Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 553
Filtrar
1.
Exp Gerontol ; 188: 112389, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38432575

RESUMEN

Aging-related diseases (ARDs) are a major global health concern, and the development of effective therapies is urgently needed. Kaempferol, a flavonoid found in several plants, has emerged as a promising candidate for ameliorating ARDs. This comprehensive review examines Kaempferol's chemical properties, safety profile, and pharmacokinetics, and highlights its potential therapeutic utility against ARDs. Kaempferol's therapeutic potential is underpinned by its distinctive chemical structure, which confers antioxidative and anti-inflammatory properties. Kaempferol counteracts reactive oxygen species (ROS) and modulates crucial cellular pathways, thereby combating oxidative stress and inflammation, hallmarks of ARDs. Kaempferol's low toxicity and wide safety margins, as demonstrated by preclinical and clinical studies, further substantiate its therapeutic potential. Compelling evidence supports Kaempferol's substantial potential in addressing ARDs through several mechanisms, notably anti-inflammatory, antioxidant, and anti-apoptotic actions. Kaempferol exhibits a versatile neuroprotective effect by modulating various proinflammatory signaling pathways, including NF-kB, p38MAPK, AKT, and the ß-catenin cascade. Additionally, it hinders the formation and aggregation of beta-amyloid protein and regulates brain-derived neurotrophic factors. In terms of its anticancer potential, kaempferol acts through diverse pathways, inducing apoptosis, arresting the cell cycle at the G2/M phase, suppressing epithelial-mesenchymal transition (EMT)-related markers, and affecting the phosphoinositide 3-kinase/protein kinase B signaling pathways. Subsequent studies should focus on refining dosage regimens, exploring innovative delivery systems, and conducting comprehensive clinical trials to translate these findings into effective therapeutic applications.


Asunto(s)
Quempferoles , Síndrome de Dificultad Respiratoria , Humanos , Quempferoles/farmacología , Quempferoles/uso terapéutico , Quempferoles/química , Fosfatidilinositol 3-Quinasas , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Envejecimiento , Síndrome de Dificultad Respiratoria/tratamiento farmacológico
2.
Adv Mater ; 36(18): e2311397, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38221651

RESUMEN

Acute kidney injury (AKI) has become an increasing concern for patients due to the widespread clinical use of nephrotoxic drugs. Currently, the early diagnosis of AKI is still challenging and the available therapeutic drugs cannot meet the clinical demand. Herein, this work has investigated the key redox couple involved in AKI and develops a tailored photoacoustic (PA) imaging probe (AB-DiOH) which can reversibly respond to hypochlorite (ClO-)/glutathione (GSH) with high specificity and sensitivity. This probe enables the real-time monitoring of AKI by noninvasive PA imaging, with better detection sensitivity than the blood test. Furthermore, this probe is utilized for screening nephroprotective drugs among natural products. For the first time, astragalin is discovered to be a potential new drug for the treatment of AKI. After oral administration, astragalin can be efficiently absorbed by the animal body, alleviate kidney injury, and meanwhile induce no damage to other normal tissues. The treatment mechanism of astragalin has also been revealed to be the simultaneous inhibition of oxidative stress, ferroptosis, and cuproposis. The developed PA imaging probe and the discovered drug candidate provide a promising new tool and strategy for the early diagnosis and effective treatment of AKI.


Asunto(s)
Lesión Renal Aguda , Técnicas Fotoacústicas , Técnicas Fotoacústicas/métodos , Lesión Renal Aguda/diagnóstico por imagen , Lesión Renal Aguda/tratamiento farmacológico , Lesión Renal Aguda/metabolismo , Lesión Renal Aguda/diagnóstico , Animales , Ratones , Estrés Oxidativo/efectos de los fármacos , Ferroptosis/efectos de los fármacos , Humanos , Ácido Hipocloroso/metabolismo , Glutatión/metabolismo , Glutatión/química , Quempferoles/química , Quempferoles/farmacología , Riñón/diagnóstico por imagen , Riñón/metabolismo , Descubrimiento de Drogas
3.
Prep Biochem Biotechnol ; 53(10): 1224-1236, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36880129

