Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros











Base de datos
Intervalo de año de publicación
1.
J Biol Chem ; 295(10): 3000-3016, 2020 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-31996375

RESUMEN

The mitogen-activated protein kinase (MAPK) cascade is an ancient and evolutionarily conserved signaling pathway involved in numerous physiological processes. Despite great advances in understanding MAPK-mediated regulation of adaptive immune responses in mammals, its contribution to T-cell immunity in early vertebrates remains unclear. Herein, we used Nile tilapia (Oreochromis niloticus) to investigate the regulatory roles of MAPK/extracellular signal-regulated kinase (Erk) signaling in ancestral T-cell immunity of jawed fish. We found that Nile tilapia possesses an evolutionarily conserved MAPK/Erk axis that is activated through a classical three-tier kinase cascade, involving sequential phosphorylation of RAF proto-oncogene serine/threonine-protein kinase (Raf), MAPK/Erk kinase 1/2 (Mek1/2), and Erk1/2. In Nile tilapia, MAPK/Erk signaling participates in adaptive immune responses during bacterial infection. Upon T-cell activation, the MAPK/Erk axis is robustly activated, and MAPK/Erk blockade by specific inhibitors severely impairs T-cell activation. Furthermore, signals from MAPK/Erk were indispensable for primordial T cells to proliferate and exert their effector functions. Mechanistically, activation of the MAPK/Erk axis promoted glycolysis via induction of the transcriptional regulator proto-oncogene c-Myc (c-Myc), to ensure the proper activation and proliferation of fish T cells. Our results reveal the regulatory mechanisms of MAPK/Erk signaling in T-cell immunity in fish and highlight a close link between immune signals and metabolic programs. We propose that regulation of T-cell immunity by MAPK/Erk is a basic and sophisticated strategy that evolved before the emergence of the tetrapod lineage. These findings shed light on the evolution of the adaptive immune system.


Asunto(s)
Cíclidos/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Proteínas de Peces/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Linfocitos T/inmunología , Inmunidad Adaptativa , Aeromonas hydrophila/patogenicidad , Animales , Cíclidos/inmunología , Evolución Molecular , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Quinasas MAP Reguladas por Señal Extracelular/clasificación , Enfermedades de los Peces/tratamiento farmacológico , Enfermedades de los Peces/inmunología , Enfermedades de los Peces/microbiología , Glucólisis , Interferón gamma/metabolismo , Activación de Linfocitos , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/antagonistas & inhibidores , Quinasas de Proteína Quinasa Activadas por Mitógenos/clasificación , Fosforilación , Filogenia , Proteínas Proto-Oncogénicas c-raf/metabolismo , Piridonas/uso terapéutico , Pirimidinonas/uso terapéutico , Linfocitos T/metabolismo
2.
Biochim Biophys Acta ; 1773(8): 1376-87, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17161475

RESUMEN

Mitogen-activated protein (MAP) kinases are a family of serine/threonine kinases that play a central role in transducing extracellular cues into a variety of intracellular responses ranging from lineage specification to cell division and adaptation. Fourteen MAP kinase genes have been identified in the human genome, which define 7 distinct MAP kinase signaling pathways. MAP kinases can be classified into conventional or atypical enzymes, based on their ability to get phosphorylated and activated by members of the MAP kinase kinase (MAPKK)/MEK family. Conventional MAP kinases comprise ERK1/ERK2, p38s, JNKs, and ERK5, which are all substrates of MAPKKs. Atypical MAP kinases include ERK3/ERK4, NLK and ERK7. Much less is known about the regulation, substrate specificity and physiological functions of atypical MAP kinases.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/química , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Secuencia de Aminoácidos , Animales , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/clasificación , Quinasas MAP Reguladas por Señal Extracelular/genética , Humanos , Sistema de Señalización de MAP Quinasas , Modelos Moleculares , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
3.
Brain Res ; 1054(2): 125-34, 2005 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-16084500

