Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.461
Filtrar
1.
Endocrinology ; 165(10)2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39248655

RESUMEN

Postprandial dyslipidemia is commonly present in people with type 2 diabetes and obesity and is characterized by overproduction of apolipoprotein B48-containing chylomicron particles from the intestine. Peripheral serotonin is emerging as a regulator of energy homeostasis with profound implications for obesity; however, its role in dietary fat absorption and chylomicron production is unknown. Chylomicron production was assessed in Syrian golden hamsters by administering an olive oil gavage and IP poloxamer to inhibit lipoprotein clearance. Administration of serotonin or selective serotonin reuptake inhibitor, fluoxetine, increased postprandial plasma triglyceride (TG) and TG-rich lipoproteins. Conversely, inhibiting serotonin synthesis pharmacologically by p-chlorophenylalanine (PCPA) led to a reduction in both the size and number of TG-rich lipoprotein particles, resulting in lower plasma TG and apolipoprotein B48 levels. The effects of PCPA occurred independently of gastric emptying and vagal afferent signaling. Inhibiting serotonin synthesis by PCPA led to increased TG within the intestinal lumen and elevated levels of TG and cholesterol in the stool when exposed to a high-fat/high-cholesterol diet. These findings imply compromised fat absorption, as evidenced by reduced lipase activity in the duodenum and lower levels of serum bile acids, which are indicative of intestinal bile acids. During the postprandial state, mRNA levels for serotonin receptors (5-HTRs) were upregulated in the proximal intestine. Administration of cisapride, a 5-HT4 receptor agonist, alleviated reductions in postprandial lipemia caused by serotonin synthesis inhibition, indicating that serotonin controls dietary fat absorption and chylomicron secretion via 5-HT4 receptor.


Asunto(s)
Quilomicrones , Grasas de la Dieta , Mesocricetus , Receptores de Serotonina 5-HT4 , Serotonina , Triglicéridos , Animales , Masculino , Quilomicrones/metabolismo , Serotonina/metabolismo , Receptores de Serotonina 5-HT4/metabolismo , Grasas de la Dieta/farmacología , Triglicéridos/metabolismo , Triglicéridos/sangre , Cricetinae , Fenclonina/farmacología , Absorción Intestinal/efectos de los fármacos , Fluoxetina/farmacología , Periodo Posprandial/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología
2.
AAPS PharmSciTech ; 25(7): 206, 2024 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-39237659

RESUMEN

Intestinal lymphatic transport offers an alternative and effective way to deliver drugs, such as avoiding first-pass metabolism, enhancing oral bioavailability, and facilitating the treatment of targeted lymphoid-related diseases. However, the clinical use of luteolin (LUT) is limited by its poor water solubility and low bioavailability, and enhancing lymphatic transport by nanoemulsion may be an efficient way to enhance its oral bioavailability. The objective of this work is to prepare the luteolin nanoemulsions (LUT NEs), optimized its preparation parameters by using Box-Behnken design optimization (BBD) and evaluated it in vitro and in vivo. An Caco-2 / Raji B cell co-incubation monolayer model was established to simulate the M-cell pathway, and the differences in the transmembrane transport of LUT and NEs were compared. Cycloheximide (CHX) was utilized to establish rat chylomicron (CM) blocking model, and for investigating the influence of pharmacokinetic parameters in rats thereafter. The results showed that LUT NEs have good stability, the particle sizes were about 23.87 ± 0.57 nm. Compared with LUT suspension, The Papp of LUT NEs was enhanced for 3.5-folds, the oral bioavailability was increased by about 2.97-folds. In addition, after binding with chylomicron, the oral bioavailability of LUT NEs was decreased for about 30% (AUC 0-∞ (µg/L*h): 5.356 ± 1.144 vs 3.753 ± 0.188). These results demonstrated that NEs could enhance the oral absorption of luteolin via lymphatic transport routes.


