Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.690
Filtrar
1.
Sci Rep ; 14(1): 10582, 2024 05 08.
Artículo en Inglés | MEDLINE | ID: mdl-38719932

RESUMEN

Thromboembolic events are complications in cancer patients and hypercoagulability has been linked to the tissue factor (TF) pathway, making this an attractive target. Here, we investigated the effects of chemotherapeutics and CDK inhibitors (CDKI) abemaciclib/palbociclib (CDK4/6), THZ-1 (CDK7/12/13), and dinaciclib (CDK1/2/5/9) alone and in combination regimens on TF abundance and coagulation. The human colorectal cancer (CRC) cell line HROC173 was treated with 5-FU or gemcitabine to stimulate TF expression. TF+ cells were sorted, recultured, and re-analyzed. The effect of treatment alone or in combination was assessed by functional assays. Low-dose chemotherapy induced a hypercoagulable state and significantly upregulated TF, even after reculture without treatment. Cells exhibited characteristics of epithelial-mesenchymal transition, including high expression of vimentin and mucin. Dinaciclib and THZ-1 also upregulated TF, while abemaciclib and palbociclib downregulated it. Similar results were observed in coagulation assays. The same anticoagulant activity of abemaciclib was seen after incubation with peripheral immune cells from healthy donors and CRC patients. Abemaciclib reversed 5-FU-induced TF upregulation and prolonged clotting times in second-line treatment. Effects were independent of cytotoxicity, senescence, and p27kip1 induction. TF-antibody blocking experiments confirmed the importance of TF in plasma coagulation, with Factor XII playing a minor role. Short-term abemaciclib counteracts 5-FU-induced hypercoagulation and eventually even prevents thromboembolic events.


Asunto(s)
Neoplasias del Colon , Quinasas Ciclina-Dependientes , Fluorouracilo , Tromboplastina , Regulación hacia Arriba , Humanos , Tromboplastina/metabolismo , Tromboplastina/genética , Línea Celular Tumoral , Fluorouracilo/farmacología , Neoplasias del Colon/metabolismo , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/patología , Regulación hacia Arriba/efectos de los fármacos , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Aminopiridinas/farmacología , Bencimidazoles/farmacología , Compuestos de Piridinio/farmacología , Óxidos N-Cíclicos/farmacología , Indolizinas/farmacología , Transición Epitelial-Mesenquimal/efectos de los fármacos
2.
Clin Transl Med ; 14(5): e1678, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38736108

RESUMEN

BACKGROUND: Cyclin-dependent kinase 12 (CDK12)-deficient prostate cancer defines a subtype of castration-resistant prostate cancer (CRPC) with a poor prognosis. Current therapy, including PARP inhibitors, shows minimal treatment efficacy for this subtype of CRPC, and the underlying mechanism remains elusive. METHODS: Based on bioinformatics analysis, we evaluated the relationship between CDK12 deficiency and prostate cancer patient's prognosis and treatment resistance. Furthermore, we used CRISPR-Cas9 technology and mass spectrometry-based metabolomic profiling to reveal the metabolic characteristics of CDK12-deficient CRPC. To elucidate the specific mechanisms of CDK12 deficiency-mediated CRPC metabolic reprogramming, we utilized cell RNA-seq profiling and other molecular biology techniques, including cellular reactive oxygen species probes, mitochondrial function assays, ChIP-qPCR and RNA stability analyses, to clarify the role of CDK12 in regulating mitochondrial function and its contribution to ferroptosis. Finally, through in vitro drug sensitivity testing and in vivo experiments in mice, we identified the therapeutic effects of the electron transport chain (ETC) inhibitor IACS-010759 on CDK12-deficient CRPC. RESULTS: CDK12-deficient prostate cancers reprogramme cellular energy metabolism to support their aggressive progression. In particular, CDK12 deficiency enhanced the mitochondrial respiratory chain for electronic transfer and ATP synthesis to create a ferroptosis potential in CRPC cells. However, CDK12 deficiency downregulated ACSL4 expression, which counteracts the lipid oxidation stress, leading to the escape of CRPC cells from ferroptosis. Furthermore, targeting the ETC substantially inhibited the proliferation of CDK12-deficient CRPC cells in vitro and in vivo, suggesting a potential new target for the therapy of CDK12-deficient prostate cancer. CONCLUSIONS: Our findings show that energy and lipid metabolism in CDK12-deficient CRPC work together to drive CRPC progression and provide a metabolic insight into the worse prognosis of CDK12-deficient prostate cancer patients. KEY POINTS: CDK12 deficiency promotes castration-resistant prostate cancer (CRPC) progression by reprogramming cellular metabolism. CDK12 deficiency in CRPC leads to a more active mitochondrial electron transport chain (ETC), ensuring efficient cell energy supply. CDK12 phosphorylates RNA Pol II to ensure the transcription of ACSL4 to regulate ferroptosis. Mitochondrial ETC inhibitors exhibit better selectivity for CDK12-deficient CRPC cells, offering a promising new therapeutic approach for this subtype of CRPC patients.


