Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 301
Filtrar
1.
FASEB J ; 38(2): e23407, 2024 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-38197598

RESUMEN

This study investigated the role of the axis involving chemokine receptor 6 (CCR6) and its ligand chemokine (C-C motif) ligand 20 (CCL20) in acute kidney disease (AKD) using an ischemia-reperfusion injury (IRI) model. The model was established by clamping the unilateral renal artery pedicle of C57BL/6 mice for 30 min, followed by evaluation of CCL20/CCR6 expression at 4 weeks post-IRI. In vitro studies were conducted to examine the effects of hypoxia and H2 O2 -induced oxidative stress on CCL20/CCR6 expression in kidney tissues of patients with AKD and chronic kidney disease (CKD). Tubular epithelial cell apoptosis was more severe in C57BL/6 mice than in CCL20 antibody-treated mice, and CCR6, NGAL mRNA, and IL-8 levels were higher under hypoxic conditions. CCL20 blockade ameliorated apoptotic damage in a dose-dependent manner under hypoxia and reactive oxygen species injury. CCR6 expression in IRI mice indicated that the disease severity was similar to that in patients with the AKD phenotype. Morphometry of CCL20/CCR6 expression revealed a higher likelihood of CCR6+ cell presence in CKD stage 3 patients than in stage 1-2 patients. Kidney tissues of patients with CKD frequently contained CCL20+ cells, which were positively correlated with interstitial inflammation. CCL20/CCR6 levels were increased in fibrotic kidneys at 4 and 8 weeks after 5/6 nephrectomy. These findings suggest that modulating the CCL20/CCR6 pathway is a potential therapeutic strategy for managing the progression of AKD to CKD.


Asunto(s)
Lesión Renal Aguda , Insuficiencia Renal Crónica , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Ligandos , Riñón , Células Epiteliales , Arteria Renal , Hipoxia , Receptores CCR6/genética , Quimiocina CCL20/genética
2.
Int J Mol Sci ; 24(17)2023 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-37686029

RESUMEN

Metabolic dysfunction-associated steatotic liver disease (MASLD) comprises a spectrum of liver diseases, ranging from liver steatosis to metabolic dysfunction-associated steatohepatitis (MASH), increasing the risk of developing cirrhosis and hepatocellular carcinoma (HCC). Fibrosis within MASLD is critical for disease development; therefore, the identification of fibrosis-driving factors is indispensable. We analyzed the expression of interleukin 32 (IL-32) and chemokine CC ligand 20 (CCL20), which are known to be linked with inflammation and fibrosis, and for their expression in MASLD and hepatoma cells. RT-PCR, ELISA and Western blotting analyses were performed in both human liver samples and an in vitro steatosis model. IL-32 and CCL20 mRNA expression was increased in tissues of patients with NASH compared to normal liver tissue. Stratification for patatin-like phospholipase domain-containing protein 3 (PNPLA3) status revealed significance for IL-32 only in patients with I148M (rs738409, CG/GG) carrier status. Furthermore, a positive correlation was observed between IL-32 expression and steatosis grade, and between IL-32 as well as CCL20 expression and fibrosis grade. Treatment with the saturated fatty acid palmitic acid (PA) induced mRNA and protein expression of IL-32 and CCL20 in hepatoma cells. This induction was mitigated by the substitution of PA with monounsaturated oleic acid (OA), suggesting the involvement of oxidative stress. Consequently, analysis of stress-induced signaling pathways showed the activation of Erk1/2 and p38 MAPK, which led to an enhanced expression of IL-32 and CCL20. In conclusion, cellular stress in liver epithelial cells induced by PA enhances the expression of IL-32 and CCL20, both known to trigger inflammation and fibrosis.


Asunto(s)
Hígado Graso , Hepatocitos , Enfermedades Metabólicas , Humanos , Carcinoma Hepatocelular/genética , Quimiocina CCL20/genética , Quimiocinas , Hepatocitos/metabolismo , Ligandos , Cirrosis Hepática/genética , Neoplasias Hepáticas/genética , Ácido Palmítico , Regulación hacia Arriba , Grasas Insaturadas/metabolismo
3.
J Cardiovasc Pharmacol ; 82(6): 458-469, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37721971

RESUMEN

ABSTRACT: Damage to the abdominal aortic wall and the local inflammatory response are key factors resulting in abdominal aortic aneurysm (AAA) formation. During this process, macrophage polarization plays a key role. However, in AAA, the regulatory mechanism of macrophages is still unclear, and further research is needed. In this study, we found that the transcription factor TCF3 was expressed at low levels in AAA. We overexpressed TCF3 and found that TCF3 could inhibit MMP and inflammatory factor expression and promote M2 macrophage polarization, thereby inhibiting the progression of AAA. Knocking down TCF3 could promote M1 polarization and MMP and inflammatory factor expression. In addition, we found that TCF3 increased miR-143-5p expression through transcriptional activation of miR-143-5p , which further inhibited expression of the downstream chemokine CCL20 and promoted M2 macrophage polarization. Our research indicates that TCF3-mediated macrophage polarization plays a key regulatory role in AAA, complementing the role and mechanism of macrophages in the occurrence and development of AAA and providing a scientific basis for AAA treatment.