Asunto(s)
Disponibilidad Biológica , Emulsiones , Luteolina , Nanopartículas , Tamaño de la Partícula , Ratas Sprague-Dawley , Luteolina/farmacocinética , Luteolina/administración & dosificación , Luteolina/química , Animales , Ratas , Humanos , Células CACO-2 , Administración Oral , Masculino , Nanopartículas/química , Solubilidad , Absorción Intestinal/fisiología , Quilomicrones/metabolismo , Transporte Biológico/fisiología , Sistema Linfático/metabolismo
3.
J Pharmacol Toxicol Methods ; 129: 107548, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39098619

RESUMEN

Scientists have developed and employed various models to investigate intestinal lymphatic uptake. One approach involves using specific blocking agents to influence the chylomicron-mediated lymphatic absorption of drugs. Currently utilized models include pluronic L-81, puromycin, vinca alkaloids, colchicine, and cycloheximide. This review offers a thorough analysis of the diverse models utilized, evaluating existing reports while delineating the gaps in current research. It also explores pharmacokinetic related aspects of intestinal lymphatic uptake pathway and its blockage through the discussed models. Pluronic L-81 has a reversible effect, minimal toxicity, and unique mode of action. Yet, it lacks clinical reports on chylomicron pathway blockage, likely due to low concentrations used. Puromycin and vinca alkaloids, though documented for toxicity, lack information on their application in drug intestinal lymphatic uptake. Other vinca alkaloids show promise in affecting triglyceride profiles and represent possible agents to test as blockers. Colchicine and cycloheximide, widely used in pharmaceutical development, have demonstrated efficacy, with cycloheximide preferred for lower toxicity. However, further investigation into effective and toxic doses of colchicine in humans is needed to understand its clinical impact. The review additionally followed the complete journey of oral lymphatic targeting drugs from intake to excretion, provided a pharmacokinetic equation considering the intestinal lymphatic pathway for assessing bioavailability. Moreover, the possible application of urinary data as a non-invasive way to measure the uptake of drugs through intestinal lymphatics was illustrated, and the likelihood of drug interactions when specific blockers are employed in human subjects was underscored.


Asunto(s)
Quilomicrones , Quilomicrones/metabolismo , Humanos , Animales , Estudios Retrospectivos , Estudios Prospectivos , Sistemas de Liberación de Medicamentos/métodos , Absorción Intestinal/efectos de los fármacos , Sistema Linfático/efectos de los fármacos , Sistema Linfático/metabolismo , Disponibilidad Biológica , Colchicina/farmacocinética , Colchicina/administración & dosificación , Poloxámero/administración & dosificación
4.
Nature ; 632(8027): 1101-1109, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39112711

RESUMEN

The mouse small intestine shows profound variability in gene expression along the crypt-villus axis1,2. Whether similar spatial heterogeneity exists in the adult human gut remains unclear. Here we use spatial transcriptomics, spatial proteomics and single-molecule fluorescence in situ hybridization to reconstruct a comprehensive spatial expression atlas of the adult human proximal small intestine. We describe zonated expression and cell type representation for epithelial, mesenchymal and immune cell types. We find that migrating enterocytes switch from lipid droplet assembly and iron uptake at the villus bottom to chylomicron biosynthesis and iron release at the tip. Villus tip cells are pro-immunogenic, recruiting γδ T cells and macrophages to the tip, in contrast to their immunosuppressive roles in mouse. We also show that the human small intestine contains abundant serrated and branched villi that are enriched at the tops of circular folds. Our study presents a detailed resource for understanding the biology of the adult human small intestine.


Asunto(s)
Biología Celular , Perfilación de la Expresión Génica , Intestino Delgado , Adulto , Animales , Femenino , Humanos , Masculino , Ratones , Movimiento Celular , Quilomicrones/biosíntesis , Enterocitos/metabolismo , Enterocitos/citología , Células Epiteliales , Hibridación Fluorescente in Situ , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Intestino Delgado/citología , Intestino Delgado/inmunología , Intestino Delgado/metabolismo , Hierro/metabolismo , Gotas Lipídicas/metabolismo , Macrófagos/citología , Macrófagos/inmunología , Macrófagos/metabolismo , Mesodermo/citología , Mesodermo/metabolismo , Proteómica , Imagen Individual de Molécula , Linfocitos T/citología , Linfocitos T/inmunología , Linfocitos T/metabolismo , Transcriptoma
5.
ACS Nano ; 18(34): 23136-23153, 2024 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-39153194

RESUMEN

Nanocrystals exhibit significant advantages in improving the oral bioavailability of poorly soluble drugs. However, the complicated absorption properties of nanocrystals and the differences in physiological characteristics between children and adults limit pediatric applications of nanocrystals. To elucidate the absorption differences and the underlying mechanisms between children and adults, the pharmacokinetics and tissue distribution of aprepitant crystals with different particle sizes (NC200, NC500, and MC2.5) in rats and mice at different ages were studied, and their absorption mechanisms were investigated in Caco-2 cells, mice, and rats. It was found that childhood animals demonstrated higher bioavailability compared with adolescent and adult animals, which was related to higher bile salt concentration and accelerated drug dissolution in the intestine of childhood animals. The majority of nanocrystals were dissolved and formed micelles under the influence of bile salts. Compared with intact nanocrystals, the bile salt micelle-associated aprepitant was absorbed through the chylomicron pathway, wherein Apo B assisted in the reassembling of the aprepitant micelles after endocytosis. Higher bile salt concentration and Apo B expression in the intestines of childhood animals are both responsible for the higher chylomicron transport pathways. Elucidation of the chylomicron pathway in the varied absorption of nanocrystals among children, adolescents, and adults provides strong theoretical guidance for promoting the rational and safe use of nanocrystals in pediatric populations.