RESUMEN

Robinia pseudoacacia flower is a natural product with many biological activities, including antioxidation. To further develop its antioxidation, the extract was fermented by Aspergillus niger FFCC 3112 in the medium with carbon to nitrogen ratio of 1.4:1 and initial pH of 4.2 for 3.5 days to form the best antioxidant activity of the fermentation product by strain screening, single factor optimization, and response surface methodology. Further analysis, isolation and activity determination showed that a main chemical component, kaempferol-3-O-α-L-rhamnopyranosyl-(1→6)-ß-D-galactopyranosyl-7-O-α-L-rhamnopyranoside, in the extract was completely hydrolyzed to kaempferol-7-O-α-L-rhamnopyranoside and kaempferol with better antioxidant activity through biotransformation, which was the basis for improving the antioxidant activity of fermentation products. Moreover, the mechanism of antioxidant and the contribution of phenolic hydroxyl groups were investigated by density functional theory. The result indicated that the antioxidant capacity of kaempferol-7-O-α-L-rhamnopyranoside and kaempferol increased with the increase of solvent polarity. In high-polarity solvents, they mainly scavenge free radicals through single electron transfer followed by proton transfer.


Asunto(s)
Quempferoles , Robinia , Quempferoles/química , Antioxidantes/química , Fermentación , Solventes , Extractos Vegetales/química , Flores/química , Flavonoides
4.
J Mol Model ; 29(4): 93, 2023 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-36905478

RESUMEN

Anthocyanidins, leucoanthocyanidins, and flavonols are natural compounds mainly known due to their reported biological activities, such as antiviral, antifungal, anti-inflammatory activities, and antioxidant activity. In the present study, we performed a comparative structural, conformational, electronic, and nuclear magnetic resonance analysis of the reactivity of the chemical structure of primary anthocyanidins, leucoanthocyanidins, and flavonoids. We focused our analysis on the following molecular questions: (i) differences in cyanidin catechols ( +)-catechin, leucocyanidin, and quercetin; (ii) the loss of hydroxyl presents in the R1 radical of leucoanthocyanidin in the functional groups linked to C4 (ring C); and (iii) the electron affinity of the 3-hydroxyl group (R7) in the flavonoids delphinidin, pelargonidin, cyanidin, quercetin, and kaempferol. We show unprecedented results for bond critical point (BCP) of leucopelargonidin and leucodelphirinidin. The BCP formed between hydroxyl hydrogen (R2) and ketone oxygen (R1) of kaempferol has the same degrees of covalence of quercetin. Kaempferol and quercetin exhibited localized electron densities between hydroxyl hydrogen (R2) and ketone oxygen (R1). Global molecular descriptors showed quercetin and leucocyanidin are the most reactive flavonoids in electrophilic reactions. Complementary, anthocyanidins are the most reactive in nucleophilic reactions, while the smallest gap occurs in delphinidin. Local descriptors indicate that anthocyanidins and flavonols are more prone to electrophilic attacks, while in leucoanthocyanidins, the most susceptible to attack are localized in the ring A. The ring C of anthocyanidins is more aromatic than the same found in flavonols and leucoanthocyanidins. METHODS: For the analysis of the molecular properties, we used the DFT to evaluate the formation of the covalent bonds and intermolecular forces. CAM-B3LYP functional with the def2TZV basis set was used for the geometry optimization. A broad analysis of quantum properties was performed using the assessment of the molecular electrostatic potential surface, electron localization function, Fukui functions, descriptors constructed from frontier orbitals, and nucleus independent chemical shift.


Asunto(s)
Antocianinas , Flavonoles , Flavonoles/química , Antocianinas/química , Quercetina/química , Quempferoles/química , Flavonoides/química , Hidrógeno/química , Oxígeno
5.
Chem Biodivers ; 20(4): e202200480, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36929603

RESUMEN

This study aimed to evaluate the inhibition of the ethanol elutions of Chimonanthus salicifolius Hu leaves (CsHL) against xanthine oxidase (XO). The results of XO inhibition assay and enzymatic superoxide free radical scavenging assay in vitro showed that 70 % ethanol eluate (EE) had the best inhibitory effect and followed by 40 % EE. High performance liquid chromatograph analysis showed that quercetin and kaempferol were the potential active components of XO inhibition. The inhibition mechanism of quercetin and kaempferol on XO was investigated by kinetic analysis and fluorescence quenching titration assay. The molecular simulation further revealed that quercetin and kaempferol bind to XO mainly by hydrogen bonding and van der Waals, blocking the entry of substrates and leading to the inhibition of XO. In conclusion, the CsHL have inhibitory effects on XO activity, which provides a theoretical basis for relieving or preventing hyperuricemia and gout as a natural food or medicinal plant in the future.