Asunto(s)
Quinasas Ciclina-Dependientes , Ferroptosis , Neoplasias de la Próstata Resistentes a la Castración , Masculino , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/patología , Ferroptosis/genética , Humanos , Ratones , Animales , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Progresión de la Enfermedad , Línea Celular Tumoral
3.
J Biomol Struct Dyn ; 42(10): 5053-5071, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38764131

RESUMEN

The synthesis of two new hexahydroisoquinoline-4-carbonitrile derivatives (3a and 3b) is reported along with spectroscopic data and their crystal structures. In compound 3a, the intramolecular O-H···O hydrogen bond constraints the acetyl and hydroxyl groups to be syn. In the crystal, inversion dimers are generated by C-H···O hydrogen bonds and are connected into layers parallel to (10-1) by additional C-H···O hydrogen bonds. The layers are stacked with Cl···S contacts 0.17 Å less than the sum of the respective van der Waals radii. The conformation of the compound 3b is partially determined by the intramolecular O-H···O hydrogen bond. A puckering analysis of the tetrahydroisoquinoline unit was performed. In the crystal, O-H···O and C-H···O hydrogen bonds together with C-H···π(ring) interactions form layers parallel to (01-1) which pack with normal van der Waals interactions. To understand the binding efficiency and stability of the title molecules, molecular docking, and 100 ns dynamic simulation analyses were performed with CDK5A1. To rationalize their structure-activity relationship(s), a DFT study at the B3LYP/6-311++G** theoretical level was also done. The 3D Hirshfled surfaces were also taken to investigate the crystal packings of both compounds. In addition, their ADMET properties were explored.Communicated by Ramaswamy H. Sarma.


Asunto(s)
Enlace de Hidrógeno , Simulación del Acoplamiento Molecular , Cristalografía por Rayos X , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/química , Quinasas Ciclina-Dependientes/metabolismo , Tetrahidroisoquinolinas/química , Tetrahidroisoquinolinas/farmacología , Conformación Molecular , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Modelos Moleculares , Nitrilos/química , Simulación de Dinámica Molecular , Estructura Molecular , Relación Estructura-Actividad , Humanos
4.
Nat Commun ; 15(1): 2890, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570537

RESUMEN

DNA double-strand breaks (DSBs) can be repaired by several pathways. In eukaryotes, DSB repair pathway choice occurs at the level of DNA end resection and is controlled by the cell cycle. Upon cell cycle-dependent activation, cyclin-dependent kinases (CDKs) phosphorylate resection proteins and thereby stimulate end resection and repair by homologous recombination (HR). However, inability of CDK phospho-mimetic mutants to bypass this cell cycle regulation, suggests that additional cell cycle regulators may be important. Here, we identify Dbf4-dependent kinase (DDK) as a second major cell cycle regulator of DNA end resection. Using inducible genetic and chemical inhibition of DDK in budding yeast and human cells, we show that end resection and HR require activation by DDK. Mechanistically, DDK phosphorylates at least two resection nucleases in budding yeast: the Mre11 activator Sae2, which promotes resection initiation, as well as the Dna2 nuclease, which promotes resection elongation. Notably, synthetic activation of DDK allows limited resection and HR in G1 cells, suggesting that DDK is a key component of DSB repair pathway selection.


Asunto(s)
Roturas del ADN de Doble Cadena , Proteínas de Saccharomyces cerevisiae , Humanos , Ciclo Celular , Recombinación Homóloga , División Celular , Endonucleasas/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , ADN , Reparación del ADN , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
J Med Chem ; 67(8): 6726-6737, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38570733

RESUMEN

Cyclin-dependent kinase 19 (CDK19) is overexpressed in prostate cancer, making it an attractive target for both imaging and therapy. Since little is known about the optimized approach for radioligands of nuclear proteins, linker optimization strategies were used to improve pharmacokinetics and tumor absorption, including the adjustment of the length, flexibility/rigidity, and hydrophilicity/lipophilicity of linkers. Molecular docking was conducted for virtual screening and followed by IC50 determination. Both BALB/c mice and P-16 xenografts were used for tissue distribution and PET/CT imaging. The ligand 68Ga-10c demonstrated high absorption in tumor 5 min after injection and sustains long-term imaging within 3 h. Furthermore, 68Ga-10c exhibited slow clearance within the tumor and was predominantly metabolized in both the liver and kidneys, showing the potential to alleviate metabolic pressure and enhance tissue safety. Therefore, the linker optimization strategy is well suited for CDK19 and provides a reference for the radioactive ligands of other nuclear targets.