Asunto(s)
Quilomicrones , Nanopartículas , Animales , Nanopartículas/química , Nanopartículas/metabolismo , Humanos , Células CACO-2 , Ratas , Ratones , Masculino , Quilomicrones/metabolismo , Quilomicrones/química , Tamaño de la Partícula , Micelas , Aprepitant/farmacocinética , Aprepitant/química , Aprepitant/farmacología , Ácidos y Sales Biliares/química , Ácidos y Sales Biliares/metabolismo , Niño , Disponibilidad Biológica , Ratas Sprague-Dawley , Absorción Intestinal , Administración Oral , Distribución Tisular
6.
Sci Adv ; 10(34): eadp2254, 2024 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-39178255

RESUMEN

Consumption of a diet rich in saturated fat increases lipid absorption from the intestine, assembly into chylomicrons, and delivery to metabolic tissues via the lymphatic and circulatory systems. Accumulation of ceramide lipids, composed of sphingosine and a fatty acid, in metabolic tissues contributes to the pathogenesis of cardiovascular diseases, type 2 diabetes mellitus and cancer. Using a mesenteric lymph duct cannulated rat model, we showed that ceramides are generated by the intestine and assembled into chylomicrons, which are transported via the mesenteric lymphatic system. A lipidomic screen of intestinal-derived chylomicrons identified a diverse range of fatty acid, sphingolipid, and glycerolipid species that have not been previously detected in chylomicrons, including the metabolically deleterious C16:0 ceramide that increased in response to high-fat feeding in rats and human high-lipid meal replacement enteral feeding. In conclusion, high-fat feeding increases the export of intestinal-derived C16:0 ceramide in chylomicrons, identifying a potentially unknown mechanism through which ceramides are transported systemically to contribute to metabolic dysfunction.


Asunto(s)
Ceramidas , Quilomicrones , Dieta Alta en Grasa , Mucosa Intestinal , Animales , Ceramidas/metabolismo , Quilomicrones/metabolismo , Dieta Alta en Grasa/efectos adversos , Ratas , Mucosa Intestinal/metabolismo , Humanos , Masculino , Lipidómica , Intestinos/metabolismo
7.
Eur J Pharm Biopharm ; 202: 114392, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38977066

RESUMEN

Colchicine (COL) is known for its ability to inhibit the formation of intestinal chylomicrons and has been utilized as a non-surgical tool to explore drug absorption via the intestinal lymphatics. However, there is limited understanding of its pharmacokinetics and its relationship to effect and toxicity with the doses used. This study aimed to provide comprehensive COL pharmacokinetic data and correlate it with the lymphatic-blocking and toxicological effects of low-doses. Male Sprague-Dawley rats with jugular-vein cannulation (JVC) received 0.1 to 0.5 mg/kg COL via oral, 0.25 mg/kg intraperitoneal, and 0.1 mg/kg intravenous routes, followed by blood and urine sampling for LC-MS/MS analysis. Effects on lipid absorption were assessed in another eight JVC rats receiving peanut oil with and without COL, followed by blood pharmacokinetic and plasma biochemistry analysis. The results revealed that COL exhibited moderate extraction ratio and high volume of distribution, with low oral bioavailability (<8%). About 20 % was recovered in the urine after parenteral dosing. Modest but significant reductions in cholesterol absorption was observed after oral doses of 0.5 mg/kg, accompanied by signs of inflammation and increased liver enzymes persisting for a week. The effect of COL on triglycerides formation was not significant. Despite its use as a non-surgical tool in rats to investigate drug absorption via the lymphatic pathway, COL demonstrated increased levels of liver function enzymes, emphasizing the need for caution and dose optimization in its utilization.


