Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 406
Filtrar
1.
Biochemistry (Mosc) ; 89(3): 393-406, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38648760

RESUMEN

Courtship suppression is a behavioral adaptation of the fruit fly. When majority of the females in a fly population are fertilized and non-receptive for mating, a male, after a series of failed attempts, decreases its courtship activity towards all females, saving its energy and reproductive resources. The time of courtship decrease depends on both duration of unsuccessful courtship and genetically determined features of the male nervous system. Thereby, courtship suppression paradigm can be used for studying molecular mechanisms of learning and memory. p-Cofilin, a component of the actin remodeling signaling cascade and product of LIM-kinase 1 (LIMK1), regulates Drosophila melanogaster forgetting in olfactory learning paradigm. Previously, we have shown that limk1 suppression in the specific types of nervous cells differently affects fly courtship memory. Here, we used Gal4 > UAS system to induce limk1 overexpression in the same types of neurons. limk1 activation in the mushroom body, glia, and fruitless neurons decreased learning index compared to the control strain or the strain with limk1 knockdown. In cholinergic and dopaminergic/serotoninergic neurons, both overexpression and knockdown of limk1 impaired Drosophila short-term memory. Thus, proper balance of the limk1 activity is crucial for normal cognitive activity of the fruit fly.


Asunto(s)
Cortejo , Proteínas de Drosophila , Drosophila melanogaster , Quinasas Lim , Memoria , Animales , Drosophila melanogaster/genética , Drosophila melanogaster/fisiología , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Masculino , Quinasas Lim/metabolismo , Quinasas Lim/genética , Femenino , Cuerpos Pedunculados/metabolismo , Cuerpos Pedunculados/fisiología , Conducta Sexual Animal
2.
Eur J Med Chem ; 271: 116391, 2024 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-38669909

RESUMEN

LIM Kinases, LIMK1 and LIMK2, have become promising targets for the development of inhibitors with potential application for the treatment of several major diseases. LIMKs play crucial roles in cytoskeleton remodeling as downstream effectors of small G proteins of the Rho-GTPase family, and as major regulators of cofilin, an actin depolymerizing factor. In this article we describe the conception, synthesis, and biological evaluation of novel tetrahydropyridine pyrrolopyrimidine LIMK inhibitors. Homology models were first constructed to better understand the binding mode of our preliminary compounds and to explain differences in biological activity. A library of over 60 products was generated and in vitro enzymatic activities were measured in the mid to low nanomolar range. The most promising derivatives were then evaluated in cell on cofilin phosphorylation inhibition which led to the identification of 52 which showed excellent selectivity for LIMKs in a kinase selectivity panel. We also demonstrated that 52 affected the cell cytoskeleton by disturbing actin filaments. Cell migration studies with this derivative using three different cell lines displayed a significant effect on cell motility. Finally, the crystal structure of the kinase domain of LIMK2 complexed with 52 was solved, greatly improving our understanding of the interaction between 52 and LIMK2 active site. The reported data represent a basis for the development of more efficient LIMK inhibitors for future in vivo preclinical validation.


Asunto(s)
Quinasas Lim , Inhibidores de Proteínas Quinasas , Quinasas Lim/antagonistas & inhibidores , Quinasas Lim/metabolismo , Humanos , Relación Estructura-Actividad , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/síntesis química , Estructura Molecular , Movimiento Celular/efectos de los fármacos , Modelos Moleculares , Piridinas/farmacología , Piridinas/química , Piridinas/síntesis química , Relación Dosis-Respuesta a Droga , Pirimidinas/farmacología , Pirimidinas/química , Pirimidinas/síntesis química
3.
Life Sci ; 347: 122609, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38580197

RESUMEN

LIM domains kinase 2 (LIMK2) is a 72 kDa protein that regulates actin and cytoskeleton reorganization. Once phosphorylated by its upstream activator (ROCK1), LIMK2 can phosphorylate cofilin to inactivate it. This relieves the levering stress on actin and allows polymerization to occur. Actin rearrangement is essential in regulating cell cycle progression, apoptosis, and migration. Dysregulation of the ROCK1/LIMK2/cofilin pathway has been reported to link to the development of various solid cancers such as breast, lung, and prostate cancer and liquid cancer like leukemia. This review aims to assess the findings from multiple reported in vitro, in vivo, and clinical studies on the potential tumour-regulatory role of LIMK2 in different human cancers. The findings of the selected literature unraveled that activated AKT, EGF, and TGF-ß pathways can upregulate the activities of the ROCK1/LIMK2/cofilin pathway. Besides cofilin, LIMK2 can modulate the cellular levels of other proteins, such as TPPP1, to promote microtubule polymerization. The tumour suppressor protein p53 can transactivate LIMK2b, a splice variant of LIMK2, to induce cell cycle arrest and allow DNA repair to occur before the cell enters the next phase of the cell cycle. Additionally, several non-coding RNAs, such as miR-135a and miR-939-5p, could also epigenetically regulate the expression of LIMK2. Since the expression of LIMK2 is dysregulated in several human cancers, measuring the tissue expression of LIMK2 could potentially help diagnose cancer and predict patient prognosis. As LIMK2 could play tumour-promoting and tumour-inhibiting roles in cancer development, more investigation should be conducted to carefully evaluate whether introducing a LIMK2 inhibitor in cancer patients could slow cancer progression without posing clinical harms.