Asunto(s)
Quinasas Ciclina-Dependientes , Ratones Endogámicos BALB C , Animales , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Ratones , Masculino , Simulación del Acoplamiento Molecular , Diseño de Fármacos , Distribución Tisular , Tomografía Computarizada por Tomografía de Emisión de Positrones , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Radiofármacos/química , Radiofármacos/farmacocinética , Línea Celular Tumoral
6.
J Med Chem ; 67(8): 6099-6118, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38586950

RESUMEN

The duality of function (cell cycle regulation and gene transcription) of cyclin-dependent kinase 7 (CDK7) makes it an attractive oncology target and the discovery of CDK7 inhibitors has been a long-term pursuit by academia and pharmaceutical companies. However, achieving selective leading compounds is still difficult owing to the similarities among the ATP binding pocket. Herein, we detail the design and synthesis of a series of macrocyclic derivatives with pyrazolo[1,5-a]-1,3,5-triazine core structure as potent and selective CDK7 inhibitors. The diverse manners of macrocyclization led to distinguished selectivity profiles of the CDK family. Molecular dynamics (MD) simulation explained the binding difference between 15- and 16-membered macrocyclic compounds. Further optimization generated compound 37 exhibiting good CDK7 inhibitory activity and high selectivity over other CDKs. This work clearly demonstrated macrocyclization is a versatile method to finely tune the selectivity profile of small molecules and MD simulation can be a valuable tool in prioritizing designs of the macrocycle.


Asunto(s)
Quinasas Ciclina-Dependientes , Diseño de Fármacos , Compuestos Macrocíclicos , Simulación de Dinámica Molecular , Inhibidores de Proteínas Quinasas , Compuestos Macrocíclicos/farmacología , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Humanos , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/síntesis química , Inhibidores de Proteínas Quinasas/química , Relación Estructura-Actividad , Quinasa Activadora de Quinasas Ciclina-Dependientes
7.
Nucleic Acids Res ; 52(8): 4483-4501, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587191

RESUMEN

Messenger RNA precursors (pre-mRNA) generally undergo 3' end processing by cleavage and polyadenylation (CPA), which is specified by a polyadenylation site (PAS) and adjacent RNA sequences and regulated by a large variety of core and auxiliary CPA factors. To date, most of the human CPA factors have been discovered through biochemical and proteomic studies. However, genetic identification of the human CPA factors has been hampered by the lack of a reliable genome-wide screening method. We describe here a dual fluorescence readthrough reporter system with a PAS inserted between two fluorescent reporters. This system enables measurement of the efficiency of 3' end processing in living cells. Using this system in combination with a human genome-wide CRISPR/Cas9 library, we conducted a screen for CPA factors. The screens identified most components of the known core CPA complexes and other known CPA factors. The screens also identified CCNK/CDK12 as a potential core CPA factor, and RPRD1B as a CPA factor that binds RNA and regulates the release of RNA polymerase II at the 3' ends of genes. Thus, this dual fluorescence reporter coupled with CRISPR/Cas9 screens reliably identifies bona fide CPA factors and provides a platform for investigating the requirements for CPA in various contexts.


Asunto(s)
Sistemas CRISPR-Cas , Genes Reporteros , Poliadenilación , Precursores del ARN , Humanos , Precursores del ARN/metabolismo , Precursores del ARN/genética , Células HEK293 , Genoma Humano , ARN Polimerasa II/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo , Factores de Escisión y Poliadenilación de ARNm/genética , División del ARN
8.
Bioorg Chem ; 147: 107319, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593529

RESUMEN

Reactivating p53 activity to restore its anticancer function is an attractive cancer treatment strategy. In this study, we designed and synthesized a series of novel PROTACs to reactivate p53 via the co-degradation of CK1α and CDK7/9 proteins. Bioactivity studies showed that the selected PROTAC 13i exhibited potency antiproliferative activity in MV4-11 (IC50 = 0.096 ± 0.012 µM) and MOLM-13 (IC50 = 0.072 ± 0.014 µM) cells, and induced apoptosis of MV4-11 cells. Western-blot analysis showed that PROTAC 13i triple CK1α and CDK7/9 protein degradation resulted in the significantly increased expression of p53. At the same time, the transcriptional repression due to the degradation significantly reduced downstream gene expression of MYC, MDM2, BCL-2 and MCL-1, and reduced the inflammatory cytokine levels of TNF-α, IL-1ß and IL-6 in PMBCs. These results indicate the beneficial impact of simultaneous CK1α and CDK7/9 degradation for acute myeloid leukemia therapy.