Asunto(s)
Disponibilidad Biológica , Quilomicrones , Colchicina , Ratas Sprague-Dawley , Animales , Masculino , Colchicina/farmacocinética , Colchicina/administración & dosificación , Colchicina/toxicidad , Ratas , Quilomicrones/metabolismo , Administración Oral , Absorción Intestinal/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Espectrometría de Masas en Tándem/métodos , Aceite de Cacahuete/administración & dosificación , Aceite de Cacahuete/farmacocinética , Aceite de Cacahuete/toxicidad , Colesterol
8.
J Lipid Res ; 65(7): 100551, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-39002195

RESUMEN

Intestinal disease is one of the earliest manifestations of cystic fibrosis (CF) in children and is closely tied to deficits in growth and nutrition, both of which are directly linked to future mortality. Patients are treated aggressively with pancreatic enzyme replacement therapy and a high-fat diet to circumvent fat malabsorption, but this does not reverse growth and nutritional defects. We hypothesized that defects in chylomicron production could explain why CF body weights and nutrition are so resistant to clinical treatments. We used gold standard intestinal lipid absorption and metabolism approaches, including mouse mesenteric lymph cannulation, in vivo chylomicron secretion kinetics, transmission electron microscopy, small intestinal organoids, and chylomicron metabolism assays to test this hypothesis. In mice expressing the G542X mutation in cystic fibrosis transmembrane conductance regulator (CFTR-/- mice), we find that defective FFA trafficking across the epithelium into enterocytes drives a chylomicron formation defect. Furthermore, G542X mice secrete small, triglyceride-poor chylomicrons into the lymph and blood. These defective chylomicrons are cleared into extraintestinal tissues at ∼10-fold faster than WT chylomicrons. This defect in FFA absorption resulting in dysfunctional chylomicrons cannot be explained by steatorrhea or pancreatic insufficiency and is maintained in primary small intestinal organoids treated with micellar lipids. These studies suggest that the ultrahigh-fat diet that most people with CF are counselled to follow may instead make steatorrhea and malabsorption defects worse by overloading the absorptive capacity of the CF small intestine.


Asunto(s)
Quilomicrones , Fibrosis Quística , Fibrosis Quística/metabolismo , Fibrosis Quística/patología , Fibrosis Quística/genética , Animales , Quilomicrones/metabolismo , Ratones , Ácidos Grasos no Esterificados/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/metabolismo , Regulador de Conductancia de Transmembrana de Fibrosis Quística/genética , Regulador de Conductancia de Transmembrana de Fibrosis Quística/deficiencia , Insuficiencia Pancreática Exocrina/metabolismo , Insuficiencia Pancreática Exocrina/genética , Insuficiencia Pancreática Exocrina/patología , Transporte Biológico , Humanos , Mucosa Intestinal/metabolismo
9.
Annu Rev Nutr ; 44(1): 179-204, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38635875

RESUMEN

Recent advances in human genetics, together with a substantial body of epidemiological, preclinical and clinical trial evidence, strongly support a causal relationship between triglyceride-rich lipoproteins (TRLs) and atherosclerotic cardiovascular disease. Consequently, the secretion and metabolism of TRLs have a significant impact on cardiovascular health. This knowledge underscores the importance of understanding the molecular mechanisms and regulation of very-low-density lipoprotein (VLDL) and chylomicron biogenesis. Fortunately, there has been a resurgence of interest in the intracellular assembly, trafficking, degradation, and secretion of VLDL, leading to many ground-breaking molecular insights. Furthermore, the identification of molecular control mechanisms related to triglyceride metabolism has greatly advanced our understanding of the complex metabolism of TRLs. In this review, we explore recent advances in the assembly, secretion, and metabolism of TRLs. We also discuss available treatment strategies for hypertriglyceridemia.


Asunto(s)
Lipoproteínas VLDL , Triglicéridos , Animales , Humanos , Apolipoproteínas B/metabolismo , Aterosclerosis/metabolismo , Quilomicrones/metabolismo , Hipertrigliceridemia/metabolismo , Lipoproteínas/metabolismo , Lipoproteínas VLDL/metabolismo , Triglicéridos/metabolismo
10.
Food Funct ; 15(9): 5000-5011, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38618651