Asunto(s)
Quinasas Lim , Neoplasias , Humanos , Quinasas Lim/metabolismo , Neoplasias/patología , Neoplasias/metabolismo , Neoplasias/genética , Animales , Transducción de Señal , Regulación Neoplásica de la Expresión Génica , Quinasas Asociadas a rho/metabolismo , MicroARNs/genética , MicroARNs/metabolismo
4.
Ecotoxicol Environ Saf ; 272: 116110, 2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38364763

RESUMEN

OBJECTIVE: We here explored whether perinatal nonylphenol (NP) exposure causes myocardial fibrosis (MF) during adulthood in offspring rats and determined the role of the TGF-ß1/LIMK1 signaling pathway in NP-induced fibrosis in cardiac fibroblasts (CFs). METHODS AND RESULTS: Histopathology revealed increased collagen deposition and altered fiber arrangement in the NP and isoproterenol hydrochloride (ISO) groups compared with the blank group. Systolic and diastolic functions were impaired. Western blotting and qRT-PCR demonstrated that the expression of central myofibrosis-related proteins (collagens Ι and ΙΙΙ, MMP2, MMP9, TGF-ß1, α-SMA, IL-1ß, and TGF-ß1) and genes (Collagen Ι, Collagen ΙΙΙ, TGF-ß1, and α-SMA mRNA) was upregulated in the NP and ISO groups compared with the blank group. The mRNA-seq analysis indicated differential expression of TGF-ß1 signaling pathway-associated genes and proteins. Fibrosis-related protein and gene expression increased in the CFs stimulated with the recombinant human TGF-ß1 and NP, which was consistent with the results of animal experiments. According to the immunofluorescence analysis and western blotting, NP exposure activated the TGF-ß1/LIMK1 signaling pathway whose action mechanism in NP-induced CFs was further validated using the LIMK1 inhibitor (BMS-5). The inhibitor modulated the TGF-ß1/LIMK1 signaling pathway and suppressed the NP-induced increase in fibrosis-related protein expression in the CFs. Thus, the aforementioned pathway is involved in NP-induced fibrosis. CONCLUSION: We here provide the first evidence that perinatal NP exposure causes myocardial fibrosis in growing male rat pups and reveal the molecular mechanism and functional role of the TGF-ß1/LIMK1 signaling pathway in this process.


Asunto(s)
Cardiomiopatías , Fenoles , Factor de Crecimiento Transformador beta1 , Humanos , Ratas , Masculino , Animales , Adulto , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/metabolismo , Cardiomiopatías/metabolismo , Colágeno/metabolismo , Transducción de Señal , Fibrosis , ARN Mensajero/metabolismo , Fibroblastos , Miocardio/metabolismo , Quinasas Lim/metabolismo
5.
Nat Commun ; 15(1): 1426, 2024 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-38365893

RESUMEN

Cofilin family proteins have essential roles in remodeling the cytoskeleton through filamentous actin depolymerization and severing. The short, unstructured N-terminal region of cofilin is critical for actin binding and harbors the major site of inhibitory phosphorylation. Atypically for a disordered sequence, the N-terminal region is highly conserved, but specific aspects driving this conservation are unclear. Here, we screen a library of 16,000 human cofilin N-terminal sequence variants for their capacity to support growth in S. cerevisiae in the presence or absence of the upstream regulator LIM kinase. Results from the screen and biochemical analysis of individual variants reveal distinct sequence requirements for actin binding and regulation by LIM kinase. LIM kinase recognition only partly explains sequence constraints on phosphoregulation, which are instead driven to a large extent by the capacity for phosphorylation to inactivate cofilin. We find loose sequence requirements for actin binding and phosphoinhibition, but collectively they restrict the N-terminus to sequences found in natural cofilins. Our results illustrate how a phosphorylation site can balance potentially competing sequence requirements for function and regulation.