Asunto(s)
Aneurisma de la Aorta Abdominal , MicroARNs , Humanos , Factores de Transcripción/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Aneurisma de la Aorta Abdominal/genética , Aneurisma de la Aorta Abdominal/metabolismo , Macrófagos/metabolismo , Inflamación/genética , Inflamación/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo
4.
Gastric Cancer ; 26(6): 904-917, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37572185

RESUMEN

BACKGROUND: Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS: The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS: GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS: PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.


Asunto(s)
Adenocarcinoma , PPAR delta , Neoplasias Gástricas , Humanos , Animales , Ratones , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , PPAR delta/genética , Linfocitos T CD8-positivos , Microambiente Tumoral , Carcinogénesis , Receptores CCR6/genética , Receptores CCR6/metabolismo
5.
J Int Med Res ; 51(8): 3000605231171762, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37571985

RESUMEN

OBJECTIVES: CCL20 is a chemotactic factor that is involved in immune cell recruitment and cancer progression. However, the role of CCL20 in the prognosis of breast cancer remains unclear. This study analyzed correlations between CCL20 expression and immune infiltration, clinicopathological parameters, and prognosis in breast cancer patients. METHODS: Correlations between CCL20 expression and clinicopathological parameters, prognosis, and immune infiltration in breast cancer were determined using the TIMER, UALCAN, and PrognoScan databases. Furthermore, gene-gene and protein-protein interactions were determined using GeneMANIA and STING network construction, respectively. RESULTS: CCL20 expression was significantly upregulated in breast cancer and had significant associations with clinicopathological features, including race, sex, age, menopause status, cancer stage, cancer subclass, and nodal metastasis; moreover, patients with higher CCL20 expression exhibited poor prognosis. Meanwhile, CCL20 expression was significantly correlated with the infiltration of immune cells in breast cancer, including monocytes, neutrophils, tumor-associated macrophages, Th1 cells, regulatory T cells, and exhausted T cells. Moreover, the network of CCL20 expression showed the majority genes and proteins were associated with immune reactions. CONCLUSIONS: CCL20 is a prognosis-related biomarker in breast cancer on the basis of its correlation with immune infiltration levels and has potential to also be a therapeutic target.


Asunto(s)
Neoplasias de la Mama , Femenino , Humanos , Neoplasias de la Mama/genética , Bases de Datos Factuales , Monocitos , Neutrófilos , Pronóstico , Biomarcadores de Tumor/genética , Quimiocina CCL20/genética
6.
Sci Rep ; 13(1): 9642, 2023 06 14.
Artículo en Inglés | MEDLINE | ID: mdl-37316552

RESUMEN

The C-C motif ligand 20 (CCL20) is a chemokine that specifically binds to the chemokine receptor 6 (CCR6) and the CCL20/CCR6 axis has been implicated in the non-small lung cancer (NSCLC) development and progression. Its expression is regulated by mutual interactions of non-coding RNAs (ncRNAs). This goals of presented study was to evaluate the expression level of CCR6/CCL20 mRNA in NSCLC tissue comparative to selected ncRNAs: miR-150, linc00673. The expression level of the studied ncRNAs was also assessed in serum extracellular vesicles (EVs). Thirty patients (n = 30) were enrolled as the study cohort. Total RNA was isolated from tumor tissue, adjacent macroscopically unchanged tissue and serum EVs. The expression level of studied genes and ncRNAs were estimated based on the qPCR method. Higher expression level of CCL20 mRNA but lower expression level of CCR6 mRNA were observed in tumor in comparison to control tissue. Relative to the smoking status, higher CCL20 (p < 0.05) and CCR6 mRNA (p > 0.05) expression levels were observed in current smokers than in never smokers. In serum EVs the expression level of miR-150 has a negative correlation with AJCC tumor staging, whereas the expression level of linc00673 positively correlated (p > 0.05). The lower expression level of miR-150 and higher expression level of linc00673 in serum EVs were observed in NSCLC patients with lymph nodes metastases (p > 0.05). Regarding the histopathological type, significantly lower expression level of miR-150 and higher expression level of linc00673 were observed in the serum EVs of patients with AC compared to patient with SCC. Our findings revealed that smoking significantly changed the expression level of CCL20 mRNA in NSCLC tissue. Changes in expression levels of miR-150 and linc00673 in the serum EVs of NSCLC patients in relation to presence of lymph node metastases and the stage of cancer development may serve as a non-invasive molecular biomarkers of tumor progression. Furthermore, expression levels of miR-150 and linc00673 may serve as non-intrusive diagnostic biomarkers differentiating adenocarcinoma from squamous cell carcinoma.


Asunto(s)
Adenocarcinoma , Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , MicroARNs , Humanos , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico , Carcinoma de Pulmón de Células no Pequeñas/genética , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Metástasis Linfática , ARN Mensajero/genética , MicroARNs/genética , Receptores CCR6/genética , Quimiocina CCL20/genética
7.
J Immunol Methods ; 515: 113453, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863695

RESUMEN

A novel engineered CCL20 locked dimer (CCL20LD) is nearly identical to the naturally occurring chemokine CCL20 but blocks CCR6-mediated chemotaxis and offers a new approach to treat the diseases of psoriasis and psoriatic arthritis. Methods for quantifying CCL20LD serum levels are needed to assess pharmacokinetics parameters and evaluate drug delivery, metabolism, and toxicity. Existing ELISA kits fail to discriminate between CCL20LD and the natural chemokine, CCL20WT (the wild type monomer). Herein, we tested several available CCL20 monoclonal antibodies to be able to identify one clone that can be used both as a capture and a detection antibody (with biotin-labeling) to specifically detect CCL20LD with high specificity. After validation using recombinant proteins, the CCL20LD-selective ELISA was used to analyze blood samples from CCL20LD treated mice, demonstrating the utility of this novel assay for preclinical development of a biopharmaceutical lead compound for psoriatic disease.


Asunto(s)
Quimiocina CCL20 , Psoriasis , Animales , Ratones , Quimiocina CCL20/genética , Psoriasis/tratamiento farmacológico , Psoriasis/metabolismo , Quimiotaxis , Anticuerpos Monoclonales/uso terapéutico , Ensayo de Inmunoadsorción Enzimática
8.
Kidney Int ; 104(1): 74-89, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36924892

RESUMEN

Previous studies have identified a unique Treg population, which expresses the Th17 characteristic transcription factor RORγt. These RORγt+ Tregs possess enhanced immunosuppressive capacity, which endows them with great therapeutic potential. However, as a caveat, they are also capable of secreting pro-inflammatory IL-17A. Since the sum function of RORγt+ Tregs in glomerulonephritis (GN) remains unknown, we studied the effects of their absence. Purified CD4+ T cell populations, containing or lacking RORγt+ Tregs, were transferred into immunocompromised RAG1 knockout mice and the nephrotoxic nephritis model of GN was induced. Absence of RORγt+ Tregs significantly aggravated kidney injury, demonstrating overall kidney-protective properties. Analyses of immune responses showed that RORγt+ Tregs were broadly immunosuppressive with no preference for a particular type of T cell response. Further characterization revealed a distinct functional and transcriptional profile, including enhanced production of IL-10. Expression of the chemokine receptor CCR6 marked a particularly potent subset, whose absence significantly worsened GN. As an underlying mechanism, we found that chemokine CCL20 acting through receptor CCR6 signaling mediated expansion and activation of RORγt+ Tregs. Finally, we also detected an increase of CCR6+ Tregs in kidney biopsies, as well as enhanced secretion of chemokine CCL20 in 21 patients with anti-neutrophil cytoplasmic antibody associated GN compared to that of 31 healthy living donors, indicating clinical relevance. Thus, our data characterize RORγt+ Tregs as anti-inflammatory mediators of GN and identify them as promising target for Treg directed therapies.


Asunto(s)
Glomerulonefritis , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares , Ratones , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Linfocitos T Reguladores , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Riñón/patología , Ratones Noqueados , Células Th17 , Receptores CCR6/genética , Receptores CCR6/metabolismo
9.
Inflammation ; 46(4): 1290-1304, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36939977

RESUMEN

Inflammatory responses after intracerebral hemorrhage (ICH) contribute to severe secondary brain injury, leading to poor clinical outcomes. However, the responsible genes for effective anti-inflammation treatment in ICH remain poorly elucidated. The differentially expressed genes (DEGs) of human ICH were explored by online GEO2R. Go and KEGG were used to explore the biological function of DEGs. Protein-protein interactions (PPI) were built in the String database. Critical modules of PPI were identified by a molecular complex detection algorithm (MCODE). Cytohubba was used to determine the hub genes. The mRNA-miRNA interaction network was built in the miRWalk database. The rat ICH model was applied to validate the key genes. A total of 776 DEGs were identified in ICH. Go and KEGG analyses indicated that DEGs were mainly involved in neutrophil activation and the TNF signaling pathway. GSEA analysis presented that DEGs were significantly enriched in TNF signaling and inflammatory response. PPI network was constructed in the 48 differentially expressed inflammatory response-related genes. The critical module of the PPI network was constructed by 7 MCODE genes and functioned as the inflammatory response. The top 10 hub genes with the highest degrees were identified in the inflammatory response after ICH. CCL20 was confirmed as a key gene and mainly expressed in neurons in the rat ICH model. The regulatory network between CCL20 and miR-766 was built, and the miR-766 decrease was confirmed in a human ICH dataset. CCL20 is a key biomarker of inflammatory response after intracerebral hemorrhage, providing a potential target for inflammatory intervention in ICH.


Asunto(s)
Perfilación de la Expresión Génica , MicroARNs , Humanos , Animales , Ratas , Redes Reguladoras de Genes , Biomarcadores , MicroARNs/genética , Hemorragia Cerebral/genética , Biología Computacional , Quimiocina CCL20/genética
10.
Mol Cell Endocrinol ; 563: 111855, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36646303

RESUMEN

The pro-inflammatory cytokine, chemokine (C-C motif) ligand 20 (CCL20), is emerging as a therapeutic target for immune-based therapies. Cooperative regulation of CCL20 by glucocorticoids and progestins used in endocrine therapy and pro-inflammatory mediators could modulate immune function and affect disease outcomes. We show that glucocorticoids as well as medroxyprogesterone acetate (MPA), the progestin widely used in injectable contraception in sub-Saharan Africa, cooperate with pro-inflammatory mediators to upregulate CCL20 protein and/or mRNA in human peripheral blood mononuclear cells (PBMCs) and human cervical cell lines. Changes in CCL20 mRNA levels were shown to be synergistic, as assessed by Chou analysis, cell- and gene-specific and to involve transcriptional regulation, with a requirement for a nuclear factor kappa B (NF-κB) site and glucocorticoid receptor (GR) involvement. The novel results suggest a mechanism whereby MPA, like glucocorticoids, may impact inflammation both systemically and in the genital tract in patients using MPA and/or glucocorticoid therapy.


Asunto(s)
Glucocorticoides , Acetato de Medroxiprogesterona , Humanos , Acetato de Medroxiprogesterona/farmacología , Glucocorticoides/farmacología , Glucocorticoides/metabolismo , Leucocitos Mononucleares/metabolismo , Progestinas/metabolismo , Receptores de Glucocorticoides/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo
11.
Exp Dermatol ; 32(4): 379-391, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36398464

RESUMEN

Chemokines are a group of small proteins that induce chemoattraction and inflammation and contribute to the differentiation and homeostasis of various cell types. Here we explored the role of chemokines, extracellular matrix production, and myofibroblast differentiation in self-assembled skin equivalents (SASE), a three-dimensional (3D) skin-equivalent tissue model. We found that the expression of three chemokines, C-C motif chemokine ligand (CCL) 20, C-X-C motif chemokine ligand (CXCL) 5, and CXCL8, increased with differentiation to myofibroblasts. Addition of recombinant CCL20 to human skin fibroblast induced collagen Type I alpha 2 gene expression, but did not affect the expression of alpha smooth muscle actin expression. Conversely, siRNA gene knockdown of CCL20 effectively inhibited the expression of collagen Type I gene and protein. Furthermore, when the CCL20 gene in fibroblasts was knocked down in SASE, collagen Type I synthesis and stromal thickness were decreased. Taken together, these results have indicated the utility of SASE in understanding how cytokines such as CCL20 positively regulate extracellular matrix proteins such as collagen Type I production during myofibroblast differentiation in 3D tissues that mimic human skin.


Asunto(s)
Quimiocinas CC , Colágeno Tipo I , Humanos , Quimiocinas CC/metabolismo , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Ligandos , Piel/metabolismo , Fibroblastos/metabolismo , Miofibroblastos/metabolismo , Diferenciación Celular/fisiología , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Células Cultivadas , Actinas/metabolismo
12.
Cancer Sci ; 114(4): 1479-1490, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36479732

RESUMEN

The suppression of androgen receptor (AR) expression exacerbates the migration potential of prostate cancer. This study identified a previously unrecognized regulation of the AR-controlled pathway that promotes migration potential in prostate cancer cells. Prostate cancer cells that pass through a transwell membrane (mig cells) have a higher migration potential with a decreased AR expression than parental cells. In this study, we aimed to elucidate the mechanism of migration enhancement associated with the suppression of AR signaling. Expression of C-C motif ligand 20 (CCL20) is upregulated in mig cells, unlike in the parental cells. Knockdown of AR with small interfering RNA (siAR) in LNCaP and C4-2B cells increased CCL20 secretion and enhanced the migration of cancer cells. Mig cells, CCL20-treated cells, and siAR cells promoted cell migration with an enhancement of AKT phosphorylation and Snail expression, while the addition of a C-C chemokine receptor 6 (CCR6, the specific receptor of CCL20) inhibitor, anti-CCL20 antibody, and AKT inhibitor suppressed the activation of AKT and Snail. With 59 samples of prostate cancer tissue, CCL20 secretion was profuse in metastatic cases despite low AR expression levels. Snail expression was associated with the expression of CCL20 and CCR6. A xenograft study showed that the anti-CCL20 antibody significantly inhibited Snail expression, thereby suggesting a new therapeutic approach for castration-resistant prostate cancer with the inhibition of the axis between CCL20 and CCR6.


Asunto(s)
Neoplasias de la Próstata , Proteínas Proto-Oncogénicas c-akt , Masculino , Humanos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Receptores Androgénicos , Transducción de Señal , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Línea Celular Tumoral , Receptores CCR6/genética , Proliferación Celular
13.
Cancer Immunol Immunother ; 72(5): 1089-1102, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36326893

RESUMEN

BACKGROUND:  Radioresistance of HNSCCs remains a major challenge for effective tumor control. Combined radiotherapy (RT) and immunotherapy (IT) treatment improved survival for a subset of patients with inflamed tumors or tumors susceptible to RT-induced inflammation. To overcome radioresistance and improve treatment outcomes, an understanding of factors that suppress anti-tumor immunity is necessary. In this regard, regulatory T cells (Tregs) are critical mediators of immune suppression in HNSCCs. In this study, we investigated how radiation modulates Treg infiltration in tumors through the chemokine CCL20. We hypothesized that radiation induces CCL20 secretion resulting in Treg infiltration and suppression of anti-tumor immunity. METHODS:  Human and mouse HNSCC cell lines with different immune phenotypes were irradiated at doses of 2 or 10 Gy. Conditioned media, RNA and protein were collected for assessment of CCL20. qPCR was used to determine CCL20 gene expression. In vivo, MOC2 cells were implanted into the buccal cavity of mice and the effect of neutralizing CCL20 antibody was determined alone and in combination with RT. Blood samples were collected before and after RT for analysis of CCL20. Tumor samples were analyzed by flow cytometry to determine immune infiltrates, including CD8 T cells and Tregs. Mass-spectrometry was performed to analyze proteomic changes in the tumor microenvironment after anti-CCL20 treatment. RESULTS:  Cal27 and MOC2 HNSCCs had a gene signature associated with Treg infiltration, whereas SCC9 and MOC1 tumors displayed a gene signature associated with an inflamed TME. In vitro, tumor irradiation at 10 Gy significantly induced CCL20 in Cal27 and MOC2 cells relative to control. The increase in CCL20 was associated with increased Treg migration. Neutralization of CCL20 reversed radiation-induced migration of Treg cells in vitro and decreased intratumoral Tregs in vivo. Furthermore, inhibition of CCL20 resulted in a significant decrease in tumor growth compared to control in MOC2 tumors. This effect was further enhanced after combination with RT compared to either treatment alone. CONCLUSION:  Our results suggest that radiation promotes CCL20 secretion by tumor cells which is responsible for the attraction of Tregs. Inhibition of the CCR6-CCL20 axis prevents infiltration of Tregs in tumors and suppresses tumor growth resulting in improved response to radiation.


Asunto(s)
Neoplasias de Cabeza y Cuello , Linfocitos T Reguladores , Humanos , Carcinoma de Células Escamosas de Cabeza y Cuello/radioterapia , Carcinoma de Células Escamosas de Cabeza y Cuello/metabolismo , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Proteómica , Neoplasias de Cabeza y Cuello/radioterapia , Neoplasias de Cabeza y Cuello/metabolismo , Microambiente Tumoral , Receptores CCR6/genética , Receptores CCR6/metabolismo
14.
J Proteome Res ; 21(12): 2998-3006, 2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36301636

RESUMEN

Inflammation is generally thought to be involved in the occurrence and development of preeclampsia (PE), but its specific effect on PE remains unclear. In the present study, the expression levels of 92 inflammation-related proteins were measured in the late pregnancy maternal plasma from patients with PE (n = 15) and normal pregnant controls (n = 15) using the Olink inflammation panel based on the highly sensitive and specific proximity extension assay technology. A total of 28 inflammation-related markers differed between the PE and control groups. Among them, fibroblast growth factor 21 (FGF-21) and cysteine-cysteine motif chemokine ligand 20 (CCL20) had the largest fold changes. We further validated the levels of CCL20 in the late (43 with PE and 44 controls) and early (37 with PE and 37 controls) pregnancy maternal plasma using enzyme-linked immunosorbent assay (ELISA). To the best of our knowledge, for the first time, CCL20 was found to be upregulated in the late and early pregnancy plasma of patients with PE and had an area under the curve (AUC) of 0.753 and 0.668, respectively. In conclusion, patients with PE had increased levels of most inflammatory markers, and CCL20 might be a novel potential predictive and diagnostic biomarker for PE.


Asunto(s)
Preeclampsia , Femenino , Embarazo , Humanos , Preeclampsia/diagnóstico , Proteómica , Ligandos , Cisteína , Biomarcadores , Quimiocinas , Inflamación , Estudios de Casos y Controles , Quimiocina CCL20/genética
15.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012347

RESUMEN

Tumor necrosis factor (TNF)-α is involved in the pathogenesis of cardiac injury, inflammation, and apoptosis. It is a crucial pro-inflammatory cytokine in many heart disorders, including chronic heart failure and ischemic heart disease, contributing to cardiac remodeling and dysfunction. The implication of TNF-α in inflammatory responses in the heart has been indicated to be mediated through the induction of C-C Motif Chemokine Ligand 20 (CCL20). However, the detailed mechanisms of TNF-α-induced CCL20 upregulation in human cardiac fibroblasts (HCFs) are not completely defined. We demonstrated that in HCFs, TNF-α induced CCL20 mRNA expression and promoter activity leading to an increase in the secretion of CCL20. TNF-α-mediated responses were attenuated by pretreatment with TNFR1 antibody, the inhibitor of epidermal growth factor receptor (EGFR) (AG1478), p38 mitogen-activated protein kinase (MAPK) (p38 inhibitor VIII, p38i VIII), c-Jun amino N-terminal kinase (JNK)1/2 (SP600125), nuclear factor kappaB (NF-κB) (helenalin), or forkhead box O (FoxO)1 (AS1841856) and transfection with siRNA of TNFR1, EGFR, p38α, JNK2, p65, or FoxO1. Moreover, TNF-α markedly induced EGFR, p38 MAPK, JNK1/2, FoxO1, and NF-κB p65 phosphorylation which was inhibited by their respective inhibitors in these cells. In addition, TNF-α-enhanced binding of FoxO1 or p65 to the CCL20 promoter was inhibited by p38i VIII, SP600125, and AS1841856, or helenalin, respectively. Accordingly, in HCFs, our findings are the first to clarify that TNF-α-induced CCL20 secretion is mediated through a TNFR1-dependent EGFR/p38 MAPK and JNK1/2/FoxO1 or NF-κB cascade. We demonstrated that TNFR1-derived EGFR transactivation is involved in the TNF-α-induced responses in these cells. Understanding the regulation of CCL20 expression by TNF-α on HCFs may provide a potential therapeutic strategy in cardiac inflammatory disorders.


Asunto(s)
Quimiocina CCL20 , FN-kappa B , Receptores Tipo I de Factores de Necrosis Tumoral , Factor de Necrosis Tumoral alfa , Células Cultivadas , Quimiocina CCL20/genética , Receptores ErbB/genética , Fibroblastos/metabolismo , Proteína Forkhead Box O1/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Proteína Quinasa 8 Activada por Mitógenos/genética , FN-kappa B/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/genética , Factor de Necrosis Tumoral alfa/farmacología , Factor de Necrosis Tumoral alfa/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
16.
Int J Biol Sci ; 18(11): 4275-4288, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35864953

RESUMEN

C-C motif chemokine ligand 20 (CCL20) participates in multiple oncogenic processes, but its role in lung adenocarcinoma (LUAD) is unclear. Herein, we explored the mechanism by which CCL20 works in LUAD progression. We performed bioinformatical analyses based on the complete transcriptome sequencing data from 1544 LUAD cases in 4 independent cohorts to evaluate signaling pathways regulated by CCL20. We established A549 and H358 cell lines with CCL20 knockdown to explore how CCL20 promotes tumor progression in vitro and in vivo experiments. Using another independent cohort of 348 urothelial carcinoma patients treated with the anti-PD-L1 agent (atezolizumab), we explored the synergistic effect of CCL20 and TGF-ß on immunotherapy efficacy. High CCL20 expression is a poor prognostic marker for LUAD patients, and is associated with enhanced epithelial-mesenchymal transition (EMT), inflammatory response, and activated TNF pathway in LUAD. CCL20 knockdown restrained the EMT process and cell proliferation of LUAD cells in vitro and in vivo. Low CCL20 expression blocked the detrimental effects of high TGF-ß on survival and effectively improved patients' response to anti-PD-L1 therapy. Collectively, we revealed the underlying mechanisms by which CCL20 promotes LUAD progression based on the largest sample size. The synergistic inhibitory effect of CCL20 and TGF-ß on immune-checkpoint blockade therapy efficacy provides new views of immunotherapy resistance.


Asunto(s)
Adenocarcinoma del Pulmón , Adenocarcinoma , Carcinoma de Células Transicionales , Neoplasias Pulmonares , Neoplasias de la Vejiga Urinaria , Adenocarcinoma/genética , Adenocarcinoma del Pulmón/tratamiento farmacológico , Adenocarcinoma del Pulmón/genética , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Quimiocina CCL20/farmacología , Quimiocinas/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Ligandos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Factor de Crecimiento Transformador beta/metabolismo
17.
Stem Cell Res Ther ; 13(1): 294, 2022 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-35841069

RESUMEN

BACKGROUND: Endometriosis (EMs) is a common benign gynecological disease that affects approximately 10% of females of reproductive age. Endometriosis ectopic lesions could recruit macrophages, which in turn facilitates endometriosis progression. Several studies have indicated that CCL20 derived from macrophages activates the expression of CCR6 in several cells and induces cell proliferation and migration. However, the function of the CCL20/CCR6 axis in the interactions between macrophages and endometriotic stromal cells (ESCs) in EMs has yet to be elucidated. METHODS: Ectopic and normal endometrial tissues were collected from 35 ovarian endometriosis patients and 21 control participants for immunohistochemical staining. It was confirmed that macrophages secreted CCL20 to promote CCR6 activation of ESCs during co-culture by ELISA, qRT-PCR and western blot analysis. CCK8 and Edu assays were used to detect cell proliferation, and wound healing and Transwell assay were used to detect cell migration. Autophagic flux was detected by measuring the protein expression levels of LC3 and P62by western blot and analyzing the red/yellow puncta after ESCs were transfected with mRFP-GFP-LC3 double fluorescence adenovirus (Ad-LC3). Lysosomal function was tested by quantifying the fluorescent intensities of Lyso-tracker and Gal3 and activity of acid phosphatase. In addition, co-IP experiments verified the binding relationship between CCR6 and TFEB. Finally, the suppressive effect of CCL20-NAb on endometriosis lesions in vivo was demonstrated in mice models. RESULTS: We demonstrated that macrophages secreted CCL20 to promote CCR6 activation of ESCs during co-culture, which further induced the proliferation and migration of ESCs. We observed that the CCL20/CCR6 axis impaired lysosomal function and then blocked the autolysosome degradation process of autophagic flux in ESCs. The combination of CCR6 and TFEB to inhibit TFEB nuclear translocation mediates the role of the CCL20/CCR6 axis in the above process. We also found that co-culture with ESCs upregulated the production and secretion of CCL20 by macrophages. The suppression effect of CCL20-NAb on endometriosis lesions in vivo was demonstrated in mice models. CONCLUSIONS: Our data indicate that macrophages block TFEB-mediated autolysosome degradation process of autophagic flux in ESCs via the CCL20/CCR6 axis, thereby promoting ESC proliferation and migration.


Asunto(s)
Quimiocina CCL20 , Endometriosis , Receptores CCR6 , Animales , Proliferación Celular , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Endometriosis/genética , Endometriosis/metabolismo , Femenino , Humanos , Macrófagos/metabolismo , Ratones , Receptores CCR6/genética , Receptores CCR6/metabolismo , Transducción de Señal , Células del Estroma/metabolismo
18.
Infect Immun ; 90(3): e0058621, 2022 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-35099275

RESUMEN

The mechanisms through which oral commensal bacteria mitigates uncontrolled inflammatory responses of the oral mucosa remain unknown. Here, we show that representative oral bacterial species normally associated with oral health [S. gordonii (Sg), V. parvula (Vp), A. naeslundii (An), C. sputigena (Cs), and N. mucosa (Nm)] enhanced differential chemokine responses in oral epithelial cells (OECs), with some bacteria (An, Vp, and Nm) inducing higher chemokine levels (CXCL1, CXCL8) than others (Sg, Cs). Although all bacterial species (except Cs) increased CCL20 mRNA levels consistent with protein elevations in cell lysates, only An, Vp, and Nm induced higher CCL20 secretion, similar to the effect of the oral pathogen F. nucleatum (Fn). In contrast, most CCL20 remained associated with OECs exposed to Sg and negligible amounts released into the cell supernatants. Consistently, Sg attenuated An-induced CCL20. MiR-4516 and miR-663a were identified as Sg-specifically induced miRNAs modulating validated targets of chemokine-associated pathways. Cell transfection with miR-4516 and miR-663a decreased An- and Fn-induced CCL20. MiRNA upregulation and attenuation of An-induced CCL20 by Sg were reversed by catalase. Up-regulation of both miRNAs was specifically enhanced by oral streptococci H2O2-producers. These findings suggest that CCL20 levels produced by OECs in response to bacterial challenge are regulated by Sg-induced miR-4516 and miR-663a in a mechanism that involves hydrogen peroxide. This type of molecular mechanism could partly explain the central role of specific oral streptococcal species in balancing inflammatory and antimicrobial responses given the critical role of CCL20 in innate (antimicrobial) and adaptive immunity (modulates Th17 responses).


Asunto(s)
MicroARNs , Streptococcus gordonii , Bacterias/genética , Quimiocina CCL20/genética , Quimiocina CCL20/metabolismo , Células Epiteliales/microbiología , Humanos , Peróxido de Hidrógeno/metabolismo , Peróxido de Hidrógeno/farmacología , MicroARNs/genética , MicroARNs/metabolismo , Mucosa Bucal
19.
Pathol Res Pract ; 228: 153683, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34798484

RESUMEN

Chemokines have distinct effects on tumor progression by affecting cancer immunity and tumorigenesis. However, the characteristic chemokine profiles and their roles in immune cell recruitment and cancer cell biology are not entirely understood in esophageal cancer. Here, we scrutinized chemokine's expression profiles in independent esophageal cancer cohorts and identified the elevated CCL20 as a risk factor to predict patients' prognosis regardless of histology subtypes. Enhanced CCL20 expression was also associated with the acquisition of metastatic potential. Mechanistically, the upregulation of CCL20 in tumor cells was associated with promoter hypomethylation. Furthermore, by analyzing single-cell RNA sequencing data of a mouse model mimicking human ESCC development, we observed an imbalance among CD4+ T subtypes in the tumor microenvironment, namely Ccr6+ Th17 and Treg cells infiltration alongside the elevated Ccl20 expression in abnormal epithelial cells during the tumorigenic process. Together, these results reveal that hypomethylation-induced CCL20 promotes esophageal cancer progression and immune disorder. Targeting CCL20 might be a promising therapeutic approach in esophageal cancer.


Asunto(s)
Quimiocina CCL20/biosíntesis , Neoplasias Esofágicas/inmunología , Neoplasias Esofágicas/patología , Carcinoma de Células Escamosas de Esófago/inmunología , Carcinoma de Células Escamosas de Esófago/patología , Animales , Quimiocina CCL20/genética , Estudios de Cohortes , Metilación de ADN , Progresión de la Enfermedad , Regulación de la Expresión Génica/fisiología , Humanos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Microambiente Tumoral/inmunología , Regulación hacia Arriba
20.
Cancer Cell ; 39(11): 1464-1478.e8, 2021 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-34719426

RESUMEN

Bone metastases are devastating complications of cancer. They are particularly common in prostate cancer (PCa), represent incurable disease, and are refractory to immunotherapy. We seek to define distinct features of the bone marrow (BM) microenvironment by analyzing single cells from bone metastatic prostate tumors, involved BM, uninvolved BM, and BM from cancer-free, orthopedic patients, and healthy individuals. Metastatic PCa is associated with multifaceted immune distortion, specifically exhaustion of distinct T cell subsets, appearance of macrophages with states specific to PCa bone metastases. The chemokine CCL20 is notably overexpressed by myeloid cells, as is its cognate CCR6 receptor on T cells. Disruption of the CCL20-CCR6 axis in mice with syngeneic PCa bone metastases restores T cell reactivity and significantly prolongs animal survival. Comparative high-resolution analysis of PCa bone metastases shows a targeted approach for relieving local immunosuppression for therapeutic effect.


Asunto(s)
Neoplasias Óseas/patología , Neoplasias Óseas/secundario , Quimiocina CCL20/genética , Neoplasias de la Próstata/patología , Receptores CCR6/genética , Regulación hacia Arriba , Animales , Neoplasias Óseas/genética , Neoplasias Óseas/inmunología , Estudios de Casos y Controles , Línea Celular Tumoral , Quimiocina CCL20/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Macrófagos/inmunología , Masculino , Ratones , Células Mieloides/inmunología , Neoplasias de la Próstata/genética , Neoplasias de la Próstata/inmunología , Receptores CCR6/metabolismo , Análisis de la Célula Individual , Linfocitos T/inmunología , Microambiente Tumoral
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...