RESUMEN

The anti-obesity effect of conjugated linoleic acid (CLA) has been well elucidated, but whether CLA affects fat deposition by regulating intestinal dietary fat absorption remains largely unknown. Thus, this study aimed to investigate the effects of CLA on intestinal fatty acid uptake and chylomicron formation and explore the possible underlying mechanisms. We found that CLA supplementation reduced the intestinal fat absorption in HFD (high fat diet)-fed mice accompanied by the decreased serum TG level, increased fecal lipids and decreased intestinal expression of ApoB48 and MTTP. Correspondingly, c9, t11-CLA, but not t10, c12-CLA induced the reduction of fatty acid uptake and TG content in PA (palmitic acid)-treated MODE-K cells. In the mechanism of fatty acid uptake, c9, t11-CLA inhibited the binding of CD36 with palmitoyltransferase DHHC7, thus leading to the decreases of CD36 palmitoylation level and localization on the cell membrane of the PA-treated MODE-K cells. In the mechanism of chylomicron formation, c9, t11-CLA inhibited the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the PA-treated MODE-K cells. In in vivo verification, CLA supplementation reduced the DHHC7-mediated total and cell membrane CD36 palmitoylation and suppressed the formation of the CD36/FYN/LYN complex and the activation of the ERK pathway in the jejunum of HFD-fed mice. Altogether, these data showed that CLA reduced intestinal fatty acid uptake and chylomicron formation in HFD-fed mice associated with the inhibition of DHHC7-mediated CD36 palmitoylation and the downstream ERK pathway.


Asunto(s)
Quilomicrones , Dieta Alta en Grasa , Sistema de Señalización de MAP Quinasas , Animales , Masculino , Ratones , Aciltransferasas/metabolismo , Aciltransferasas/genética , Antígenos CD36/metabolismo , Antígenos CD36/genética , Quilomicrones/metabolismo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Absorción Intestinal/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos C57BL
12.
Artículo en Inglés | MEDLINE | ID: mdl-38657943

RESUMEN

In mammals, physiological processes related to lipid metabolism, such as chylomicron synthesis or fatty acid oxidation (FAO), modulate eating, highlighting the importance of energostatic mechanisms in feeding control. This study, using rainbow trout (Oncorhynchus mykiss) as model, aimed to characterize the role of FAO and chylomicron formation as peripheral lipid sensors potentially able to modulate feeding in fish. Fish fed with either a normal- (24%) or high- (32%) fat diet were intraperitoneally injected with water alone or containing etomoxir (inhibitor of FAO rate-limiting enzyme carnitine palmitoyl-transferase 1). First, feed intake levels were recorded. We observed an etomoxir-derived decrease in feeding at short times, but a significant increase at 48 h after treatment in fish fed normal-fat diet. Then, we evaluated putative etomoxir effects on the mRNA abundance of genes related to lipid metabolism, chylomicron synthesis and appetite-regulating peptides. Etomoxir treatment upregulated mRNA levels of genes related to chylomicron assembly in proximal intestine, while opposite effects occurred in distal intestine, indicating a clear regionalization in response. Etomoxir also modulated gastrointestinal hormone mRNAs in proximal intestine, upregulating ghrl in fish fed normal-fat diet and pyy and gcg in fish fed high-fat diet. These results provide evidence for an energostatic control of feeding related to FAO and chylomicron formation at the peripheral level in fish.


Asunto(s)
Quilomicrones , Grasas de la Dieta , Ácidos Grasos , Metabolismo de los Lípidos , Oncorhynchus mykiss , Oxidación-Reducción , Animales , Oncorhynchus mykiss/metabolismo , Ácidos Grasos/metabolismo , Quilomicrones/metabolismo , Grasas de la Dieta/metabolismo , Grasas de la Dieta/farmacología , Tracto Gastrointestinal/metabolismo , Compuestos Epoxi/metabolismo , Compuestos Epoxi/farmacología , Carnitina O-Palmitoiltransferasa/metabolismo , Carnitina O-Palmitoiltransferasa/genética
13.
Nanomedicine (Lond) ; 19(4): 293-301, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38270378

RESUMEN

Background: Leishmaniasis, caused by the protozoan Leishmania sp., infects phagocyte cells present in lymphatic organs. This study demonstrates the influence of nanostructured lipid carrier-loaded hydroxymethylnitrofurazone (NLC-NFOH) on lymphatic uptake using a chylomicron-blocking flow model in rats. Method: Lymphatic uptake of NFOH was assessed 1 h after oral administration of dimethyl sulfoxide with NFOH or NLC-NFOH with and without cycloheximide pretreatment. Result: Dimethyl sulfoxide with NFOH and NLC-NFOH showed NFOH serum concentrations of 0.0316 and 0.0291 µg/ml, respectively. After chylomicron blocking, NFOH was not detected. Conclusion: Despite log P below 5, NFOH was successfully taken up by the lymphatic system. Long-chain fatty acids and particle size might be main factors in these findings. NLC-NFOH is a promising and convenient platform for treating leishmaniasis via oral administration.