Asunto(s)
Actinas , Cofilina 1 , Humanos , Citoesqueleto de Actina/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Cofilina 1/genética , Cofilina 1/metabolismo , Quinasas Lim/metabolismo , Fosforilación , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
Elife ; 122023 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-38131292

RESUMEN

Cranial irradiation is used for prophylactic brain radiotherapy as well as the treatment of primary brain tumors. Despite its high efficiency, it often induces unexpected side effects, including cognitive dysfunction. Herein, we observed that mice exposed to cranial irradiation exhibited cognitive dysfunction, including altered spontaneous behavior, decreased spatial memory, and reduced novel object recognition. Analysis of the actin cytoskeleton revealed that ionizing radiation (IR) disrupted the filamentous/globular actin (F/G-actin) ratio and downregulated the actin turnover signaling pathway p21-activated kinase 3 (PAK3)-LIM kinase 1 (LIMK1)-cofilin. Furthermore, we found that IR could upregulate microRNA-206-3 p (miR-206-3 p) targeting PAK3. As the inhibition of miR-206-3 p through antagonist (antagomiR), IR-induced disruption of PAK3 signaling is restored. In addition, intranasal administration of antagomiR-206-3 p recovered IR-induced cognitive impairment in mice. Our results suggest that cranial irradiation-induced cognitive impairment could be ameliorated by regulating PAK3 through antagomiR-206-3 p, thereby affording a promising strategy for protecting cognitive function during cranial irradiation, and promoting quality of life in patients with radiation therapy.


Asunto(s)
Disfunción Cognitiva , MicroARNs , Animales , Humanos , Ratones , Actinas/metabolismo , Antagomirs , Disfunción Cognitiva/genética , Irradiación Craneana/efectos adversos , Regulación hacia Abajo , Quinasas Lim/metabolismo , MicroARNs/genética , Quinasas p21 Activadas/genética , Quinasas p21 Activadas/metabolismo , Calidad de Vida
7.
Nat Commun ; 14(1): 8441, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38114480

RESUMEN

LIM domain kinases (LIMK) are important regulators of actin cytoskeletal remodeling. These protein kinases phosphorylate the actin depolymerizing factor cofilin to suppress filament severing, and are key nodes between Rho GTPase cascades and actin. The two mammalian LIMKs, LIMK1 and LIMK2, contain consecutive LIM domains and a PDZ domain upstream of the C-terminal kinase domain. The roles of the N-terminal regions are not fully understood, and the function of the PDZ domain remains elusive. Here, we determine the 2.0 Å crystal structure of the PDZ domain of LIMK2 and reveal features not previously observed in PDZ domains including a core-facing arginine residue located at the second position of the 'x-Φ-G-Φ' motif, and that the expected peptide binding cleft is shallow and poorly conserved. We find a distal extended surface to be highly conserved, and when LIMK1 was ectopically expressed in yeast we find targeted mutagenesis of this surface decreases growth, implying increased LIMK activity. PDZ domain LIMK1 mutants expressed in yeast are hyperphosphorylated and show elevated activity in vitro. This surface in both LIMK1 and LIMK2 is critical for autoregulation independent of activation loop phosphorylation. Overall, our study demonstrates the functional importance of the PDZ domain to autoregulation of LIMKs.


Asunto(s)
Quinasas Lim , Dominios PDZ , Animales , Quinasas Lim/genética , Quinasas Lim/metabolismo , Actinas/metabolismo , Saccharomyces cerevisiae/metabolismo , Fosforilación , Factores Despolimerizantes de la Actina/metabolismo , Homeostasis , Mamíferos/metabolismo
8.
Cancer Lett ; 576: 216420, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37778684

RESUMEN

LIM kinase 1 (LIMK1) is a member of the LIMK family that has been considered to be involved in chemoresistance in various tumors, and N6-methyladenosine (m6A) is the most abundant nucleotide modification on mRNA. However, whether elevated expression of LIMK1 leads to chemoresistance due to m6A modification remains to be further studied. The findings of our study indicate that high LIMK1 expression in colorectal cancer (CRC) cells promotes cell proliferation and increases resistance to 5-fluorouracil (5-FU). Moreover, downregulation of YTH domain-containing 2 (YTHDC2), an m6A "reader", in CRC cells resulted in decreased recognition and binding to the m6A site "GGACA" in LIMK1 mRNA, thereby increasing LIMK1 mRNA stability and expression. Furthermore, the overexpression of LIMK1 facilitated eIF2α phosphorylation, which induced endoplasmic reticulum (ER) stress and promoted stress granule (SG) formation, ultimately leading to 5-FU resistance. This study evaluated the specificity of the YTHDC2/LIMK1/eIF2α signalling axis and the efficacy of related drugs in modulating 5-FU sensitivity in CRC.


Asunto(s)
Neoplasias Colorrectales , Quinasas Lim , Humanos , Quinasas Lim/genética , Quinasas Lim/metabolismo , Metilación , Resistencia a Antineoplásicos/genética , Gránulos de Estrés , ARN Mensajero/metabolismo , Fluorouracilo/farmacología , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Estrés del Retículo Endoplásmico , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , ARN Helicasas/genética , ARN Helicasas/metabolismo
9.
J Alzheimers Dis ; 95(4): 1643-1656, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37718806

RESUMEN

BACKGROUND: RhoA signaling is widely reported to be dysregulated in Alzheimer's disease (AD), but its therapeutic targeting demonstrated mixed outcomes. We hypothesize that the activation and inactivation states of RhoA and LIMK are different in the cortex and in subregions of hippocampus along the rostral-caudal dimensions. OBJECTIVE: We intended to elucidate the plane and spatial dependent RhoA signaling in association with AD. METHODS: We applied antibody pRhoA that recognizes an inactive state of RhoA (S188 phosphorylation) and antibody pLIMK against an active state of LIMK (T508 phosphorylation) to investigate RhoA signaling in wildtype (WT) and triple transgenic AD (3xTg-AD) mouse model. We prepared serial sections from the rostral to caudal coronal planes of the entire mouse brain followed by immunofluorescence staining with pRhoA and pLIMK antibodies. RESULTS: Both pRhoA and pLIMK elicited a shift of expression pattern from rostral to caudal planes. Additionally, pRhoA demonstrated dynamic redistribution between the nucleus and cytoplasm. pLIMK did not show such nucleus and cytoplasm redistribution but the expression level was changed from rostral to caudal planes. At some planes, pRhoA showed an increasing trend in expression in the cortex but a decreasing trend in the dentate gyrus of the 3xTg-AD mouse hippocampus. pLIMK tends to decrease in the cortex but increase in the dentate gyrus of 3xTg-AD mouse hippocampus. CONCLUSIONS: RhoA activation is dysregulated in both human and mouse AD brains, and the RhoA-LIMK signaling axis reveals spatial dysregulation along the rostral-caudal plane dimensions.


Asunto(s)
Enfermedad de Alzheimer , Animales , Humanos , Ratones , Enfermedad de Alzheimer/metabolismo , Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Ratones Transgénicos , Transducción de Señal , Proteína de Unión al GTP rhoA/metabolismo , Quinasas Lim/metabolismo
10.
Adv Med Sci ; 68(2): 186-194, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37148787

RESUMEN

PURPOSE: Current medical treatment for asthma aims to inhibit airway smooth muscle (ASM) contraction and proliferation, however, the efficacy of available treatment options is unsatisfactory. Therefore, we explored the effect of LIM domain kinase (LIMK) inhibitor - LIMKi3, on ASM to improve the understanding of ASM contraction and proliferation mechanisms, and to investigate new therapeutic targets. MATERIALS AND METHODS: Asthma model was induced in rats by intraperitoneal injection of ovalbumin. Using phospho-specific antibodies, we examined LIMK, phosphorylated LIMK, cofilin and phosphorylated cofilin. ASM contraction was studied in organ bath experiments. ASM cells proliferation was studied with cell counting kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. RESULTS: Immunofluorescence indicated that LIMKs are expressed in ASM tissues. Western blot revealed that LIMK1 and phospho-cofilin were significantly elevated in asthma ASM tissues. The LIMK inhibitor, LIMKi3 (1 â€‹µM) could reduce cofilin phosphorylation and therefore inhibit contraction of ASM tissues, and induce actin filament breakdown as well as cell proliferation reduction in cultured human ASM cells. CONCLUSIONS: ASM contraction and proliferation in asthma may underlie the effects of LIMKs. Small molecule LIMK inhibitor, LIMKi3, might be a potential therapeutic strategy for asthma.