Asunto(s)
Antineoplásicos , Caseína Quinasa Ialfa , Proliferación Celular , Quinasa 9 Dependiente de la Ciclina , Quinasas Ciclina-Dependientes , Ensayos de Selección de Medicamentos Antitumorales , Leucemia Mieloide Aguda , Proteína p53 Supresora de Tumor , Humanos , Proteína p53 Supresora de Tumor/metabolismo , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Antineoplásicos/farmacología , Antineoplásicos/química , Antineoplásicos/síntesis química , Caseína Quinasa Ialfa/metabolismo , Caseína Quinasa Ialfa/antagonistas & inhibidores , Proliferación Celular/efectos de los fármacos , Quinasa 9 Dependiente de la Ciclina/antagonistas & inhibidores , Quinasa 9 Dependiente de la Ciclina/metabolismo , Relación Estructura-Actividad , Estructura Molecular , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/metabolismo , Relación Dosis-Respuesta a Droga , Apoptosis/efectos de los fármacos , Descubrimiento de Drogas , Línea Celular Tumoral , Proteolisis/efectos de los fármacos , Células Tumorales Cultivadas , Quimera Dirigida a la Proteólisis , Quinasa Activadora de Quinasas Ciclina-Dependientes
9.
Cell Rep ; 43(4): 114066, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38578823

RESUMEN

In human cells and yeast, an intact "hydrophobic patch" substrate docking site is needed for mitotic cyclin centrosomal localization. A hydrophobic patch mutant (HPM) of the fission yeast mitotic cyclin Cdc13 cannot enter mitosis, but whether this is due to defective centrosomal localization or defective cyclin-substrate docking more widely is unknown. Here, we show that artificially restoring Cdc13-HPM centrosomal localization promotes mitotic entry and increases CDK (cyclin-dependent kinase) substrate phosphorylation at the centrosome and in the cytoplasm. We also show that the S-phase B-cyclin hydrophobic patch is required for centrosomal localization but not for S phase. We propose that the hydrophobic patch is essential for mitosis due to its requirement for the local concentration of cyclin-CDK with CDK substrates and regulators at the centrosome. Our findings emphasize the central importance of the centrosome as a hub coordinating cell-cycle control and explain why the cyclin hydrophobic patch is essential for mitosis.


Asunto(s)
Ciclo Celular , Centrosoma , Ciclina B , Quinasas Ciclina-Dependientes , Mitosis , Proteínas de Schizosaccharomyces pombe , Schizosaccharomyces , Centrosoma/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Fosforilación , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ciclo Celular/genética , Interacciones Hidrofóbicas e Hidrofílicas , Humanos
10.
Cell Death Dis ; 15(4): 246, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38575601

RESUMEN

Parkinson's disease (PD) is a debilitating neurodegenerative disease characterized by the loss of midbrain dopaminergic neurons (DaNs) and the abnormal accumulation of α-Synuclein (α-Syn) protein. Currently, no treatment can slow nor halt the progression of PD. Multiplications and mutations of the α-Syn gene (SNCA) cause PD-associated syndromes and animal models that overexpress α-Syn replicate several features of PD. Decreasing total α-Syn levels, therefore, is an attractive approach to slow down neurodegeneration in patients with synucleinopathy. We previously performed a genetic screen for modifiers of α-Syn levels and identified CDK14, a kinase of largely unknown function as a regulator of α-Syn. To test the potential therapeutic effects of CDK14 reduction in PD, we ablated Cdk14 in the α-Syn preformed fibrils (PFF)-induced PD mouse model. We found that loss of Cdk14 mitigates the grip strength deficit of PFF-treated mice and ameliorates PFF-induced cortical α-Syn pathology, indicated by reduced numbers of pS129 α-Syn-containing cells. In primary neurons, we found that Cdk14 depletion protects against the propagation of toxic α-Syn species. We further validated these findings on pS129 α-Syn levels in PD patient neurons. Finally, we leveraged the recent discovery of a covalent inhibitor of CDK14 to determine whether this target is pharmacologically tractable in vitro and in vivo. We found that CDK14 inhibition decreases total and pathologically aggregated α-Syn in human neurons, in PFF-challenged rat neurons and in the brains of α-Syn-humanized mice. In summary, we suggest that CDK14 represents a novel therapeutic target for PD-associated synucleinopathy.


Asunto(s)
Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Sinucleinopatías , Animales , Humanos , Ratones , Ratas , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Neuronas Dopaminérgicas/metabolismo , Mesencéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Enfermedad de Parkinson/tratamiento farmacológico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Sinucleinopatías/metabolismo , Sinucleinopatías/patología
11.
PLoS Pathog ; 20(4): e1012138, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38640110