Asunto(s)
Leishmaniasis , Nanoestructuras , Nitrofurazona/análogos & derivados , Ratas , Animales , Dimetilsulfóxido , Quilomicrones , Administración Oral , Portadores de Fármacos , Tamaño de la Partícula
14.
Biochem Mol Biol Educ ; 52(1): 127-128, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37905739

RESUMEN

The poem Ode on the Odyssey of lipoproteins describes the structure, functions and metabolism of lipoproteins namely Chylomicrons, LDL, VLDL and HDL. This poem is a triolet with eight lines in each stanza. Odyssey is the travel experience of an adventurous journey when someone travels far and wide. This poem describes the transport adventures of Lipids when they travel in the form of lipoproteins. The poetic form of describing the metabolism of lipoproteins was intended to kindle the interest of the learners and to gain an imaginary experience in the metabolism of lipoproteins.


Asunto(s)
Lipoproteínas HDL , Lipoproteínas LDL , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Lipoproteínas VLDL/metabolismo , Lipoproteínas/química , Lipoproteínas/metabolismo , Quilomicrones/metabolismo
15.
Arterioscler Thromb Vasc Biol ; 44(1): 192-201, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37970717

RESUMEN

BACKGROUND: The gut hormone GLP-2 (glucagon-like peptide-2) plays important roles in lipid handling in the intestine. During postabsorptive stage, it releases preformed chylomicrons stored in the intestine, the underlying mechanisms of which are not well understood. Previous studies implicate the involvement of neural pathways in GLP-2's actions on lipid absorption in the intestine, but the role of such mechanisms in releasing postabsorptive lipid storage has not been established. METHODS: Here, in mesenteric lymph duct cannulated rats, we directly tested whether gut-brain neural communication mediates GLP-2's effects on postabsorptive lipid mobilization in the intestine. We performed total subdiaphragmatic vagotomy to disrupt the gut-brain neural communication and analyzed lipid output 5 hours after a lipid load in response to intraperitoneal GLP-2 or saline. RESULTS: Peripheral GLP-2 administration led to increased lymph lipid output and activation of proopiomelanocortin neurons in the arcuate nucleus of hypothalamus. Disruption of gut-brain neural communication via vagotomy blunted GLP-2's effects on promoting lipid release in the intestine. CONCLUSIONS: These results, for the first time, demonstrate a novel mechanism in which postabsorptive mobilization of intestinal lipid storage by GLP-2 enlists a gut-brain neural pathway.


Asunto(s)
Quilomicrones , Péptido 2 Similar al Glucagón , Ratas , Animales , Péptido 2 Similar al Glucagón/farmacología , Quilomicrones/metabolismo , Encéfalo/metabolismo , Vías Nerviosas/metabolismo , Intestinos
16.
Mol Metab ; 79: 101847, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38042368

RESUMEN

OBJECTIVE: Lipoprotein assembly and secretion in the small intestine are critical for dietary fat absorption. Surfeit locus protein 4 (SURF4) serves as a cargo receptor, facilitating the cellular transport of multiple proteins and mediating hepatic lipid secretion in vivo. However, its involvement in intestinal lipid secretion is not fully understood. In this study, we investigated the role of SURF4 in intestinal lipid absorption. METHODS: We generated intestine-specific Surf4 knockout mice and characterized the phenotypes. Additionally, we investigated the underlying mechanisms of SURF4 in intestinal lipid secretion using proteomics and cellular models. RESULTS: We unveiled that SURF4 is indispensable for apolipoprotein transport and lipoprotein secretion. Intestine-specific Surf4 knockout mice exhibited ectopic lipid deposition in the small intestine and hypolipidemia. Deletion of SURF4 impeded the transport of apolipoprotein A1 (ApoA1), proline-rich acidic protein 1 (PRAP1), and apolipoprotein B48 (ApoB48) and hindered the assembly and secretion of chylomicrons and high-density lipoproteins. CONCLUSIONS: SURF4 emerges as a pivotal regulator of intestinal lipid absorption via mediating the secretion of ApoA1, PRAP1 and ApoB48.