Asunto(s)
Asma , Quinasas Lim , Humanos , Ratas , Animales , Quinasas Lim/metabolismo , Asma/tratamiento farmacológico , Asma/metabolismo , Proliferación Celular , Contracción Muscular , Factores Despolimerizantes de la Actina/metabolismo , Factores Despolimerizantes de la Actina/farmacología
11.
Int Immunopharmacol ; 119: 110177, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37068336

RESUMEN

OBJECTIVES: Acute lung injury (ALI) poses a serious threat to human health globally, particularly with the Coronavirus 2019 (COVID-19) pandemic. Excessive recruitment and infiltration of neutrophils is the major etiopathogenesis of ALI. Esculin, also known as 6,7-dihydroxycoumarin, is a remarkable compound derived from traditional Chinese medicine Cortex fraxini. Accumulated evidence indicates that esculin has potent anti-inflammatory effects, but its pharmaceutical effect against ALI and potential mechanisms are still unclear. METHODS: This study evaluated the protective effect of esculin against ALI by histopathological observation and biochemical analysis of lung tissues and bronchoalveolar lavage fluid (BALF) in lipopolysaccharide (LPS)-challenged ALI mice in vivo. The effects of esculin on N-formyl-met-leu-phe (fMLP)-induced neutrophil migration and chemotaxis were quantitatively assessed using a Transwell assay and an automated cell imaging system equipped with a Zigmond chamber, respectively. The drug affinity responsive target stability (DARTS) assay, in vitro protein binding assay and molecular docking were performed to identify the potential therapeutic target of esculin and the potential binding sites and pattern. RESULTS: Esculin significantly attenuated LPS-induced lung pathological injury, reduced the levels of pro-inflammatory cytokines in both BALF and lung, and suppressed the activation of NF-κB signaling. Esculin also significantly reduced the number of total cells and neutrophils as well as myeloperoxidase (MPO) activity in the BALF. Esculin impaired neutrophil migration and chemotaxis as evidenced by the reduced migration distance and velocity. Furthermore, esculin remarkably inhibited Vav1 phosphorylation, suppressed Rac1 activation and the PAK1/LIMK1/cofilin signaling axis. Mechanistically, esculin could interact with ß2 integrin and then diminish its ligand affinity with intercellular adhesion molecule-1 (ICAM-1). CONCLUSIONS: Esculin inhibits ß2 integrin-dependent neutrophil migration and chemotaxis, blocks the cytoskeletal remodeling process required for neutrophil recruitment, thereby contributing to its protective effect against ALI. This study demonstrates the new therapeutic potential of esculin as a novel lead compound.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Ratones , Humanos , Animales , Lipopolisacáridos/farmacología , Esculina/metabolismo , Esculina/farmacología , Esculina/uso terapéutico , Infiltración Neutrófila , Simulación del Acoplamiento Molecular , COVID-19/metabolismo , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Pulmón/patología , FN-kappa B/metabolismo , Integrinas/metabolismo , Quinasas Lim/metabolismo
12.
Cells ; 12(5)2023 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-36899941

RESUMEN

LIM kinase 1 (LIMK1) and LIM kinase 2 (LIMK2) are serine/threonine and tyrosine kinases and the only two members of the LIM kinase family. They play a crucial role in the regulation of cytoskeleton dynamics by controlling actin filaments and microtubule turnover, especially through the phosphorylation of cofilin, an actin depolymerising factor. Thus, they are involved in many biological processes, such as cell cycle, cell migration, and neuronal differentiation. Consequently, they are also part of numerous pathological mechanisms, especially in cancer, where their involvement has been reported for a few years and has led to the development of a wide range of inhibitors. LIMK1 and LIMK2 are known to be part of the Rho family GTPase signal transduction pathways, but many more partners have been discovered over the decades, and both LIMKs are suspected to be part of an extended and various range of regulation pathways. In this review, we propose to consider the different molecular mechanisms involving LIM kinases and their associated signalling pathways, and to offer a better understanding of their variety of actions within the physiology and physiopathology of the cell.


Asunto(s)
Citoesqueleto , Quinasas Lim , Quinasas Lim/metabolismo , Fosforilación , Citoesqueleto/metabolismo , Citoesqueleto de Actina/metabolismo , Diferenciación Celular
13.
Oncogene ; 42(18): 1478-1491, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36922679

RESUMEN

Melanoma is the leading cause of skin cancer-related deaths, and current melanoma therapies, including targeted therapies and immunotherapies, benefit only a subset of metastatic melanoma patients due to either intrinsic or acquired resistance. LIM domain kinase 2 (LIMK2) is a serine/threonine kinase that plays an important role in the regulation of actin filament dynamics. Here, we show that LIMK2 is overexpressed in melanoma, and its genetic or pharmacological inhibition impairs melanoma tumor growth and metastasis in both cell culture and mice. To determine the mechanism by which LIMK2 promotes melanoma tumor growth and metastatic progression, we performed a phosphoproteomics analysis and identified G3BP1 as a key LIMK2 target, which mirrored the effects of LIMK2 inhibition when inhibited. To further determine the role of G3BP1 downstream of LIMK2, we knocked down the expression of G3BP1, performed RNA-seq analysis, and identified ESM1 as a downstream target of G3BP1. G3BP1 was required for ESM1 mRNA stability, and ESM1 ectopic expression rescued LIMK2 or G3BP1 inhibition-induced suppression of melanoma growth and metastatic attributes. These results collectively identify the LIMK2→G3BP1→ESM1 pathway as a facilitator of melanoma tumor growth and metastasis and document that LIMK2 is a therapeutically tractable target for melanoma therapy.


Asunto(s)
ADN Helicasas , Melanoma , Animales , Ratones , Apoptosis , ADN Helicasas/metabolismo , Quinasas Lim/genética , Quinasas Lim/metabolismo , Melanoma/tratamiento farmacológico , Melanoma/genética , Proteínas de Unión a Poli-ADP-Ribosa/metabolismo , ARN Helicasas/genética , ARN Helicasas/metabolismo , Proteínas con Motivos de Reconocimiento de ARN/genética , Proteínas con Motivos de Reconocimiento de ARN/metabolismo
14.
Environ Toxicol ; 38(5): 1038-1052, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36722453

RESUMEN

Metastasis is a leading cause to treatment failure in hepatocellular carcinoma (HCC) patients. Exosomes act as pivotal mediators in communication between different cells and exert effects on recipient cells by delivering bioactive cargoes, such as microRNAs (miRNAs). MiRNAs function in multiple steps of HCC development, including metastasis. MiR-374c-5p was previously identified as a tumor suppressor in some malignancies, while the current knowledge of its role in HCC metastasis is still limited. Herein, miR-374c-5p was found to be downregulated in HCC cell lines and clinical samples, and positively related with favorable prognosis in HCC patients. MiR-374c-5p transferred by exosomes derived from bone marrow mesenchymal stem cell (BMSC) suppressed migration, invasion and proliferation of HCC cells. LIMK1 was verified as downstream target gene of miR-374c-5p. Knockdown of LIMK1 reduced invasion, migration and proliferation of HCC cells, whereas overexpression functioned oppositely. The miR-374c-5p/LIMK1 axis suppressed epithelial-mesenchymal transition (EMT) by inactivating Wnt/ß-catenin pathway. In addition, miR-374c-5p was downregulated and LIMK1 upregulated in TGF-ß1 induced EMT. This EMT model could be reversed by LIMK1 silencing or miR-374c-5p overexpression. These results suggest that exo-miR-374c-5p suppresses EMT via targeting LIMK1-Wnt/ß-catenin axis and the axis is involved in TGF-ß1 induced metastasis of HCC, thereby identifying miR-374c-5p as a potential target for HCC treatment.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Células Madre Mesenquimatosas , MicroARNs , Humanos , Carcinoma Hepatocelular/patología , Neoplasias Hepáticas/patología , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta1/farmacología , Factor de Crecimiento Transformador beta1/metabolismo , beta Catenina/genética , beta Catenina/metabolismo , Transición Epitelial-Mesenquimal/genética , MicroARNs/genética , MicroARNs/metabolismo , Células Madre Mesenquimatosas/metabolismo , Línea Celular Tumoral , Regulación Neoplásica de la Expresión Génica , Movimiento Celular/genética , Proliferación Celular/genética , Quinasas Lim/genética , Quinasas Lim/metabolismo
15.
Environ Toxicol ; 38(5): 1063-1077, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36793247

RESUMEN

Leukemia is a type of disease in which hematopoietic stem cells proliferate clonally at the genetic level. We discovered previously by high-resolution mass spectrometry that diallyl disulfide (DADS), which is one of the effective ingredients of garlic, reduces the performance of RhoGDI2 from APL HL-60 cells. Although RhoGDI2 is oversubscribed in several cancer categories, the effect of RhoGDI2 in HL-60 cells has remained unexplained. We aimed to investigate the influence of RhoGDI2 on DADS-induced differentiation of HL-60 cells to elucidate the association among the effect of inhibition or over-expression of RhoGDI2 with HL-60 cell polarization, migration and invasion, which is important for establishing a novel generation of inducers to elicit leukemia cell polarization. Co-transfection with RhoGDI2-targeted miRNAs apparently decreases the malignant biological behavior of cells and upregulates cytopenias in DADS-treated HL-60 cell lines, which increases CD11b and decreases CD33 and mRNA levels of Rac1, PAK1 and LIMK1. Meanwhile, we generated HL-60 cell lines with high-expressing RhoGDI2. The proliferation, migration and invasion capacity of such cells were significantly increased by the treated with DADS, while the reduction capacity of the cells was decreased. There was a reduction in CD11b and an increase in CD33 production, as well as an increase in the mRNA levels of Rac1, PAK1 and LIMK1. It also confirmed that inhibition of RhoGDI2 attenuates the EMT cascade via the Rac1/Pak1/LIMK1 pathway, thereby inhibiting the malignant biological behavior of HL-60 cells. Thus, we considered that inhibition of RhoGDI2 expression might be a new therapeutic direction for the treatment of human promyelocytic leukemia. The anti-cancer property of DADS against HL-60 leukemia cells might be regulated by RhoGDI2 through the Rac1-Pak1-LIMK1 pathway, which provides new evidence for DADS as a clinical anti-cancer medicine.


Asunto(s)
Leucemia , Inhibidor beta de Disociación del Nucleótido Guanina rho , Humanos , Compuestos Alílicos/farmacología , Diferenciación Celular/efectos de los fármacos , Disulfuros/farmacología , Células HL-60/efectos de los fármacos , Células HL-60/metabolismo , Leucemia/metabolismo , Leucemia/patología , Quinasas Lim/genética , Quinasas Lim/metabolismo , Quinasas p21 Activadas/metabolismo , Quinasas p21 Activadas/farmacología , Proteína de Unión al GTP rac1/metabolismo , Proteína de Unión al GTP rac1/farmacología , Inhibidor beta de Disociación del Nucleótido Guanina rho/efectos de los fármacos , Inhibidor beta de Disociación del Nucleótido Guanina rho/metabolismo , ARN Mensajero , Invasividad Neoplásica/genética , Invasividad Neoplásica/patología
16.
Am J Respir Cell Mol Biol ; 68(4): 417-429, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36662576

RESUMEN

TAS2Rs (bitter taste receptors) are GPCRs (G protein-coupled receptors) expressed on human airway smooth muscle (HASM) cells; when activated by receptor agonists they evoke marked airway relaxation. In both taste and HASM cells, TAS2Rs activate a canonical Gßγ-mediated stimulation of Ca2+ release from intracellular stores by activation of PLCß (phospholipase Cß). Alone, this [Ca2+]i signaling does not readily account for relaxation, particularly since bronchoconstrictive agonists acting at Gq-coupled receptors also increase [Ca2+]i. We established that TAS2R14 activation in HASM promotes relaxation through F-actin (filamentous actin) severing. This destabilization of actin was from agonist-promoted activation (dephosphorylation) of cofilin, which was pertussis toxin sensitive. Cofilin dephosphorylation was due to TAS2R-mediated deactivation of LIM domain kinase. The link between early receptor action and the distal cofilin dephosphorylation was found to be the polarity protein partitioning defective 3 (Par3), a known binding partner with PLCß that inhibits LIM kinase. The physiologic relevance of this pathway was assessed using knock-downs of cofilin and Par3 in HASM cells and in human precision-cut lung slices. Relaxation by TAS2R14 agonists was ablated with knock-down of either protein as assessed by magnetic twisting cytometry in isolated cells or intact airways in the slices. Blocking [Ca2+]i release by TAS2R14 inhibited agonist-promoted cofilin dephosphorylation, confirming a role for [Ca2+]i in actin-modifying pathways. These results further elucidate the mechanistic basis of TAS2R-mediated HASM relaxation and point toward nodal points that may act as asthma or chronic obstructive pulmonary disease response modifiers or additional targets for novel bronchodilators.


Asunto(s)
Actinas , Asma , Receptores Acoplados a Proteínas G , Humanos , Actinas/metabolismo , Asma/metabolismo , Quinasas Lim/metabolismo , Pulmón/metabolismo , Relajación Muscular/fisiología , Receptores Acoplados a Proteínas G/metabolismo
18.
Int J Biochem Cell Biol ; 153: 106326, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36330887

