Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(35): 21308-21318, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817551

RESUMEN

The MEKK1 protein is a pivotal kinase activator of responses to cellular stress. Activation of MEKK1 can trigger various responses, including mitogen-activated protein (MAP) kinases, NF-κB signaling, or cell migration. Notably, MEKK1 activity is triggered by microtubule-targeting chemotherapies, among other stressors. Here we show that MEKK1 contains a previously unidentified tumor overexpressed gene (TOG) domain. The MEKK1 TOG domain binds to tubulin heterodimers-a canonical function of TOG domains-but is unusual in that it appears alone rather than as part of a multi-TOG array, and has structural features distinct from previously characterized TOG domains. MEKK1 TOG demonstrates a clear preference for binding curved tubulin heterodimers, which exist in soluble tubulin and at sites of microtubule polymerization and depolymerization. Mutations disrupting tubulin binding decrease microtubule density at the leading edge of polarized cells, suggesting that tubulin binding may play a role in MEKK1 activity at the cellular periphery. We also show that MEKK1 mutations at the tubulin-binding interface of the TOG domain recur in patient-derived tumor sequences, suggesting selective enrichment of tumor cells with disrupted MEKK1-microtubule association. Together, these findings provide a direct link between the MEKK1 protein and tubulin, which is likely to be relevant to cancer cell migration and response to microtubule-modulating therapies.


Asunto(s)
Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Tubulina (Proteína)/metabolismo , Humanos , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/genética , Quinasa 1 de Quinasa de Quinasa MAP/ultraestructura , Neoplasias/genética , Dominios Proteicos
2.
Hum Mol Genet ; 28(10): 1620-1628, 2019 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-30608580

RESUMEN

Missense mutations in the gene, MAP3K1, are a common cause of 46,XY gonadal dysgenesis, accounting for 15-20% of cases [Ostrer, 2014, Disorders of sex development (DSDs): an update. J. Clin. Endocrinol. Metab., 99, 1503-1509]. Functional studies demonstrated that all of these mutations cause a protein gain-of-function that alters co-factor binding and increases phosphorylation of the downstream MAP kinase pathway targets, MAPK11, MAP3K and MAPK1. This dysregulation of the MAP kinase pathway results in increased CTNNB1, increased expression of WNT4 and FOXL2 and decreased expression of SRY and SOX9. Unique and recurrent pathogenic mutations cluster in three semi-contiguous domains outside the kinase region of the protein, a newly identified N-terminal domain that shares homology with the Guanine Exchange Factor (residues Met164 to Glu231), a Plant HomeoDomain (residues Met442 to Trp495) and an ARMadillo repeat domain (residues Met566 to Glu862). Despite the presence of the mutation clusters and clinical data, there exists a dearth of mechanistic insights behind the development imbalance. In this paper, we use structural modeling and functional data of these mutations to understand alterations of the MAP3K1 protein and the effects on protein folding, binding and downstream target phosphorylation. We show that these mutations have differential effects on protein binding depending on the domains in which they occur. These mutations increase the binding of the RHOA, MAP3K4 and FRAT1 proteins and generally decrease the binding of RAC1. Thus, pathologies in MAP3K1 disrupt the balance between the pro-kinase activities of the RHOA and MAP3K4 binding partners and the inhibitory activity of RAC1.


Asunto(s)
Trastornos del Desarrollo Sexual/genética , Quinasa 1 de Quinasa de Quinasa MAP/genética , MAP Quinasa Quinasa Quinasa 4/genética , Proteína de Unión al GTP rac1/genética , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas del Dominio Armadillo/genética , Trastorno del Desarrollo Sexual 46,XY , Trastornos del Desarrollo Sexual/patología , Femenino , Proteína Forkhead Box L2/genética , Regulación de la Expresión Génica/genética , Disgenesia Gonadal 46 XY/genética , Disgenesia Gonadal 46 XY/patología , Humanos , Quinasa 1 de Quinasa de Quinasa MAP/química , MAP Quinasa Quinasa Quinasa 4/química , Sistema de Señalización de MAP Quinasas/genética , Masculino , Mutación Missense/genética , Unión Proteica/genética , Proteínas Proto-Oncogénicas/genética , Proteína de la Región Y Determinante del Sexo/genética , Proteína de Unión al GTP rac1/química , Proteína de Unión al GTP rhoA/química , Proteína de Unión al GTP rhoA/genética
3.
Cell Physiol Biochem ; 50(6): 2029-2045, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30415262