Asunto(s)
Intestinos , Lipoproteínas , Ratones , Animales , Apolipoproteína B-48/metabolismo , Lipoproteínas/metabolismo , Quilomicrones/metabolismo , Ratones Noqueados , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo
17.
Nature ; 625(7994): 385-392, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38123683

RESUMEN

Digested dietary fats are taken up by enterocytes where they are assembled into pre-chylomicrons in the endoplasmic reticulum followed by transport to the Golgi for maturation and subsequent secretion to the circulation1. The role of mitochondria in dietary lipid processing is unclear. Here we show that mitochondrial dysfunction in enterocytes inhibits chylomicron production and the transport of dietary lipids to peripheral organs. Mice with specific ablation of the mitochondrial aspartyl-tRNA synthetase DARS2 (ref. 2), the respiratory chain subunit SDHA3 or the assembly factor COX10 (ref. 4) in intestinal epithelial cells showed accumulation of large lipid droplets (LDs) in enterocytes of the proximal small intestine and failed to thrive. Feeding a fat-free diet suppressed the build-up of LDs in DARS2-deficient enterocytes, which shows that the accumulating lipids derive mostly from digested fat. Furthermore, metabolic tracing studies revealed an impaired transport of dietary lipids to peripheral organs in mice lacking DARS2 in intestinal epithelial cells. DARS2 deficiency caused a distinct lack of mature chylomicrons concomitant with a progressive dispersal of the Golgi apparatus in proximal enterocytes. This finding suggests that mitochondrial dysfunction results in impaired trafficking of chylomicrons from the endoplasmic reticulum to the Golgi, which in turn leads to storage of dietary lipids in large cytoplasmic LDs. Taken together, these results reveal a role for mitochondria in dietary lipid transport in enterocytes, which might be relevant for understanding the intestinal defects observed in patients with mitochondrial disorders5.


Asunto(s)
Grasas de la Dieta , Enterocitos , Metabolismo de los Lípidos , Mitocondrias , Animales , Ratones , Aspartato-ARNt Ligasa/metabolismo , Quilomicrones/metabolismo , Grasas de la Dieta/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Retículo Endoplásmico/metabolismo , Enterocitos/metabolismo , Enterocitos/patología , Células Epiteliales/metabolismo , Aparato de Golgi/metabolismo , Intestinos , Gotas Lipídicas/metabolismo , Mitocondrias/metabolismo , Mitocondrias/patología
18.
Int J Pharm ; 648: 123574, 2023 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-37935311

RESUMEN

Efficient delivery of antiretroviral agents to lymph nodes is important to decrease the size of the HIV reservoir within the lymphatic system. Lamivudine (3TC) is used in first-line regimens for the treatment of HIV. As a highly hydrophilic small molecule, 3TC is not predicted to associate with chylomicrons and therefore should have negligible uptake into intestinal lymphatics following oral administration. Similarly, negligible amounts of 3TC are predicted to be transported into peripheral lymphatics following subcutaneous (SC) injection due to the faster flow rate of blood in comparison to lymph. In this work, we performed pharmacokinetic and biodistribution studies of 3TC in rats following oral lipid-based, oral lipid-free, SC, and intravenous (IV) administrations. In the oral administration studies, mesenteric lymph nodes (MLNs) had significantly higher 3TC concentrations compared to other lymph nodes, with mean tissue:serum ratios ranging from 1.4 to 2.9. However, cells and chylomicrons found in mesenteric lymph showed low-to-undetectable concentrations. In SC studies, administration-side (right) draining inguinal and popliteal lymph nodes had significantly higher concentrations (tissue:serum ratios as high as 3.2) than corresponding left-side nodes. In IV studies, lymph nodes had lower mean tissue:serum ratios ranging from 0.9 to 1.4. We hypothesize that following oral or SC administration, slower permeation of this hydrophilic molecule into blood capillaries may result in considerable passive 3TC penetration into lymphatic vessels. Further studies will be needed to clarify the mechanism of delivery of 3TC and similar antiretroviral drugs into the lymph nodes.


Asunto(s)
Fármacos Anti-VIH , Infecciones por VIH , Ratas , Animales , Lamivudine , Distribución Tisular , Ganglios Linfáticos/metabolismo , Infecciones por VIH/tratamiento farmacológico , Quilomicrones/metabolismo , Quilomicrones/uso terapéutico , Fármacos Anti-VIH/farmacocinética
19.
CPT Pharmacometrics Syst Pharmacol ; 12(10): 1529-1540, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37667531