RESUMEN

Proper transcription orchestrated by RNA polymerase II (RNPII) is crucial for cellular development, which is rely on the phosphorylation state of RNPII's carboxyl-terminal domain (CTD). Sporangia, developed from mycelia, are essential for the destructive oomycetes Phytophthora, remarkable transcriptional changes are observed during the morphological transition. However, how these changes are rapidly triggered and their relationship with the versatile RNPII-CTD phosphorylation remain enigmatic. Herein, we found that Phytophthora capsici undergone an elevation of Ser5-phosphorylation in its uncanonical heptapeptide repeats of RNPII-CTD during sporangia development, which subsequently changed the chromosomal occupation of RNPII and primarily activated transcription of certain genes. A cyclin-dependent kinase, PcCDK7, was highly induced and phosphorylated RNPII-CTD during this morphological transition. Mechanistically, a novel DCL1-dependent microRNA, pcamiR1, was found to be a feedback modulator for the precise phosphorylation of RNPII-CTD by complexing with PcAGO1 and regulating the accumulation of PcCDK7. Moreover, this study revealed that the pcamiR1-CDK7-RNPII regulatory module is evolutionarily conserved and the impairment of the balance between pcamiR1 and PcCDK7 could efficiently reduce growth and virulence of P. capsici. Collectively, this study uncovers a novel and evolutionary conserved mechanism of transcription regulation which could facilitate correct development and identifies pcamiR1 as a promising target for disease control.


Asunto(s)
MicroARNs , Phytophthora , ARN Polimerasa II , Transcripción Genética , ARN Polimerasa II/metabolismo , ARN Polimerasa II/genética , Fosforilación , MicroARNs/metabolismo , MicroARNs/genética , Phytophthora/patogenicidad , Phytophthora/genética , Phytophthora/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/genética
12.
Cell Commun Signal ; 22(1): 226, 2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38605321

RESUMEN

Cyclin-dependent kinase 7 (CDK7) serves as a pivotal regulator in orchestrating cellular cycle dynamics and gene transcriptional activity. Elevated expression levels of CDK7 have been ubiquitously documented across a spectrum of malignancies and have been concomitantly correlated with adverse clinical outcomes. This review delineates the biological roles of CDK7 and explicates the molecular pathways through which CDK7 exacerbates the oncogenic progression of breast cancer. Furthermore, we synthesize the extant literature to provide a comprehensive overview of the advancement of CDK7-specific small-molecule inhibitors, encapsulating both preclinical and clinical findings in breast cancer contexts. The accumulated evidence substantiates the conceptualization of CDK7 as a propitious therapeutic target in breast cancer management.


Asunto(s)
Neoplasias de la Mama , Quinasas Ciclina-Dependientes , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/fisiopatología , Quinasas Ciclina-Dependientes/metabolismo
13.
Nat Commun ; 15(1): 3326, 2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38637532

RESUMEN

Cdk8 in Drosophila is the orthologue of vertebrate CDK8 and CDK19. These proteins have been shown to modulate transcriptional control by RNA polymerase II. We found that neuronal loss of Cdk8 severely reduces fly lifespan and causes bang sensitivity. Remarkably, these defects can be rescued by expression of human CDK19, found in the cytoplasm of neurons, suggesting a non-nuclear function of CDK19/Cdk8. Here we show that Cdk8 plays a critical role in the cytoplasm, with its loss causing elongated mitochondria in both muscles and neurons. We find that endogenous GFP-tagged Cdk8 can be found in both the cytoplasm and nucleus. We show that Cdk8 promotes the phosphorylation of Drp1 at S616, a protein required for mitochondrial fission. Interestingly, Pink1, a mitochondrial kinase implicated in Parkinson's disease, also phosphorylates Drp1 at the same residue. Indeed, overexpression of Cdk8 significantly suppresses the phenotypes observed in flies with low levels of Pink1, including elevated levels of ROS, mitochondrial dysmorphology, and behavioral defects. In summary, we propose that Pink1 and Cdk8 perform similar functions to promote Drp1-mediated fission.


Asunto(s)
Proteínas de Drosophila , Drosophila , Animales , Humanos , Fosforilación , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Dinámicas Mitocondriales/genética , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo
14.
Proc Natl Acad Sci U S A ; 121(15): e2321502121, 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38564636

RESUMEN

The release of paused RNA polymerase II (RNAPII) from promoter-proximal regions is tightly controlled to ensure proper regulation of gene expression. The elongation factor PTEF-b is known to release paused RNAPII via phosphorylation of the RNAPII C-terminal domain by its cyclin-dependent kinase component, CDK9. However, the signal and stress-specific roles of the various RNAPII-associated macromolecular complexes containing PTEF-b/CDK9 are not yet clear. Here, we identify and characterize the CDK9 complex required for transcriptional response to hypoxia. Contrary to previous reports, our data indicate that a CDK9 complex containing BRD4 but not AFF1/4 is essential for this hypoxic stress response. We demonstrate that BRD4 bromodomains (BET) are dispensable for the release of paused RNAPII at hypoxia-activated genes and that BET inhibition by JQ1 is insufficient to impair hypoxic gene response. Mechanistically, we demonstrate that the C-terminal region of BRD4 is required for Polymerase-Associated Factor-1 Complex (PAF1C) recruitment to establish an elongation-competent RNAPII complex at hypoxia-responsive genes. PAF1C disruption using a small-molecule inhibitor (iPAF1C) impairs hypoxia-induced, BRD4-mediated RNAPII release. Together, our results provide insight into potentially targetable mechanisms that control the hypoxia-responsive transcriptional elongation.


Asunto(s)
Proteínas Nucleares , Factores de Transcripción , Humanos , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Regulación de la Expresión Génica , Quinasas Ciclina-Dependientes/metabolismo , Quinasa 9 Dependiente de la Ciclina/genética , Quinasa 9 Dependiente de la Ciclina/metabolismo , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , Fosforilación , Hipoxia , Transcripción Genética , Factor B de Elongación Transcripcional Positiva/genética , Factor B de Elongación Transcripcional Positiva/metabolismo , Proteínas que Contienen Bromodominio , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo
15.
J Clin Invest ; 134(10)2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38546787

RESUMEN

Mediator kinases CDK19 and CDK8, pleiotropic regulators of transcriptional reprogramming, are differentially regulated by androgen signaling, but both kinases are upregulated in castration-resistant prostate cancer (CRPC). Genetic or pharmacological inhibition of CDK8 and CDK19 reverses the castration-resistant phenotype and restores the sensitivity of CRPC xenografts to androgen deprivation in vivo. Prolonged CDK8/19 inhibitor treatment combined with castration not only suppressed the growth of CRPC xenografts but also induced tumor regression and cures. Transcriptomic analysis revealed that Mediator kinase inhibition amplified and modulated the effects of castration on gene expression, disrupting CRPC adaptation to androgen deprivation. Mediator kinase inactivation in tumor cells also affected stromal gene expression, indicating that Mediator kinase activity in CRPC molded the tumor microenvironment. The combination of castration and Mediator kinase inhibition downregulated the MYC pathway, and Mediator kinase inhibition suppressed a MYC-driven CRPC tumor model even without castration. CDK8/19 inhibitors showed efficacy in patient-derived xenograft models of CRPC, and a gene signature of Mediator kinase activity correlated with tumor progression and overall survival in clinical samples of metastatic CRPC. These results indicate that Mediator kinases mediated androgen-independent in vivo growth of CRPC, supporting the development of CDK8/19 inhibitors for the treatment of this presently incurable disease.


Asunto(s)
Quinasa 8 Dependiente de Ciclina , Quinasas Ciclina-Dependientes , Neoplasias de la Próstata Resistentes a la Castración , Inhibidores de Proteínas Quinasas , Ensayos Antitumor por Modelo de Xenoinjerto , Masculino , Humanos , Animales , Neoplasias de la Próstata Resistentes a la Castración/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/enzimología , Ratones , Quinasas Ciclina-Dependientes/antagonistas & inhibidores , Quinasas Ciclina-Dependientes/genética , Quinasas Ciclina-Dependientes/metabolismo , Quinasa 8 Dependiente de Ciclina/antagonistas & inhibidores , Quinasa 8 Dependiente de Ciclina/genética , Quinasa 8 Dependiente de Ciclina/metabolismo , Línea Celular Tumoral , Inhibidores de Proteínas Quinasas/farmacología , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
16.
J Ethnopharmacol ; 327: 118011, 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38467320

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Rujifang (RJF) constitutes a traditional Chinese medicinal compound extensively employed in the management of triple-negative breast cancer (TNBC). However, information regarding its potential active ingredients, antitumor effects, safety, and mechanism of action remains unreported. AIM OF THE STUDY: To investigate the efficacy and safety of RJF in the context of TNBC. MATERIALS AND METHODS: We employed the ultra high-performance liquid chromatography-electrospray four-pole time-of-flight mass spectrometry technique (UPLC/Q-TOF-MS/MS) to scrutinize the chemical constituents of RJF. Subcutaneously transplanted tumor models were utilized to assess the impact of RJF on TNBC in vivo. Thirty female BLAB/c mice were randomly divided into five groups: the model group, cyclophosphamide group, and RJF high-dose, medium-dose, and low-dose groups. A total of 1 × 106 4T1 cells were subcutaneously injected into the right shoulder of mice, and they were administered treatments for a span of 28 days. We conducted evaluations on blood parameters, encompassing white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelet count (PLT), neutrophils, lymphocytes, and monocytes, as well as hepatorenal indicators including alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin, and creatinine (CRE) to gauge the safety of RJF. Ki67 and TUNEL were detected via immunohistochemistry and immunofluorescence, respectively. We prepared RJF drug-containing serum for TNBC cell lines and assessed the in vitro inhibitory effect of RJF on tumor cell growth through the CCK8 assay and cell cycle analysis. RT-PCR was employed to detect the mRNA expression of cyclin-dependent kinase and cyclin-dependent kinase inhibitors in tumor tissues, and Western blot was carried out to ascertain the expression of cyclin and pathway-related proteins. RESULTS: 100 compounds were identified in RJF, which consisted of 3 flavonoids, 24 glycosides, 18 alkaloids, 3 amino acids, 8 phenylpropanoids, 6 terpenes, 20 organic acids, and 18 other compounds. In animal experiments, both CTX and RJF exhibited substantial antitumor effects. RJF led to an increase in the number of neutrophils in peripheral blood, with no significant impact on other hematological indices. In contrast, CTX reduced red blood cell count, hemoglobin levels, and white blood cell count, while increasing platelet count. RJF exhibited no discernible influence on hepatorenal function, whereas Cyclophosphamide (CTX) decreased ALP, GOT, and GPT levels. Both CTX and RJF reduced the expression of Ki67 and heightened the occurrence of apoptosis in tumor tissue. RJF drug-containing serum hindered the viability of 4T1 and MD-MBA-231 cells in a time and concentration-dependent manner. In cell cycle experiments, RJF diminished the proportion of G2 phase cells and arrested the cell cycle at the S phase. RT-PCR analysis indicated that RJF down-regulated the mRNA expression of CDK2 and CDK4, while up-regulating that of P21 and P27 in tumor tissue. The trends in CDKs and CDKIs protein expression mirrored those of mRNA expression. Moreover, the PI3K/AKT pathway displayed downregulation in the tumor tissue of mice treated with RJF. CONCLUSION: RJF demonstrates effectiveness and safety in the context of TNBC. It exerts anti-tumor effects by arresting the cell cycle at the S phase through the PI3K-AKT pathway.


Asunto(s)
Transducción de Señal , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Animales , Ratones , Proteínas Proto-Oncogénicas c-akt/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Neoplasias de la Mama Triple Negativas/patología , Antígeno Ki-67/metabolismo , Espectrometría de Masas en Tándem , Línea Celular Tumoral , Proliferación Celular , Apoptosis , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/farmacología , Quinasas Ciclina-Dependientes/uso terapéutico , Ciclofosfamida/farmacología , Hemoglobinas/farmacología , Hemoglobinas/uso terapéutico , Transaminasas , Glutamatos/farmacología , Glutamatos/uso terapéutico , ARN Mensajero
17.
Chem Biol Interact ; 393: 110940, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38467339

RESUMEN

Cell division, differentiation, and controlled cell death are all regulated by phosphorylation, a key biological function. This mechanism is controlled by a variety of enzymes, with cyclin-dependent kinases (CDKs) being particularly important in phosphorylating proteins at serine and threonine sites. CDKs, which contain 20 unique components, serve an important role in regulating vital physiological functions such as cell cycle progression and gene transcription. Methodologically, an extensive literature search was performed using reputable databases such as PubMed, Google Scholar, Scopus, and Web of Science. Keywords encompassed "cyclin kinase," "cyclin dependent kinase inhibitors," "CDK inhibitors," "natural products," and "cancer therapy." The inclusion criteria, focused on relevance, publication date, and language, ensured a thorough representation of the most recent research in the field, encompassing articles published from January 2015 to September 2023. Categorization of CDKs into those regulating transcription and those orchestrating cell cycle phases provides a comprehensive understanding of their diverse functions. Ongoing clinical trials featuring CDK inhibitors, notably CDK7 and CDK4/6 inhibitors, illuminate their promising potential in various cancer treatments. This review undertakes a thorough investigation of CDK inhibitors derived from natural (marine, terrestrial, and peptide) sources. The aim of this study is to provide a comprehensive comprehension of the chemical classifications, origins, target CDKs, associated cancer types, and therapeutic applications.


Asunto(s)
Quinasas Ciclina-Dependientes , Neoplasias , Humanos , Ciclo Celular , Quinasas Ciclina-Dependientes/metabolismo , Ciclinas/genética , Ciclinas/metabolismo , Ciclinas/uso terapéutico , Neoplasias/tratamiento farmacológico , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico
18.
J Exp Clin Cancer Res ; 43(1): 89, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38520004

RESUMEN

BACKGROUND: The evasion of the immune response by tumor cells through programmed death-ligand 1 (PD-L1) has been identified as a factor contributing to resistance to radioimmunotherapy in lung cancer patients. However, the precise molecular mechanisms underlying the regulation of PD-L1 remain incompletely understood. This study aimed to investigate the role of cyclin-dependent kinase-like 1 (CDKL1) in the modulation of PD-L1 expression and the response to radioimmunotherapy in lung cancer. METHODS: The tumorigenic roles of CDKL1 were assessed via cell growth, colony formation, and EdU assays and an in vivo nude mouse xenograft model. The in vitro radiosensitization effect of CDKL1 was evaluated using a neutral comet assay, γH2AX foci formation analysis, and a clonogenic cell survival assay. The protein‒protein interactions were confirmed via coimmunoprecipitation and GST pulldown assays. The regulation of PD-L1 by CDKL1 was evaluated via chromatin immunoprecipitation (ChIP), real-time quantitative PCR, and flow cytometry analysis. An in vitro conditioned culture model and an in vivo C57BL/6J mouse xenograft model were developed to detect the activation markers of CD8+ T cells and evaluate the efficacy of CDKL1 overexpression combined with radiotherapy (RT) and an anti-PD-L1 antibody in treating lung cancer. RESULTS: CDKL1 was downregulated and suppressed the growth and proliferation of lung cancer cells and increased radiosensitivity in vitro and in vivo. Mechanistically, CDKL1 interacted with the transcription factor YBX1 and decreased the binding affinity of YBX1 for the PD-L1 gene promoter, which consequently inhibits the expression of PD-L1, ultimately leading to the activation of CD8+ T cells and the inhibition of immune evasion in lung cancer. Moreover, the combination of CDKL1 overexpression, RT, and anti-PD-L1 antibody therapy exhibited the most potent antitumor efficacy against lung cancer. CONCLUSIONS: Our findings demonstrate that CDKL1 plays a crucial role in regulating PD-L1 expression, thereby enhancing the antitumor effects of radioimmunotherapy. These results suggest that CDKL1 may be a promising therapeutic target for the treatment of lung cancer.


Asunto(s)
Neoplasias Pulmonares , Humanos , Animales , Ratones , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/tratamiento farmacológico , Factores de Transcripción , Linfocitos T CD8-positivos/metabolismo , Antígeno B7-H1/metabolismo , Radioinmunoterapia , Ratones Endogámicos C57BL , Línea Celular Tumoral , Proteínas del Tejido Nervioso/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Proteína 1 de Unión a la Caja Y
19.
Sci Rep ; 14(1): 6574, 2024 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-38503865

RESUMEN

Cell cycle-dependent protein kinase 12 (CDK12) plays a key role in a variety of carcinogenesis processes and represents a promising therapeutic target for cancer treatment. However, to date, there have been no systematic studies addressing its diagnostic, prognostic and immunological value across cancers. Here, we found that CDK12 was significantly upregulated in various types of cancers, and it expression increased with progression in ten cancer types, including breast cancer, cholangiocarcinoma and colon adenocarcinoma. Moreover, the ROC curves indicated that CDK12 showed diagnostic value in eight cancer types. High CDK12 expression was associated with poor prognosis in eight types of cancer, including low-grade glioma, mesothelioma, melanoma and pancreatic cancer. Furthermore, we conducted immunoassays to explore the exact mechanisms underlying CDK12-induced carcinogenesis, which revealed that increased expression of CDK12 allowed tumours to evade immune surveillance and upregulate immune checkpoint genes. Additionally, mutational studies have shown that amplification and missense mutations are the predominant mutational events affecting CDK12 across cancers. These findings establish CDK12 as a significant biological indicator of cancer diagnosis, prognosis, and immunotherapeutic targeting. Early surveillance and employment of CDK12 inhibitors, along with concomitant immunotherapy interventions, may enhance the clinical outcomes of cancer patients.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Humanos , Proteínas Quinasas , Quinasas Ciclina-Dependientes/metabolismo , Pronóstico , Carcinogénesis , Biomarcadores de Tumor/metabolismo , Inmunomodulación/genética
20.
Br J Cancer ; 130(8): 1239-1248, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38355840

RESUMEN

BACKGROUND: Cyclin-dependent kinase (CDK) 7 is aberrantly overexpressed in many types of cancer and is an attractive target for cancer therapy due to its dual role in transcription and cell cycle progression. Moreover, CDK7 can directly modulate the activities of estrogen receptor (ER), which is a major driver in breast cancer. Breast cancer cells have exhibited high sensitivity to CDK7 inhibition in pre-clinical studies. METHODS: In this review, we provide a comprehensive summary of the latest insights into CDK7 biology and recent advancements in CDK7 inhibitor development for breast cancer treatment. We also discuss the current application of CDK7 inhibitors in different molecular types of breast cancer to provide potential strategies for the treatment of breast cancer. RESULTS: Significant progress has been made in the development of selective CDK7 inhibitors, which show efficacy in both triple-negative breast cancer (TNBC) and hormone receptor-positive breast cancer (HR+). Moreover, combined with other agents, CDK7 inhibitors may provide synergistic effects for endocrine therapy and chemotherapy. Thus, high-quality studies for developing potent CDK7 inhibitors and investigating their applications in breast cancer therapy are rapidly emerging. CONCLUSION: CDK7 inhibitors have emerged as a promising therapeutic strategy and have demonstrated significant anti-cancer activity in different subtypes of breast cancer, especially those that have been resistant to current therapies.


Asunto(s)
Neoplasias de la Mama , Neoplasias de la Mama Triple Negativas , Humanos , Femenino , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/metabolismo , Quinasas Ciclina-Dependientes/metabolismo , Quinasas Ciclina-Dependientes/uso terapéutico , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Neoplasias de la Mama Triple Negativas/genética , Quinasa 4 Dependiente de la Ciclina , Quinasa 6 Dependiente de la Ciclina
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...