Asunto(s)
Quempferoles , Xantina Oxidasa , Quempferoles/farmacología , Quempferoles/química , Quercetina/farmacología , Cinética , Extractos Vegetales/farmacología , Extractos Vegetales/química , Inhibidores Enzimáticos/química , Etanol/química
6.
Food Chem ; 415: 135778, 2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-36854244

RESUMEN

Kaempferol (Kae), a flavonoid is endowed with various functions. However, due to its poor water solubility and stability, its application in the food and pharmaceutical fields remains elusive. Emerging reports have emphasized the importance of bovine serum albumin (BSA), and glycosylated BSA (GBSA) prepared in the nature deep eutectic solvent system as drug delivery system carriers. In our study, ultraviolet and fluorescence spectra revealed the higher interactions of BSA and GBSA with Kae. Through analysis of Z-average diameter, zeta-potential, polydispersity index (PDI), encapsulation efficiency (EE), loading capacity (LC) of BSA-Kae nanocomplexes (NPs) and GBSA-Kae NPs, GBSA-Kae NPs showed a higher absolute value of zeta-potential and lower PDI, while its EE and LC were also higher. Structural characterization and stability analysis revealed that GBSA-Kae NPs had more stable properties. This study laid the theoretical foundation for improving the solubility and stability of Kae during its delivery and transport.


Asunto(s)
Nanopartículas , Albúmina Sérica Bovina , Albúmina Sérica Bovina/química , Quempferoles/química , Albúmina Sérica , Flavonoides , Solubilidad , Nanopartículas/química , Portadores de Fármacos/química , Tamaño de la Partícula
7.
Spectrochim Acta A Mol Biomol Spectrosc ; 288: 122128, 2023 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-36455462

RESUMEN

Transferrin is the indispensable component in the body fluids and has been explored as a potential drug carrier for target drugs to cancer cells. Flavonols are widely distributed in plants and shown a wide range of biological activities. In the present study, the interaction between flavonols (including galangin, kaempferol, quercetin, and myricetin) and transferrin under physiological conditions was investigated by using experimental as well as computational approaches. Fluorescence data reveal that the fluorescence quenching mechanism of transferrin by flavonols is static quenching. Transferrin has moderate affinity with flavonols, and the binding constants (Ka) are 103-104 L/mol. In addition, there are two different binding sites for the interaction between kaempferol and transferrin. Thermodynamic parameter analysis shows that the interaction of flavonols and transferrin is synergistically driven by enthalpy and entropy. Hydrophobic interaction, electrostatic force and hydrogen bonds are the main force types. Synchronous fluorescence spectroscopy shows that flavonols decrease the hydrophobicity of the microenvironment around tryptophan (Trp) and have no effect on the microenvironment around tyrosine (Tyr). UV-vis and CD spectra show that the interaction between transferrin and flavonols leads to the loosening and unfolding of transferrin backbone. The increase of ß-sheet is accompanied by the decrease of α-helix and ß-turn. The specific binding sites of flavonols to transferrin are confirmed by molecular docking. Molecular dynamic simulation suggests that the transferrin-flavonols docked complex is stable throughout the simulation trajectory.


Asunto(s)
Flavonoles , Quempferoles , Transferrina , Sitios de Unión , Dicroismo Circular , Flavonoles/química , Quempferoles/química , Simulación del Acoplamiento Molecular , Unión Proteica , Espectrometría de Fluorescencia/métodos , Termodinámica , Transferrina/química , Quercetina
8.
Inorg Chem ; 61(43): 17185-17195, 2022 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-36263654

RESUMEN

The establishment of a reliable and sensitive method for the detection of flavonoids, such as kaempferol (Kae) and quercetin (Que), is important and challenging in food chemistry and pharmacology because numerous structural analogues may interfere with the detection. Until now, designing an efficient switch-on fluorescence sensing strategy for Kae and Que was still in the unachievable stage. In this work, a switch-on near-infrared (NIR) luminescence sensing assay for Kae and Que was fabricated based on a metal-organic framework (MOF) called IQBA-Yb for the first time. The fluorescence enhancing mechanism was that analytes served as additional "antenna" of Yb3+, leading to the efficient switch-on NIR emission under excitation at 467 nm. Meanwhile, the combination results of experiment and theoretical calculation revealed that there existed hydrogen bonds between Kae, Que, and the MOF skeleton, further promoting the energy transfer between the analyte and Yb3+ and facilitating fluorescence enhancement response. The developed probe possessed excellent sensing capability for Kae and Que, accompanied by a wide linear range (0.04-70, 0.06-90 µM), low detection limit (0.01, 0.06 µM), and short response time (20 min, 6 min), which was used to determine the Kae and Que contents in Green Lake and eatable Que samples with satisfactory results.


Asunto(s)
Estructuras Metalorgánicas , Quercetina , Quercetina/química , Quempferoles/química , Luminiscencia , Flavonoides/química
9.
Curr Top Med Chem ; 22(30): 2474-2482, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36082856

RESUMEN

Polyhydroxy compounds are secondary metabolites that are ubiquitous in plants of higher genera. They possess therapeutic properties against a wide spectrum of diseases, including cancers, neurodegenerative disorders, atherosclerosis, as well as cardiovascular disease. The phytochemical flavonol (a type of flavonoid) kaempferol (KMP) (3,5,7-trihydroxy-2-(4-hydroxyphenyl)- 4Hchromen-4-one) is abundant in cruciferous vegetables, including broccoli, kale, spinach, and watercress, as well as in herbs like dill, chives, and tarragon. KMP is predominantly hydrophobic in nature due to its diphenylpropane structure (a characteristic feature of flavonoids). Recent findings have indicated the promise of applying KMP in disease prevention due to its potential antioxidant, antimutagenic, antifungal, and antiviral activities. In the literature, there is evidence that KMP exerts its anticancer effects by modulating critical elements in cellular signal transduction pathways linked to apoptosis, inflammation, angiogenesis, and metastasis in cancer cells without affecting the viability of normal cells. It has been shown that KMP triggers cancer cell death by several mechanisms, including cell cycle arrest, caspase activation, metabolic alteration, and impacting human telomerase reverse-transcriptase gene expression. This review is aimed at providing critical insights into the influence of KMP on the intracellular cascades that regulate metabolism and signaling in breast, ovarian, and cervical cancer cells.


Asunto(s)
Quempferoles , Neoplasias , Humanos , Quempferoles/farmacología , Quempferoles/química , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Transducción de Señal , Antioxidantes/farmacología , Inflamación/tratamiento farmacológico , Apoptosis
10.
Biomed Pharmacother ; 149: 112895, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35364379

RESUMEN

In this study, the pharmacokinetic profiles of the bioactive components in the leaf extract of the medicinal herb, Cudrania tricuspidate, were investigated using an MS/MS-based molecular networking system. To identify the major active components of the C. tricuspidate leaf extract (CLE), HPLC-DAD analysis was conducted with a standard mixture of six flavonoids (rutin, isoquercitrin, nicotiflorin, kaempferol 3-O-glucoside, quercetin, and kaempferol). The unknown peaks were determined via molecular networking analysis using the mass dataset obtained by liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). For the subsequent pharmacokinetic study, CLE (1 g/kg) was orally administered to rats, and plasma samples were collected. The product ion mass data of plasma samples using LC-QTOF/MS were obtained and subjected to molecular networking analysis. The resulting molecular networking map indicated that the glucuronide metabolites of quercetin and kaempferol were the major circulating species. Accordingly, quercetin and kaempferol were determined following ß-glucuronidase treatment, and their pharmacokinetic parameters were calculated. These findings indicate that the proposed molecular network-based approaches are potential and efficient methods for the pharmacokinetic study of herbal medicines.


Asunto(s)
Medicamentos Herbarios Chinos , Moraceae , Plantas Medicinales , Animales , Cromatografía Líquida de Alta Presión/métodos , Flavonoides/química , Quempferoles/química , Moraceae/química , Extractos Vegetales/química , Quercetina , Ratas , Espectrometría de Masas en Tándem/métodos
11.
Molecules ; 27(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35209129

RESUMEN

Excess synaptic glutamate release has pathological consequences, and the inhibition of glutamate release is crucial for neuroprotection. Kaempferol 3-rhamnoside (KR) is a flavonoid isolated from Schima superba with neuroprotective properties, and its effecton the release of glutamate from rat cerebrocortical nerve terminals was investigated. KR produced a concentration-dependent inhibition of 4-aminopyridine (4-AP)-evoked glutamate release with half-maximal inhibitory concentration value of 17 µM. The inhibition of glutamate release by KR was completely abolished by the omission of external Ca2+ or the depletion of glutamate in synaptic vesicles, and it was unaffected by blocking carrier-mediated release. In addition, KR reduced the 4-AP-evoked increase in Ca2+ concentration, while it did not affect 4-AP-evoked membrane potential depolarization. The application of selective antagonists of voltage-dependent Ca2+ channels revealed that the KR-mediated inhibition of glutamate release involved the suppression of P/Q-type Ca2+ channel activity. Furthermore, the inhibition of release was abolished by the calmodulin antagonist, W7, and Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor, KN62, but not by the protein kinase A (PKA) inhibitor, H89, or the protein kinase C (PKC) inhibitor, GF109203X. We also found that KR reduced the 4-AP-induced increase in phosphorylation of CaMKII and its substrate synapsin I. Thus, the effect of KR on evoked glutamate release is likely linked to a decrease in P/Q-type Ca2+ channel activity, as well as to the consequent reduction in the CaMKII/synapsin I pathway.


Asunto(s)
Canales de Calcio/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Corteza Cerebral/metabolismo , Ácido Glutámico/metabolismo , Quempferoles/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo , Animales , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Corteza Cerebral/citología , Relación Dosis-Respuesta a Droga , Quempferoles/química , Potenciales de la Membrana/efectos de los fármacos , Estructura Molecular , Fosforilación , Ratas , Transducción de Señal/efectos de los fármacos , Sinapsinas/metabolismo
12.
Int J Mol Sci ; 23(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35008969

RESUMEN

Monoamine serotonin is a major neurotransmitter that acts on a wide range of central nervous system and peripheral nervous system functions and is known to have a role in various processes. Recently, it has been found that 5-HT is involved in cognitive and memory functions through interaction with cholinergic pathways. The natural flavonoid kaempferol (KAE) extracted from Cudrania tricuspidata is a secondary metabolite of the plant. Recently studies have confirmed that KAE possesses a neuroprotective effect because of its strong antioxidant activity. It has been confirmed that KAE is involved in the serotonergic pathway through an in vivo test. However, these results need to be confirmed at the molecular level, because the exact mechanism that is involved in such effects of KAE has not yet been elucidated. Therefore, the objective of this study is to confirm the interaction of KAE with 5-HT3A through electrophysiological studies at the molecular level using KAE extracted from Cudrania tricuspidata. This study confirmed the interaction between 5-HT3A and KAE at the molecular level. KAE inhibited 5-HT3A receptors in a concentration-dependent and voltage-independent manner. Site-directed mutagenesis and molecular-docking studies confirmed that the binding sites D177 and F199 are the major binding sites of human 5-HT3A receptors of KAE.


Asunto(s)
Quempferoles/farmacología , Triterpenos Pentacíclicos/farmacología , Receptores de Serotonina 5-HT3/metabolismo , Antagonistas del Receptor de Serotonina 5-HT3/farmacología , Sitios de Unión , Relación Dosis-Respuesta a Droga , Humanos , Quempferoles/química , Cinética , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Mutación , Triterpenos Pentacíclicos/química , Unión Proteica , Receptores de Serotonina 5-HT3/química , Receptores de Serotonina 5-HT3/genética , Antagonistas del Receptor de Serotonina 5-HT3/química , Relación Estructura-Actividad
13.
Molecules ; 28(1)2022 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-36615378

RESUMEN

Saffron petals, which are the main by-products of Crocus sativus L. (Iridaceae family), are produced in large quantities and are known for their many beneficial properties. In this regard, this study aims to investigate the phenolic composition and antibacterial properties of hydroethanolic extracts from Crocus sativus L. petals collected from Serghina (province of Boulmane) in Morocco. The phenolic profiles were characterized using high-performance liquid chromatography coupled to a photodiode array and electrospray ionization mass spectrometry (HPLC-PDA-ESI/MS). The antibacterial potential was evaluated against four bacterial strains potentially causing food-borne disease (Staphylococcus aureus, Salmonella typhimurium, Escherichia coli, and Listeria monocytogenes) using disc diffusion and broth micro-dilution assays. Results showed that a total of 27 phenolic compounds was detected in the Crocus sativus L. petal extracts, which were assigned to flavonoids (kaempferol, quercetin, isorhamnetin, and myricetin derivatives). The most abundant compound was represented by kaempferol-sophoroside isomer (20.82 mg/g ± 0.152), followed by kaempferol-sophoroside-hexoside (2.63 mg/g ± 0.001). The hydroethanolic extracts of Crocus sativus L. petals demonstrated bactericidal effects against Staphylococcus aureus and Listeria monocetogenes and bacteriostatic effects against Escherichia coli and Salmonella typhimurium. Therefore, the by-product Crocus sativus L. petal extracts might be considered as valuable sources of natural antibacterial agents with potential applications in the food and pharmaceutical industries.


Asunto(s)
Crocus , Crocus/química , Quempferoles/química , Flavonoides/química , Antioxidantes/análisis , Fenoles , Extractos Vegetales/farmacología , Extractos Vegetales/química
14.
Molecules ; 26(23)2021 Nov 26.
Artículo en Inglés | MEDLINE | ID: mdl-34885740

RESUMEN

Both UV and blue light have been reported to regulate the biosynthesis of flavonoids in tea plants; however, the respective contributions of the corresponding regions of sunlight are unclear. Additionally, different tea cultivars may respond differently to altered light conditions. We investigated the responses of different cultivars ('Longjing 43', 'Zhongming 192', 'Wanghai 1', 'Jingning 1' and 'Zhonghuang 2') to the shade treatments (black and colored nets) regarding the biosynthesis of flavonoids. For all cultivars, flavonol glycosides showed higher sensitivity to light conditions compared with catechins. The levels of total flavonol glycosides in the young shoots of different tea cultivars decreased with the shade percentages of polyethylene nets increasing from 70% to 95%. Myricetin glycosides and quercetin glycosides were more sensitive to light conditions than kaempferol glycosides. The principal component analysis (PCA) result indicated that shade treatment greatly impacted the profiles of flavonoids in different tea samples based on the cultivar characteristics. UV is the crucial region of sunlight enhancing flavonol glycoside biosynthesis in tea shoots, which is also slight impacted by light quality according to the results of the weighted correlation network analysis (WGCNA). This study clarified the contributions of different wavelength regions of sunlight in a field experiment, providing a potential direction for slightly bitter and astringent tea cultivar breeding and instructive guidance for practical field production of premium teas based on light regimes.


Asunto(s)
Camellia sinensis/crecimiento & desarrollo , Flavonoides/biosíntesis , Glicósidos/biosíntesis , Brotes de la Planta/crecimiento & desarrollo , Camellia sinensis/efectos de la radiación , Flavonoides/química , Flavonoides/efectos de la radiación , Glicósidos/efectos de la radiación , Quempferoles/química , Brotes de la Planta/efectos de la radiación , Análisis de Componente Principal , Luz Solar , Rayos Ultravioleta
15.
Int J Mol Sci ; 22(23)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34884711

RESUMEN

Target identification is a crucial process for advancing natural products and drug leads development, which is often the most challenging and time-consuming step. However, the putative biological targets of natural products obtained from traditional prediction studies are also informatively redundant. Thus, how to precisely identify the target of natural products is still one of the major challenges. Given the shortcomings of current target identification methodologies, herein, a novel in silico docking and DARTS prediction strategy was proposed. Concretely, the possible molecular weight was detected by DARTS method through examining the protected band in SDS-PAGE. Then, the potential targets were obtained from screening and identification through the PharmMapper Server and TargetHunter method. In addition, the candidate target Src was further validated by surface plasmon resonance assay, and the anti-apoptosis effects of kaempferol against myocardial infarction were further confirmed by in vitro and in vivo assays. Collectively, these results demonstrated that the integrated strategy could efficiently characterize the targets, which may shed a new light on target identification of natural products.


Asunto(s)
Quempferoles/farmacología , Infarto del Miocardio/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Familia-src Quinasas/antagonistas & inhibidores , Animales , Simulación por Computador , Descubrimiento de Drogas , Quempferoles/química , Masculino , Simulación del Acoplamiento Molecular , Infarto del Miocardio/etiología , Infarto del Miocardio/patología , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas , Ratas Sprague-Dawley , Programas Informáticos
16.
Cell Mol Biol (Noisy-le-grand) ; 67(2): 44-49, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34817340

RESUMEN

The aim of the current study was to investigate the anti-lung cancer effects of astragalin. Studies were also undertaken to evaluate its effects on apoptosis induction, ROS production, cellular migration and invasion and JAK/STAT3 signalling pathway. MTT assay was used to evaluate cell viability in NSCLC A549 cells after exposure to astragalin molecule. Apoptosis was investigated using AO/EB staining, comet assay and western blotting assay. Fluorescence microscopy was implemented to estimate ROS production. Cell migration and invasion were measured using transwell chambers assay. Effects of astragalin on JAK/STAT pathway were investigated using western blotting assay. Results showed astragalin molecule induced inhibition of proliferation in A549 cells in a dose-dependent fashion. Further, the antiproliferative effects were found to mediate via apoptosis as suggested by AO/EB staining and western blotting assay. Astragalin modulated the expressions of caspase-3, caspase-9, Bax, Bak, Cyt-c Bcl-2, XIAP and Bcl-xL. Astragalin induced DNA damage in A549 cells which too indicated apoptotic cell death. Astragalin molecule enhanced the production of ROS by A549 cells. It inhibited both cell migration and invasion of A549 cells in a concentration-dependent manner. Finally, astragalin drug was observed with remarkable potential of targeting JAK/STAT pathway in A549 NSCLC cells. These results indicated that astragalin drug could prove helpful in lung cancer treatment and research provided more in-vivo studies are performed.


Asunto(s)
Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasas Janus/metabolismo , Quempferoles/farmacología , Especies Reactivas de Oxígeno/metabolismo , Factores de Transcripción STAT/metabolismo , Transducción de Señal/efectos de los fármacos , Células A549 , Apoptosis/efectos de los fármacos , Western Blotting , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/patología , Caspasas/metabolismo , Células Cultivadas , Ensayo Cometa , Daño del ADN , Flavonoides/química , Flavonoides/farmacología , Humanos , Quempferoles/química , Pulmón/citología , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patología , Estructura Molecular , Invasividad Neoplásica
17.
Cell Mol Biol (Noisy-le-grand) ; 67(1): 159-164, 2021 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-34817352

RESUMEN

Aim of the present study was to determine the In-vitro antibacterial activity of ethanolic extract of E. globulus leaves against common multidrug resistant poultry pathogens. Phytochemical analysis through HPLC revealed that kaempeferol (7.315min) followed by querecetin (6.655min) and myrecetin (3.655min). Percent area of kaempeferol (6826.88%) was highest, followed by myrecetin (5516.22%) and querecetin (163.748%). Phytochemical investigation of ethanolic extract of E. globulus leaves through GCMS showed highest retention time (min) α-pinene (20.43) and α-terpineol (20.15) accompanied by spathulenol (11.97), piperitone (11.04). The ethanolic extracts of E. globulus leaves showed a highest zone of inhibition against S. pullorum SP6; 20.64± 2.08, E. coli SE 12; 19.75± 2.83, C. perfringens type A (CPM38-01); 19.46± 2.02. The highest level of MIC of E. globulus noted were against S. gallinarum S22; 133.37±53.294, S. gallinarum S1; 130.20±45.10, S. gallinarum S4; 129.47±24.182, S. gallinarum S3; 126.83±72.392. In conclusion, the study confirmed that the ethanolic extract of E. globulus is composed of active ingredients having antibacterial activity and can be referred as an alternate to antibiotics.


Asunto(s)
Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Eucalyptus/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Hojas de la Planta/química , Animales , Antibacterianos/análisis , Antibacterianos/química , Cromatografía Líquida de Alta Presión/métodos , Clostridium perfringens/efectos de los fármacos , Clostridium perfringens/fisiología , Escherichia coli/efectos de los fármacos , Escherichia coli/fisiología , Etanol/química , Flavonoides/análisis , Flavonoides/química , Flavonoides/farmacología , Cromatografía de Gases y Espectrometría de Masas/métodos , Quempferoles/análisis , Quempferoles/química , Quempferoles/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Fitoquímicos/análisis , Fitoquímicos/química , Extractos Vegetales/análisis , Extractos Vegetales/química , Aves de Corral , Enfermedades de las Aves de Corral/microbiología , Enfermedades de las Aves de Corral/prevención & control , Quercetina/análisis , Quercetina/química , Quercetina/farmacología
18.
Int J Mol Sci ; 22(19)2021 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-34638702

RESUMEN

As components of the human diet with potential health benefits, flavonols are the subject of numerous studies, confirming their antioxidant, free radical scavenging and anti-inflammatory activity. Taking into consideration the postulated pathogenesis of certain CNS dysfunctions characterized by neuronal degradation, flavonols may prevent the decay of neurons in multiple pathways. Leaves of Maesa membranacea yielded several flavonol glycosides including α-rhamnoisorobin (kaempferol 7-O-α-rhamnoside) and kaempferitrin (kaempferol 3,7-di-O-α-rhamnoside). The latter compound was a major constituent of the investigated plant material. Neuroprotective effects of kaempferitrin and α-rhamnoisorobin were tested in vitro using H2O2-, 6-OHDA- and doxorubicin-induced models of SH-SY5Y cell damage. Both undifferentiated and differentiated neuroblastoma cells were used in the experiments. α-Rhamnoisorobin at a concentration range of 1-10 µM demonstrated cytoprotective effects against H2O2-induced cell damage. The compound (at 1-10 µM) was also effective in attenuating 6-OHDA-induced neurotoxicity. In both H2O2- and 6-OHDA-induced cell damage, kaempferitrin, similar to isoquercitrin, demonstrated neuroprotective activity at the highest of the tested concentrations (50 µM). The tested flavonols were not effective in counteracting doxorubicin-induced cytotoxicity. Their caspase-3- and cathepsin D-inhibitory activities appeared to be structure dependent. Inhibition of the PI3-K/Akt pathway abolished the neuroprotective effect of the investigated flavonols.


Asunto(s)
Catepsina D/metabolismo , Quempferoles , Maesa/química , Fármacos Neuroprotectores , Estrés Oxidativo/efectos de los fármacos , Fosfatidilinositol 3-Quinasas/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Humanos , Quempferoles/química , Quempferoles/farmacología , Fármacos Neuroprotectores/química , Fármacos Neuroprotectores/farmacología
19.
Chem Biol Interact ; 349: 109661, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34537181

RESUMEN

Phytochemical analysis of EtOH extract from leaves of Nectandra oppositifolia afforded three flavonoids: kaempferol (1), kaempferol-3-O-α-rhamnopyranoside (2) and kaempferol-3-O-α-(3,4-di-E-p-coumaroyl)-rhamnopyranoside (3), which were characterized by NMR and ESI-HRMS. When tested against the protozoan parasite Trypanosoma cruzi, the etiologic agent of Chagas disease, flavonoids 1 and 3 were effective to kill the trypomastigotes with IC50 values of 32.0 and 6.7 µM, respectively, while flavonoid 2 was inactive. Isolated flavonoids 1-3 were also tested in mammalian fibroblasts and showed CC50 values of 24.8, 48.7 and 153.1 µM, respectively. Chemically, these results suggested that the free aglycone plays an important role in the bioactivity while the presence of p-coumaroyl unities linked in the rhamnoside unity is important to enhance the antitrypanosomal activity and reduce the mammalian cytotoxicity. The mechanism of cellular death was investigated for the most potent flavonoid 3 in the trypomastigotes using fluorescent and luminescent-based assays. It indicated that this compound induced neither permeabilization of the plasma membrane nor depolarization of the membrane electric potential. However, early time incubation (20 min) with flavonoid 3 resulted in a constant elevation of the Ca2+ levels inside the parasite. This effect was followed by a mitochondrial imbalance, leading to a hyperpolarization and depolarization of the mitochondrial membrane potential, with reduction of the ATP levels. During this time, the levels of reactive oxygen species levels (ROS) were unaltered. The leakage of Ca2+ from the intracellular pools can affect the bioenergetics system of T. cruzi, leading to the parasite death. Therefore, flavonoid 3 can be a useful tool for future studies against T. cruzi parasites.


Asunto(s)
Calcio/metabolismo , Flavonoides/química , Quempferoles/química , Lauraceae/química , Trypanosoma cruzi/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Permeabilidad de la Membrana Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Femenino , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Iones/química , Lauraceae/metabolismo , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ratones , Ratones Endogámicos BALB C , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Extractos Vegetales/química , Hojas de la Planta/química , Hojas de la Planta/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Trypanosoma cruzi/efectos de los fármacos
20.
Food Funct ; 12(18): 8351-8365, 2021 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-34338262

RESUMEN

Lung cancer has been threatening human health worldwide for a long time. However, the clinic therapies remain unsatisfactory. In this study, the anti-adenocarcinoma lung cancer A549 cell line abilities of Tetrastigma hemsleyanum tuber flavonoids (THTF) were evaluated in vivo, and isobaric tags for relative and absolute quantification (iTRAQ)-based proteomic analysis was conducted to detect the protein alterations in THTF-treated solid tumors. The differentially expressed proteins were related to the cytoskeleton and mostly accumulated in the calcium signaling pathway. The in vitro study illustrated that 80 µg mL-1 THTF significantly suppressed cellular viability to approximately 75% of the control. Further results suggested that kaempferol-3-O-rutinoside (K3R), the major component of THTF, effectively triggered cytoskeleton collapse, mitochondrial dysfunction and consequent calcium overload to achieve apoptosis, which remained consistent with proteomic results. This study uncovers a new mechanism for THTF anti-tumor ability, and suggests THTF and K3R as promising anti-cancer agents, providing new ideas and possible strategies for future anti-lung cancer prevention and therapy.


Asunto(s)
Adenocarcinoma del Pulmón/tratamiento farmacológico , Señalización del Calcio/efectos de los fármacos , Quempferoles/farmacología , Vitaceae/química , Células A549 , Animales , Calcio/metabolismo , Proliferación Celular , Humanos , Quempferoles/química , Masculino , Ratones , Ratones Desnudos , Enfermedades Mitocondriales/inducido químicamente , Neoplasias Experimentales
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...