RESUMEN

The TIGG model is the first model to integrate glucose and insulin regulation, incretin effect, and triglyceride (TG) response in the lipoprotein subclasses of chylomicrons and VLDL-V6. This model described the response following a high-fat meal in individuals who are lean, obese, and very obese and provided insights into the possible regulation of glucose homeostasis in the extended period following a meal. Often, total TGs are analyzed within clinical studies, instead of lipoprotein subclasses. We extended the existing TIGG model to capture the observed total TGs and determined if this model could be used to predict the postprandial TG response of chylomicron and VLDL-V6 when only total TGs are available. To assess if the lipoprotein distinction was important for the model, a second model (tTIGG) was developed using only the postprandial response in total TGs, instead of postprandial TG response in chylomicrons and VLDL-V6. The two models were compared on their predictability to characterize the postprandial response of glucose, insulin, and active GLP-1. Both models were able to characterize the postprandial TG response in individuals who are lean, obese, or very obese following a high-fat meal. The extended TIGG model resulted in a better model fit of the glucose data compared to the tTIGG model, indicating that chylomicron and VLDL-V6 provided additional information compared to total TGs. Furthermore, the expanded TIGG model was able to predict the postprandial TG response of chylomicrons and VLDL-V6 using the total TGs and could therefore be used in studies where only total TGs were collected.


Asunto(s)
Glucosa , Insulina , Humanos , Triglicéridos , Péptido 1 Similar al Glucagón , Lipoproteínas , Quilomicrones , Obesidad , Glucemia , Periodo Posprandial/fisiología
20.
Diabetologia ; 66(12): 2307-2319, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37775612

RESUMEN

AIMS/HYPOTHESIS: This study explored the hypothesis that significant abnormalities in the metabolism of intestinally derived lipoproteins are present in individuals with type 2 diabetes on statin therapy. These abnormalities may contribute to residual CVD risk. METHODS: To investigate the kinetics of ApoB-48- and ApoB-100-containing lipoproteins, we performed a secondary analysis of 11 overweight/obese individuals with type 2 diabetes who were treated with lifestyle counselling and on a stable dose of metformin who were from an earlier clinical study, and compared these with 11 control participants frequency-matched for age, BMI and sex. Participants in both groups were on a similar statin regimen during the study. Stable isotope tracers were used to determine the kinetics of the following in response to a standard fat-rich meal: (1) apolipoprotein (Apo)B-48 in chylomicrons and VLDL; (2) ApoB-100 in VLDL, intermediate-density lipoprotein (IDL) and LDL; and (3) triglyceride (TG) in VLDL. RESULTS: The fasting lipid profile did not differ significantly between the two groups. Compared with control participants, in individuals with type 2 diabetes, chylomicron TG and ApoB-48 levels exhibited an approximately twofold higher response to the fat-rich meal, and a twofold higher increment was observed in ApoB-48 particles in the VLDL1 and VLDL2 density ranges (all p < 0.05). Again comparing control participants with individuals with type 2 diabetes, in the latter, total ApoB-48 production was 25% higher (556 ± 57 vs 446 ± 57 mg/day; p < 0.001), conversion (fractional transfer rate) of chylomicrons to VLDL was around 40% lower (35 ± 25 vs 82 ± 58 pools/day; p=0.034) and direct clearance of chylomicrons was 5.6-fold higher (5.6 ± 2.2 vs 1.0 ± 1.8 pools/day; p < 0.001). During the postprandial period, ApoB-48 particles accounted for a higher proportion of total VLDL in individuals with type 2 diabetes (44%) compared with control participants (25%), and these ApoB-48 VLDL particles exhibited a fivefold longer residence time in the circulation (p < 0.01). No between-group differences were seen in the kinetics of ApoB-100 and TG in VLDL, or in LDL ApoB-100 production, pool size and clearance rate. As compared with control participants, the IDL ApoB-100 pool in individuals with type 2 diabetes was higher due to increased conversion from VLDL2. CONCLUSIONS/INTERPRETATION: Abnormalities in the metabolism of intestinally derived ApoB-48-containing lipoproteins in individuals with type 2 diabetes on statins may help to explain the residual risk of CVD and may be suitable targets for interventions. TRIAL REGISTRATION: ClinicalTrials.gov NCT02948777.


Asunto(s)
Enfermedades Cardiovasculares , Diabetes Mellitus Tipo 2 , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Humanos , Apolipoproteína B-100/uso terapéutico , Inhibidores de Hidroximetilglutaril-CoA Reductasas/uso terapéutico , Apolipoproteína B-48 , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/complicaciones , Enfermedades Cardiovasculares/tratamiento farmacológico , Enfermedades Cardiovasculares/complicaciones , Lipoproteínas VLDL/metabolismo , Apolipoproteínas B/metabolismo , Apolipoproteínas B/uso terapéutico , Lipoproteínas , Triglicéridos , Lipoproteínas IDL , Quilomicrones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA