA intron excision, and Box C/D RNAs formation. At least in some archaeal species, circRNAs are formed by a ligation step catalyzed by an atypic homodimeric RNA ligase belonging to Rnl3 family. In this review, we describe archaeal circRNA transcriptomes obtained using high throughput sequencing technologies on Sulfolobus solfataricus, Pyrococcus abyssi and Nanoarchaeum equitans cells. We will discuss the distribution of circular RNAs among the different RNA categories and present the Rnl3 ligase family implicated in the circularization activity. Special focus is given for the description of phylogenetic distributions, protein structures, and substrate specificities of archaeal RNA ligases.


Asunto(s)
Nanoarchaeota , Pyrococcus abyssi , ARN Ligasa (ATP) , ARN de Archaea , ARN Circular , Sulfolobus solfataricus , Nanoarchaeota/enzimología , Nanoarchaeota/genética , Pyrococcus abyssi/enzimología , Pyrococcus abyssi/genética , ARN Ligasa (ATP)/clasificación , ARN Ligasa (ATP)/fisiología , ARN de Archaea/clasificación , ARN de Archaea/metabolismo , ARN Circular/clasificación , ARN Circular/metabolismo , Análisis de Secuencia de ARN , Sulfolobus solfataricus/enzimología , Sulfolobus solfataricus/genética
11.
RNA ; 24(7): 926-938, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29650678

RESUMEN

N6-threonyl-carbamoyl adenosine (t6A) is a universal tRNA modification found at position 37, next to the anticodon, in almost all tRNAs decoding ANN codons (where N = A, U, G, or C). t6A stabilizes the codon-anticodon interaction and hence promotes translation fidelity. The first step of the biosynthesis of t6A, the production of threonyl-carbamoyl adenylate (TC-AMP), is catalyzed by the Sua5/TsaC family of enzymes. While TsaC is a single domain protein, Sua5 enzymes are composed of the TsaC-like domain, a linker and an extra domain called SUA5 of unknown function. In the present study, we report structure-function analysis of Pyrococcus abyssi Sua5 (Pa-Sua5). Crystallographic data revealed binding sites for bicarbonate substrate and pyrophosphate product. The linker of Pa-Sua5 forms a loop structure that folds into the active site gorge and closes it. Using structure-guided mutational analysis, we established that the conserved sequence motifs in the linker and the domain-domain interface are essential for the function of Pa-Sua5. We propose that the linker participates actively in the biosynthesis of TC-AMP by binding to ATP/PPi and by stabilizing the N-carboxy-l-threonine intermediate. Hence, TsaC orthologs which lack such a linker and SUA5 domain use a different mechanism for TC-AMP synthesis.


Asunto(s)
Adenosina/análogos & derivados , Proteínas Arqueales/química , Pyrococcus abyssi/enzimología , ARN de Transferencia/metabolismo , Adenosina/biosíntesis , Adenosina Trifosfatasas/química , Adenosina Trifosfatasas/metabolismo , Adenosina Trifosfato/metabolismo , Secuencias de Aminoácidos , Proteínas Arqueales/genética , Proteínas Arqueales/metabolismo , Modelos Moleculares , Mutación , Conformación Proteica , Dominios Proteicos , ARN de Transferencia/química , Relación Estructura-Actividad
12.
J Biosci Bioeng ; 126(2): 266-272, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29551467

RESUMEN

Escherichia coli is the most popular organism used for producing recombinant proteins. However, the expression of recombinant proteins in E. coli sometimes results in the aggregation of proteins as an inclusion body in host cells. In such cases, it is necessary to optimize the refolding conditions to obtain the recombinant protein in its native form. Several techniques, such as reducing the concentration of the induction reagent during E. coli cultivation, have been developed to prevent the formation of inclusion bodies by controlling protein expression levels. In this study, we inserted one copy of a target gene under the control of T7 promoter into the E. coli chromosome using the Red-mediated recombination system. This system enabled soluble expression of the putative d-aminoacylase from Pyrococcus abyssi, which is expressed in an insoluble form following the use of conventional plasmid-based T7 promoter/polymerase systems. The relationship between the number of inserted gene copies and amount of soluble recombinant protein produced was evaluated by multiple insertions of the eGFP gene into the E. coli chromosome. The results revealed that the total expression from the insertion of one copy was around 1/5 that of the pET plasmid system and that expression increased as the inserted gene copy number increased up to five copies.


Asunto(s)
Cromosomas Bacterianos/genética , Escherichia coli/genética , Mutagénesis Insercional/métodos , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Amidohidrolasas/genética , Amidohidrolasas/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Dosificación de Gen , Regulación Bacteriana de la Expresión Génica , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Cuerpos de Inclusión/metabolismo , Organismos Modificados Genéticamente , Regiones Promotoras Genéticas , Pyrococcus abyssi/enzimología , Pyrococcus abyssi/genética
13.
Nucleic Acids Res ; 45(21): 12425-12440, 2017 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29040737

RESUMEN

Divalent metal ions, usually Mg2+, are required for both DNA synthesis and proofreading functions by DNA polymerases (DNA Pol). Although used as a non-reactive cofactor substitute for binding and crystallographic studies, Ca2+ supports DNA polymerization by only one DNA Pol, Dpo4. Here, we explore whether Ca2+-driven catalysis might apply to high-fidelity (HiFi) family B DNA Pols. The consequences of replacing Mg2+ by Ca2+ on base pairing at the polymerase active site as well as the editing of terminal nucleotides at the exonuclease active site of the archaeal Pyrococcus abyssi DNA Pol (PabPolB) are characterized and compared to other (families B, A, Y, X, D) DNA Pols. Based on primer extension assays, steady-state kinetics and ion-chased experiments, we demonstrate that Ca2+ (and other metal ions) activates DNA synthesis by PabPolB. While showing a slower rate of phosphodiester bond formation, nucleotide selectivity is improved over that of Mg2+. Further mechanistic studies show that the affinities for primer/template are higher in the presence of Ca2+ and reinforced by a correct incoming nucleotide. Conversely, no exonuclease degradation of the terminal nucleotides occurs with Ca2+. Evolutionary and mechanistic insights among DNA Pols are thus discussed.


Asunto(s)
Calcio/fisiología , ADN Polimerasa Dirigida por ADN/metabolismo , ADN/biosíntesis , Cartilla de ADN , Exodesoxirribonucleasas/metabolismo , Magnesio/fisiología , Pyrococcus abyssi/enzimología
14.
Biochem Biophys Res Commun ; 493(1): 240-245, 2017 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-28911863

RESUMEN

The wyosine hypermodification found exclusively at G37 of tRNAPhe in eukaryotes and archaea is a very complicated process involving multiple steps and enzymes, and the derivatives are essential for the maintenance of the reading frame during translation. In the archaea Pyrococcus abyssi, two key enzymes from the Trm5 family, named PaTrm5a and PaTrm5b respectively, start the process by forming N1-methylated guanosine (m1G37). In addition, PaTrm5a catalyzes the further methylation of C7 on 4-demethylwyosine (imG-14) to produce isowyosine (imG2) at the same position. The structural basis of the distinct methylation capacities and possible conformational changes during catalysis displayed by the Trm5 enzymes are poorly studied. Here we report the 3.3 Å crystal structure of the mono-functional PaTrm5b, which shares 32% sequence identity with PaTrm5a. Interestingly, structural superposition reveals that the PaTrm5b protein exhibits an extended conformation similar to that of tRNA-bound Trm5b from Methanococcus jannaschii (MjTrm5b), but quite different from the open conformation of apo-PaTrm5a or well folded apo-MjTrm5b reported previously. Truncation of the N-terminal D1 domain leads to reduced tRNA binding as well as the methyltransfer activity of PaTrm5b. The differential positioning of the D1 domains from three reported Trm5 structures were rationalized, which could be attributable to the dissimilar inter-domain interactions and crystal packing patterns. This study expands our understanding on the methylation mechanism of the Trm5 enzymes and wyosine hypermodification.


Asunto(s)
Proteínas Arqueales/química , Proteínas Arqueales/ultraestructura , Methanococcus/enzimología , Metiltransferasas/química , Metiltransferasas/ultraestructura , Pyrococcus abyssi/enzimología , Sitios de Unión , Simulación por Computador , Activación Enzimática , Guanosina/análogos & derivados , Guanosina/química , Modelos Químicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , ARN de Transferencia/química , ARN de Transferencia/ultraestructura , Especificidad de la Especie , Relación Estructura-Actividad
15.
RNA Biol ; 14(8): 1075-1085, 2017 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-28277897

RESUMEN

It is only recently that the abundant presence of circular RNAs (circRNAs) in all kingdoms of Life, including the hyperthermophilic archaeon Pyrococcus abyssi, has emerged. This led us to investigate the physiologic significance of a previously observed weak intramolecular ligation activity of Pab1020 RNA ligase. Here we demonstrate that this enzyme, despite sharing significant sequence similarity with DNA ligases, is indeed an RNA-specific polynucleotide ligase efficiently acting on physiologically significant substrates. Using a combination of RNA immunoprecipitation assays and RNA-seq, our genome-wide studies revealed 133 individual circRNA loci in P. abyssi. The large majority of these loci interacted with Pab1020 in cells and circularization of selected C/D Box and 5S rRNA transcripts was confirmed biochemically. Altogether these studies revealed that Pab1020 is required for RNA circularization. Our results further suggest the functional speciation of an ancestral NTase domain and/or DNA ligase toward RNA ligase activity and prompt for further characterization of the widespread functions of circular RNAs in prokaryotes. Detailed insight into the cellular substrates of Pab1020 may facilitate the development of new biotechnological applications e.g. in ligation of preadenylated adaptors to RNA molecules.


Asunto(s)
Empalme Alternativo , Proteínas Arqueales/genética , Genoma Arqueal , Pyrococcus abyssi/genética , ARN Ligasa (ATP)/genética , ARN de Archaea/genética , ARN/genética , Proteínas Arqueales/metabolismo , Biología Computacional , Inmunoprecipitación , Pyrococcus abyssi/enzimología , ARN/metabolismo , ARN Ligasa (ATP)/metabolismo , Estabilidad del ARN , ARN de Archaea/metabolismo , ARN Circular , ARN Ribosómico 5S/genética , ARN Ribosómico 5S/metabolismo , Análisis de Secuencia de ARN , Especificidad por Sustrato
16.
Sci Rep ; 7: 42019, 2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28176822

RESUMEN

Cell division is a complex process that requires precise duplication of genetic material. Duplication is concerted by replisomes. The Minichromosome Maintenance (MCM) replicative helicase is a crucial component of replisomes. Eukaryotic and archaeal MCM proteins are highly conserved. In fact, archaeal MCMs are powerful tools for elucidating essential features of MCM function. However, while eukaryotic MCM2-7 is a heterocomplex made of different polypeptide chains, the MCM complexes of many Archaea form homohexamers from a single gene product. Moreover, some archaeal MCMs are polymorphic, and both hexameric and heptameric architectures have been reported for the same polypeptide. Here, we present the structure of the archaeal MCM helicase from Pyrococcus abyssi in its single octameric ring assembly. To our knowledge, this is the first report of a full-length octameric MCM helicase.


Asunto(s)
Proteínas de Mantenimiento de Minicromosoma/metabolismo , Proteínas de Mantenimiento de Minicromosoma/ultraestructura , Pyrococcus abyssi/enzimología , Microscopía por Crioelectrón , Multimerización de Proteína
17.
Biochemistry ; 56(8): 1042-1050, 2017 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-28165720

RESUMEN

Protein splicing is a post-translational reaction facilitated by an intein, or intervening protein, which involves the removal of the intein and the ligation of the flanking polypeptides, or exteins. A DNA polymerase II intein from Pyrococcus abyssi (Pab PolII intein) can promote protein splicing in vitro on incubation at high temperature. Mutation of active site residues Cys1, Gln185, and Cys+1 to Ala results in an inactive intein precursor, which cannot promote the steps of splicing, including cleavage of the peptide bond linking the N-extein and intein (N-terminal cleavage). Surprisingly, coupling the inactivating mutations to a change of the residue at the C-terminus of the N-extein (N-1 residue) from the native Asn to Asp reactivates N-terminal cleavage at pH 5. Similar "aspartic acid effects" have been observed in other proteins and peptides but usually only occur at lower pH values. In this case, however, the unusual N-terminal cleavage is abolished by mutations to catalytic active site residues and unfolding of the intein, indicating that this cleavage effect is mediated by the intein active site and the intein fold. We show via mass spectrometry that the reaction proceeds through cyclization of Asp resulting in anhydride formation coupled to peptide bond cleavage. Our results add to the richness of the understanding of the mechanism of protein splicing and provide insight into the stability of proteins at moderately low pH. The results also explain, and may help practitioners avoid, a side reaction that may complicate intein applications in biotechnology.


Asunto(s)
Ácido Aspártico/metabolismo , ADN Polimerasa II/química , Inteínas , Ácido Aspártico/química , Dominio Catalítico , Ciclización , ADN Polimerasa II/genética , ADN Polimerasa II/metabolismo , Calor , Concentración de Iones de Hidrógeno , Mutación , Procesamiento Proteico-Postraduccional , Pyrococcus abyssi/enzimología
18.
Structure ; 24(11): 1960-1971, 2016 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-27773688

RESUMEN

Archaeal NucS nuclease was thought to degrade the single-stranded region of branched DNA, which contains flapped and splayed DNA. However, recent findings indicated that EndoMS, the orthologous enzyme of NucS, specifically cleaves double-stranded DNA (dsDNA) containing mismatched bases. In this study, we determined the structure of the EndoMS-DNA complex. The complex structure of the EndoMS dimer with dsDNA unexpectedly revealed that the mismatched bases were flipped out into binding sites, and the overall architecture most resembled that of restriction enzymes. The structure of the apo form was similar to the reported structure of Pyrococcus abyssi NucS, indicating that movement of the C-terminal domain from the resting state was required for activity. In addition, a model of the EndoMS-PCNA-DNA complex was preliminarily verified with electron microscopy. The structures strongly support the idea that EndoMS acts in a mismatch repair pathway.


Asunto(s)
ADN de Cadena Simple/metabolismo , Endodesoxirribonucleasas/química , Endodesoxirribonucleasas/metabolismo , Pyrococcus abyssi/enzimología , Proteínas Arqueales/química , Proteínas Arqueales/metabolismo , Sitios de Unión , Reparación de la Incompatibilidad de ADN , ADN de Archaea/química , ADN de Archaea/metabolismo , ADN de Cadena Simple/química , Microscopía Electrónica , Modelos Moleculares , Unión Proteica , Conformación Proteica , Pyrococcus abyssi/química
19.
Sci Rep ; 6: 35197, 2016 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-27731370

RESUMEN

R.PabI is a type II restriction enzyme that recognizes the 5'-GTAC-3' sequence and belongs to the HALFPIPE superfamily. Although most restriction enzymes cleave phosphodiester bonds at specific sites by hydrolysis, R.PabI flips the guanine and adenine bases of the recognition sequence out of the DNA helix and hydrolyzes the N-glycosidic bond of the flipped adenine in a similar manner to DNA glycosylases. In this study, we determined the structure of R.PabI in complex with double-stranded DNA without the R.PabI recognition sequence by X-ray crystallography. The 1.9 Å resolution structure of the complex showed that R.PabI forms a tetrameric structure to sandwich the double-stranded DNA and the tetrameric structure is stabilized by four salt bridges. DNA binding and DNA glycosylase assays of the R.PabI mutants showed that the residues that form the salt bridges (R70 and D71) are essential for R.PabI to find the recognition sequence from the sea of nonspecific sequences. R.PabI is predicted to utilize the tetrameric structure to bind nonspecific double-stranded DNA weakly and slide along it to find the recognition sequence.