RESUMEN

BACKGROUND/AIMS: Triclosan (TCS), a broad-spectrum antibacterial and antifungal compound and an endocrine disruptor, has anti-androgenic properties and could adversely affect male reproduction and fertility. METHODS: To elucidate the underlying roles of miRNAs and the MAPK pathway in TCS-mediated repression of testicular steroidogenesis, Sprague-Dawley male rats were dosed daily with TCS for 31 days, and TM3 cells were exposed to TCS for 24 h after the pretreatments with the activator of JNK, Nur77 siRNA, or recombinant lentivirus vector for Nur77. Tissues and/or cells were analyzed by several techniques including transmission electron microscopy, lentivirus production, overexpression, gene silencing, luciferase reporter assay, chromatin immunoprecipitation, western blot, and real-time PCR. RESULTS: TCS caused histopathologic alterations in the testis and reduced plasma LH and testicular testosterone. TCS induced miR-6321 expression, which in turn depressed its target gene, Map3k1. The inhibition of Map3k1 subsequently inactivated its downstream JNK/c-Jun pathway. ChIP and qPCR assays confirmed that c-Jun directly bound to the Nur77 DNA promoter regions to regulate Nur77 expression. The knockdown and overexpression of Nur77 demonstrated that the JNK/c-Jun-mediated decline in the transcription and translation of Nur77 resulted in the depression of steroidogenic proteins including SRB1, StAR, and 3ß-HSD. Intriguingly, the protein expressions of 5α-Reductases (SRD5A1 and SRD5A2) were also downregulated after TCS exposure. CONCLUSION: Taken together, the miR-6321/Map3k1-regulated JNK/c-Jun/ Nur77 cascade contributes to TCS-caused suppression of testicular steroidogenesis, and the decrease in 5α-Reductase expressions may be the compensatory mechanism.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , MicroARNs/metabolismo , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/metabolismo , Testículo/efectos de los fármacos , Triclosán/farmacología , Regiones no Traducidas 3' , Animales , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Células Intersticiales del Testículo/citología , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/genética , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Masculino , Ratones , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/antagonistas & inhibidores , Miembro 1 del Grupo A de la Subfamilia 4 de Receptores Nucleares/genética , Regiones Promotoras Genéticas , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Ratas , Ratas Sprague-Dawley , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Testículo/metabolismo , Testículo/patología , Testosterona/sangre
4.
Protein Expr Purif ; 87(2): 87-99, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23147205

RESUMEN

The c-Jun N-terminal kinase (JNK) pathway forms part of the mitogen-activated protein kinase (MAPK) signaling pathways comprising a sequential three-tiered kinase cascade. Here, an upstream MAP3K (MEKK1) phosphorylates and activates a MAP2K (MKK4 and MKK7), which in turn phosphorylates and activates the MAPK, JNK. The C-terminal kinase domain of MEKK1 (MEKK-C) is constitutively active, while MKK4/7 and JNK are both activated by dual phosphorylation of S/Y, and T/Y residues within their activation loops, respectively. While improvements in the purification of large quantities of active JNKs have recently been made, inadequacies in their yield, purity, and the efficiency of their phosphorylation still exist. We describe a novel and robust method that further improves upon the purification of large yields of highly pure, phosphorylated JNK1ß1, which is most suitable for biochemical and biophysical characterization. Codon harmonization of the JNK1ß1 gene was used as a precautionary measure toward increasing the soluble overexpression of the kinase. While JNK1ß1 and its substrate ATF2 were both purified to >99% purity as GST fusion proteins using GSH-agarose affinity chromatography and each cleaved from GST using thrombin, constitutively-active MEKK-C and inactive MKK4 were separately expressed in E. coli as thioredoxin-His(6)-tagged proteins and purified using urea refolding and Ni(2+)-IMAC, respectively. Activation of JNK1ß1 was then achieved by successfully reconstituting the JNK MAPK activation cascade in vitro; MEKK-C was used to activate MKK4, which in turn was used to efficiently phosphorylate and activate large quantities of JNK1ß1. Activated JNK1ß1 was thereafter able to phosphorylate ATF2 with high catalytic efficiency.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/aislamiento & purificación , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , MAP Quinasa Quinasa Quinasa 4/metabolismo , Sistema de Señalización de MAP Quinasas , Factor de Transcripción Activador 2/química , Factor de Transcripción Activador 2/genética , Factor de Transcripción Activador 2/metabolismo , Cromatografía de Afinidad , Codón , Escherichia coli/genética , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/química , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/genética , MAP Quinasa Quinasa Quinasa 4/química , MAP Quinasa Quinasa Quinasa 4/genética , Modelos Moleculares , Fosforilación
5.
Biochem J ; 445(3): 431-9, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22582703

RESUMEN

MEKK1 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase kinase 1] is a MAP3K (MAPK kinase kinase) that regulates MAPK activation, and is the only known mammalian kinase that is also a ubiquitin ligase. MEKK1 contains a RING domain within its N-terminal regulatory region, and MEKK1 has been shown to ubiquitylate the AP-1 (activator protein 1) transcription factor protein c-Jun, but the mechanism by which MEKK1 interacts with c-Jun to induce ubiquitylation has not been defined. Proximal to the RING domain is a SWIM (SWI2/SNF2 and MuDR) domain of undetermined function. In the present study, we demonstrate that the MEKK1 SWIM domain, but not the RING domain, directly associates with the c-Jun DNA-binding domain, and that the SWIM domain is required for MEKK1-dependent c-Jun ubiquitylation. We further show that this MEKK1 SWIM-Jun interaction is specific, as SWIM domains from other proteins failed to bind c-Jun. We reveal that, although the Jun and Fos DNA-binding domains are highly conserved, the MEKK1 SWIM domain does not bind Fos. Finally, we identify the sequence unique to Jun proteins required for specific interaction with the MEKK1 SWIM domain. Therefore we propose that the MEKK1 SWIM domain represents a novel substrate-binding domain necessary for direct interaction between c-Jun and MEKK1 that promotes MEKK1-dependent c-Jun ubiquitylation.


Asunto(s)
Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Secuencia de Aminoácidos , Animales , Dominio Catalítico , Línea Celular , Supervivencia Celular , Activación Enzimática , Células HEK293 , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/química , Quinasa 1 de Quinasa de Quinasa MAP/genética , Sistema de Señalización de MAP Quinasas , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato , Ubiquitinación
6.
Nat Cell Biol ; 14(4): 409-15, 2012 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-22388889

RESUMEN

Chronic stress in the endoplasmic reticulum (ER) underlies many degenerative and metabolic diseases involving apoptosis of vital cells. A well-established example is autosomal dominant retinitis pigmentosa (ADRP), an age-related retinal degenerative disease caused by mutant rhodopsins. Similar mutant alleles of Drosophila Rhodopsin-1 also impose stress on the ER and cause age-related retinal degeneration in that organism. Well-characterized signalling responses to ER stress, referred to as the unfolded protein response (UPR), induce various ER quality control genes that can suppress such retinal degeneration. However, how cells activate cell death programs after chronic ER stress remains poorly understood. Here, we report the identification of a signalling pathway mediated by cdk5 and mekk1 required for ER-stress-induced apoptosis. Inactivation of these genes specifically suppressed apoptosis, without affecting other protective branches of the UPR. CDK5 phosphorylates MEKK1, and together, they activate the JNK pathway for apoptosis. Moreover, disruption of this pathway can delay the course of age-related retinal degeneration in a Drosophila model of ADRP. These findings establish a previously unrecognized branch of ER-stress response signalling involved in degenerative diseases.


Asunto(s)
Apoptosis , Aberraciones Cromosómicas , Quinasa 5 Dependiente de la Ciclina/metabolismo , Proteínas de Drosophila/metabolismo , Estrés del Retículo Endoplásmico , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/patología , Secuencia de Aminoácidos , Animales , Apoptosis/genética , Línea Celular , Células Cultivadas , Quinasa 5 Dependiente de la Ciclina/deficiencia , Modelos Animales de Enfermedad , Drosophila/metabolismo , Proteínas de Drosophila/deficiencia , Genes Dominantes , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/genética , Sistema de Señalización de MAP Quinasas , Datos de Secuencia Molecular , Retinitis Pigmentosa/metabolismo , Rodopsina/metabolismo , Transducción de Señal/genética , Factores de Tiempo
7.
PLoS One ; 6(2): e17310, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21364884

RESUMEN

MEKK1 is a mitogen-activated protein kinase kinase kinase (MAP3K) that activates the MAPK JNK and is required for microtubule inhibitor-induced apoptosis in B cells. Here, we find that apoptosis induced by actin disruption via cytochalasin D and by the protein phosphatase 1/2A inhibitor okadaic acid also requires MEKK1 activation. To elucidate the functional requirements for activation of the MEKK1-dependent apoptotic pathway, we created mutations within MEKK1. MEKK1-deficient cells were complemented with MEKK1 containing mutations in either the ubiquitin interacting motif (UIM), plant homeodomain (PHD), caspase cleavage site or the kinase domain at near endogenous levels of expression and tested for their sensitivity to each drug. We found that both the kinase activity and the PHD domain of MEKK1 are required for JNK activation and efficient induction of apoptosis by drugs causing cytoskeletal disruption. Furthermore, we discovered that modification of MEKK1 and its localization depends on the integrity of the PHD.


Asunto(s)
Apoptosis/genética , Citoesqueleto/fisiología , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/fisiología , Animales , Células Cultivadas , Pollos , Citoesqueleto/metabolismo , Citoesqueleto/patología , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Quinasa 1 de Quinasa de Quinasa MAP/genética , Ratones , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/fisiología , Mutación/fisiología , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Ratas
9.
Am J Hum Genet ; 87(6): 898-904, 2010 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-21129722

RESUMEN

Investigations of humans with disorders of sex development (DSDs) resulted in the discovery of many of the now-known mammalian sex-determining genes, including SRY, RSPO1, SOX9, NR5A1, WT1, NR0B1, and WNT4. Here, the locus for an autosomal sex-determining gene was mapped via linkage analysis in two families with 46,XY DSD to the long arm of chromosome 5 with a combined, multipoint parametric LOD score of 6.21. A splice-acceptor mutation (c.634-8T>A) in MAP3K1 segregated with the phenotype in the first family and disrupted RNA splicing. Mutations were demonstrated in the second family (p.Gly616Arg) and in two of 11 sporadic cases (p.Leu189Pro, p.Leu189Arg)-18% prevalence in this cohort of sporadic cases. In cultured primary lymphoblastoid cells from family 1 and the two sporadic cases, these mutations altered the phosphorylation of the downstream targets, p38 and ERK1/2, and enhanced binding of RHOA to the MAP3K1 complex. Map3k1 within the syntenic region was expressed in the embryonic mouse gonad prior to, and after, sex determination. Thus, mutations in MAP3K1 that result in 46,XY DSD with partial or complete gonadal dysgenesis implicate this pathway in normal human sex determination.


Asunto(s)
Trastorno del Desarrollo Sexual 46,XY/genética , Quinasa 1 de Quinasa de Quinasa MAP/genética , Mutación , Transducción de Señal , Testículo/embriología , Secuencia de Aminoácidos , Animales , Femenino , Humanos , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Masculino , Linaje , Fosforilación , Homología de Secuencia de Aminoácido
10.
Biochem J ; 381(Pt 3): 675-83, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15139849

RESUMEN

Many intracellular signalling events are accompanied by generation of reactive oxygen species in cells. Oxidation of protein thiol groups is an emerging theme in signal-transduction research. We have found that MEKK1 [MAPK (mitogen-activated protein kinase)/ERK (extracellular-signal-regulated kinase) kinase kinase 1], an upstream activator of the SAPK/JNK (stress-activated protein kinase/c-Jun N-terminal kinase) pathway, is directly inhibited by cysteine alkylation using NEM (N-ethylmaleimide). The related kinase, ASK1 (apoptosis signal-regulating kinase 1), was not inhibited, but was instead activated by NEM. Inhibition of MEKK1 requires a single unique cysteine residue (Cys1238) in the ATP-binding domain of MEKK1. Oxidative stress induced by menadione (2-methyl-1,4-naphthoquinone) also inhibited MEKK1, but activated ASK1, in cells. MEKK1 inhibition by menadione also required Cys1238. Oxidant-inhibited MEKK1 was re-activated by dithiothreitol and glutathione, supporting reversible cysteine oxidation as a mechanism. Using various chemical probes, we excluded modification by S-nitrosylation or oxidation of cysteine to sulphenic acid. Oxidant-inhibited MEKK1 migrated normally on non-reducing gels, excluding the possibility of intra- or inter-molecular disulphide bond formation. MEKK1 was inhibited by glutathionylation in vitro, and MEKK1 isolated from menadione-treated cells was shown by MS to be modified by glutathione on Cys1238. Our results support a model whereby the redox environment within the cell selectively regulates stress signalling through MEKK1 versus ASK1, and may thereby participate in the induction of apoptosis by oxidative stress.


Asunto(s)
Adenosina Trifosfato/metabolismo , Glutatión/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/antagonistas & inhibidores , Estrés Oxidativo/fisiología , Péptidos/metabolismo , Alquilación , Secuencia de Aminoácidos/genética , Secuencia de Aminoácidos/fisiología , Sustitución de Aminoácidos , Sitios de Unión/fisiología , Dominio Catalítico/efectos de los fármacos , Línea Celular Tumoral , Cisteína/metabolismo , Ditiotreitol/farmacología , Inhibidores Enzimáticos/farmacología , Etilmaleimida/farmacología , Humanos , Ganglios Linfáticos/enzimología , Ganglios Linfáticos/patología , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , Quinasa 1 de Quinasa de Quinasa MAP/fisiología , Masculino , Datos de Secuencia Molecular , Mutación/fisiología , Oxidantes/antagonistas & inhibidores , Oxidantes/farmacología , Oxidación-Reducción , Estrés Oxidativo/efectos de los fármacos , Péptidos/química , Péptidos/fisiología , Neoplasias de la Próstata/enzimología , Neoplasias de la Próstata/patología , Estructura Terciaria de Proteína , Valina/metabolismo
11.
Biochem Cell Biol ; 82(6): 658-63, 2004 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-15674433

RESUMEN

Mitogen-activated protein kinase (MAPK) pathways are activated by a plethora of stimuli. The literature is filled with papers describing the activation of different MAPKs by almost any stimulus or insult imaginable to cells. In this review, we use signal transduction wiring diagrams to illustrate putative upstream regulators for the MAPK kinase kinases, MEKK1, 2, and 3. Targeted gene disruption of MEKK1, 2, or 3 defined phenotypes for each MEKK associated with loss of specific MAPK regulation. Genetic analysis of MEKK function clearly defines specific components of the wiring diagram that require MEKK1, 2, or 3 for physiological responses. We propose that signal transduction network wiring diagrams are valuable tools for hypothesis building and filtering physiologically relevant phenotypic responses from less connected protein relations in the regulation of MAPK pathways.


Asunto(s)
Quinasa 1 de Quinasa de Quinasa MAP/metabolismo , MAP Quinasa Quinasa Quinasa 2/metabolismo , MAP Quinasa Quinasa Quinasa 3/metabolismo , Sistema de Señalización de MAP Quinasas , Animales , Quinasa 1 de Quinasa de Quinasa MAP/química , Quinasa 1 de Quinasa de Quinasa MAP/genética , MAP Quinasa Quinasa Quinasa 2/química , MAP Quinasa Quinasa Quinasa 2/genética , MAP Quinasa Quinasa Quinasa 3/química , MAP Quinasa Quinasa Quinasa 3/genética , Ratones , Ratones Noqueados , Estructura Terciaria de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...