RESUMEN

BACKGROUND: Post-induction hypotension, a common complication after propofol-based induction regimen, is a life-threatening challenge for anesthesiologists especially when unexpected pre-induction hypertension characterized by angiotensin release and increased vascular tone was presented by the same patient. Gap junctions (GJs) composed of connexin 43 (Cx43) have been considered a key factor in regulating vascular contraction and dilation. We aimed to explore the role of Cx43-GJs during peri-induction blood pressure fluctuation and elucidate the underlying mechanisms. METHODS: Human umbilical arterial smooth muscle cells (HUASMCs) were pretreated by short-term Angiotensin Ⅱ (Ang Ⅱ) with or without subsequent propofol treatment to simulate transient contraction and dilation of vascular smooth muscle cells during anesthesia induction. F-actin polymerization, a classic indicator of HUASMCs constriction, was determined by F-actin staining assay. Both the function and expression of Cx43-GJs during transient contraction and dilation of HUASMCs, and their potential regulation of downstream Ca2+/RhoA/LIMK2/Cofilin signaling pathway were explored via different targeting inhibitors and siRNAs. RESULTS: Ang Ⅱ pretreatment significantly induced F-actin polymerization that indicate cell contraction, accompanied by enhanced GJs function on HUASMCs. With the inhibition of Cx43 GJs by the specific inhibitor, Gap26, and Cx43-siRNA, Ang Ⅱ-induced F-actin polymerization was reversed accompanied with the decrease of intracellular Ca2+ mobility and the RhoA/LIMK2/Cofilin signaling pathway activity. We also noticed that propofol application could inhibit GJs function, the same as Gap26. Simultaneously, intracellular Ca2+ mobility and RhoA/LIMK2/Cofilin signaling pathway activity on HUASMCs were both downregulated, finally resulting in downstream reduction of F-actin polymerization. CONCLUSION: The function of Cx43-GJs lies in the center of Ang Ⅱ-induced contraction of HUASMCs, which potentially regulates intracellular Ca2+ mobility as well as RhoA/LIMK2/Cofilin signaling pathway activity. Propofol can reverse this effect induced by Ang Ⅱ through suppressing the function of Cx43-GJs.


Asunto(s)
Conexina 43 , Propofol , Humanos , Conexina 43/genética , Conexina 43/metabolismo , Factores Despolimerizantes de la Actina/metabolismo , Actinas/metabolismo , Propofol/metabolismo , Propofol/farmacología , Dilatación , Miocitos del Músculo Liso/metabolismo , Transducción de Señal , Angiotensina II/farmacología , Angiotensina II/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Quinasas Lim/metabolismo
19.
Medicine (Baltimore) ; 101(43): e31309, 2022 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-36316865

RESUMEN

The purpose of the study was to explore the relationship between multiple proteins belonging to the LIMK/Cofilin pathway, including LIMK1, LIMK2, Cofilin-1, and p-Cofilin-1 and clinical features of gastric cancer (GC) patients, including overall survival, TNM stages, and pathological subtypes. The expression of LIMK1, LIMK2, Cofilin-1 and p-Cofilin-1 in the GC tissues and adjacent normal stomach tissues from 141 patients were detected using immunohistochemistry (IHC) staining. Wilcoxon rank-sum test and Spearman rank correlation coefficients were used to measure the relationship between different TNM stages, pathological types, and selected parameters. OS was estimated using the Kaplan-Meier method and survival curves were compared using the log-rank test. Our results showed that, compared to those in the adjacent normal stomach tissues, LIMK1, LIMK2 and Cofilin-1 were up-regulated while p-Cofilin-1 was down-regulated in the GC tissues. LIMK1 level was positively correlated to the TNM stages of GC. According to the published dataset, the expression levels of both LIMK1 and LIMK2 were correlated to the overall survival time of GC patients. The level of Cofilin-1 was significantly different between GCs of different TNM stages. Moreover, most importantly, this is the first study to reveal that the level of Cofilin-1 is higher, and the level of p-Cofilin-1 is lower in the diffuse type of GC compared to that in intestinal type. Taken together, our study demonstrated that multiple factors in LIMK/Cofilin pathway including LIMK1, LIMK2, Cofilin-1, and p-Cofilin-1 were associated with the clinical and pathological features of GC, which is potentially helpful for the diagnosis and treatment of GC.


Asunto(s)
Cofilina 1 , Neoplasias Gástricas , Humanos , Quinasas Lim/metabolismo , Fosforilación , Neoplasias Gástricas/patología
20.
J Med Chem ; 65(20): 13705-13713, 2022 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-36205722

RESUMEN

LIM domain kinases 1 and 2 (LIMK1 and LIMK2) regulate actin dynamics and subsequently key cellular functions such as proliferation and migration. LIMK1 and LIMK2 phosphorylate and inactivate cofilin leading to increased actin polymerization. As a result, LIMK inhibitors are emerging as a promising treatment strategy for certain cancers and neurological disorders. High-quality chemical probes are required if the role of these kinases in health and disease is to be understood. To that end, we report the results of a comparative assessment of 17 reported LIMK1/2 inhibitors in a variety of in vitro enzymatic and cellular assays. Our evaluation has identified three compounds (TH-257, LIJTF500025, and LIMKi3) as potent and selective inhibitors suitable for use as in vitro and in vivo pharmacological tools for the study of LIMK function in cell biology.


Asunto(s)
Actinas , Quinasas Lim , Factores Despolimerizantes de la Actina/metabolismo , Quinasas Lim/química , Quinasas Lim/metabolismo , Fosforilación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...