Asunto(s)
Proteínas Arqueales/química , ADN Glicosilasas/química , Desoxirribonucleasas de Localización Especificada Tipo II/química , Proteínas Arqueales/metabolismo , Secuencia de Bases , Dominio Catalítico , Cristalografía por Rayos X , ADN/química , ADN/genética , ADN/metabolismo , ADN Glicosilasas/metabolismo , Desoxirribonucleasas de Localización Especificada Tipo II/metabolismo , Enlace de Hidrógeno , Modelos Moleculares , Conformación de Ácido Nucleico , Estructura Cuaternaria de Proteína , Pyrococcus abyssi/enzimología , Especificidad por Sustrato
20.
BMC Genomics ; 16: 817, 2015 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-26481899

RESUMEN

BACKGROUND: R.PabI is an exceptional restriction enzyme that functions as a DNA glycosylase. The enzyme excises an unmethylated base from its recognition sequence to generate apurinic/apyrimidinic (AP) sites, and also displays AP lyase activity, cleaving the DNA backbone at the AP site to generate the 3'-phospho alpha, beta-unsaturated aldehyde end in addition to the 5'-phosphate end. The resulting ends are difficult to religate with DNA ligase. The enzyme was originally isolated in Pyrococcus, a hyperthermophilic archaeon, and additional homologs subsequently identified in the epsilon class of the Gram-negative bacterial phylum Proteobacteria, such as Helicobacter pylori. RESULTS: Systematic analysis of R.PabI homologs and their neighboring genes in sequenced genomes revealed co-occurrence of R.PabI with M.PabI homolog methyltransferase genes. R.PabI and M.PabI homolog genes are occasionally found at corresponding (orthologous) loci in different species, such as Helicobacter pylori, Helicobacter acinonychis and Helicobacter cetorum, indicating long-term maintenance of the gene pair. One R.PabI and M.PabI homolog gene pair is observed immediately after the GMP synthase gene in both Campylobacter and Helicobacter, representing orthologs beyond genera. The mobility of the PabI family of restriction-modification (RM) system between genomes is evident upon comparison of genomes of sibling strains/species. Analysis of R.PabI and M.PabI homologs in H. pylori revealed an insertion of integrative and conjugative elements (ICE), and replacement with a gene of unknown function that may specify a membrane-associated toxin (hrgC). In view of the similarity of HrgC with toxins in type I toxin-antitoxin systems, we addressed the biological significance of this substitution. Our data indicate that replacement with hrgC occurred in the common ancestor of hspAmerind and hspEAsia. Subsequently, H. pylori with and without hrgC were intermixed at this locus, leading to complex distribution of hrgC in East Asia and the Americas. In Malaysia, hrgC was horizontally transferred from hspEAsia to hpAsia2 strains. CONCLUSIONS: The PabI family of RM system behaves as a mobile, selfish genetic element, similar to the other families of Type II RM systems. Our analysis additionally revealed some cases of long-term inheritance. The distribution of the hrgC gene replacing the PabI family in the subpopulations of H. pylori, hspAmerind, hspEAsia and hpAsia2, corresponds to the two human migration events, one from East Asia to Americas and the other from China to Malaysia.


Asunto(s)
ADN Glicosilasas/genética , Enzimas de Restricción del ADN/genética , Evolución Molecular , Helicobacter pylori/genética , Secuencia de Aminoácidos , Secuencia de Bases , Campylobacter/enzimología , Campylobacter/genética , ADN Glicosilasas/aislamiento & purificación , Enzimas de Restricción del ADN/aislamiento & purificación , Helicobacter pylori/enzimología , Humanos , Filogenia , Pyrococcus abyssi/enzimología , Pyrococcus abyssi/genética , Homología de Secuencia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...