RESUMEN

We investigated the ability of GM1 to induce phosphorylation/activation of the extracellular-regulated protein kinases (ERKs) in the striatum, hippocampus and frontal cortex of aged male Sprague-Dawley rats. Three different treatment paradigms were used: a single application of GM1 to brain slices in situ, a single intracerebroventricular (icv) administration of GM1 in vivo, and chronic administration of GM1 in vivo. In situ, GM1 induced a rapid and transient activation of ERK1 and ERK 2 in both young and aged rats, and a similar effect was observed after stimulation with the neurotrophins NGF and BDNF. The aged brain appeared to respond more robustly to neurotrophic stimulation with the pERK2 response being significantly greater in the hippocampus and frontal cortex. Acute icv administration of GM1 resulted in short-lasting phosphorylation of ERKs in both aged groups, while chronic administration of GM1 induced a protracted phosphorylation of ERKs. Following chronic GM1 treatment, pERK2 levels in the aged hippocampus were elevated over young control animals. In agreement with reports that GM1 phosphorylates TrkA in vitro or in situ, treatment with GM1 increased the phosphorylation of TrkA in hippocampus of both young and aged animals. These observations indicate that the aged brain maintains the ability to respond to neurotrophic stimuli and put forward the proposition that the ERK cascade is associated with the action(s) of GM1 ganglioside in vivo.


Asunto(s)
Envejecimiento/fisiología , Encéfalo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Gangliósido G(M1)/administración & dosificación , Transducción de Señal/efectos de los fármacos , Factores de Edad , Animales , Western Blotting/métodos , Encéfalo/anatomía & histología , Encéfalo/metabolismo , Vías de Administración de Medicamentos , Esquema de Medicación , Activación Enzimática/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Quinasas MAP Reguladas por Señal Extracelular/clasificación , Flavonoides/farmacología , Técnicas In Vitro , Masculino , Proteína Básica de Mielina/metabolismo , Fosforilación/efectos de los fármacos , Ratas , Ratas Sprague-Dawley
4.
J Neurochem ; 94(2): 299-306, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15998281

RESUMEN

Previous studies have shown that N-methyl-D-aspartate (NMDA) receptor activation results in production of reactive oxygen species (ROS) and activation of extracellular signal-regulated kinase (ERK) in hippocampal area CA1. In addition, application of ROS to hippocampal slices has been shown to result in activation of ERK in area CA1. To determine whether these events were linked causally, we investigated whether ROS are required for NMDA receptor-dependent activation of ERK. In agreement with previous studies, we found that treatment of hippocampal slices with NMDA resulted in activation of ERK in area CA1. The NMDA receptor-dependent activation of ERK was either blocked or attenuated by a number of antioxidants, including the general antioxidant N-acetyl-L-cysteine (L-NAC), the superoxide-scavenging enzyme superoxide dismutase (SOD), the membrane-permeable SOD mimetic Mn(III) tetrakis (4-benzoic acid) porphyrin (MnTBAP), the hydrogen peroxide-scavenging enzyme catalase, and the catalase mimetic ebselen. The NMDA receptor-dependent activation of ERK also was blocked by the NADPH oxidase inhibitor diphenylene iodonium (DPI) and was absent in mice that lacked p47(phox), one of the required protein components of NADPH oxidase. Taken together, our results suggest that ROS production, especially superoxide production via NADPH oxidase, is required for NMDA receptor-dependent activation of ERK in hippocampal area CA1.


Asunto(s)
Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Hipocampo/citología , NADPH Oxidasas/metabolismo , Neuronas/fisiología , Receptores de N-Metil-D-Aspartato/fisiología , 6-Ciano 7-nitroquinoxalina 2,3-diona/farmacología , Acetilcisteína/análogos & derivados , Acetilcisteína/farmacología , Animales , Azoles/farmacología , Western Blotting/métodos , Catalasa/farmacología , Catecolaminas/farmacología , Agonistas de Dopamina , Interacciones Farmacológicas , Activación Enzimática/efectos de los fármacos , Activación Enzimática/fisiología , Inhibidores Enzimáticos/farmacología , Agonistas de Aminoácidos Excitadores/farmacología , Antagonistas de Aminoácidos Excitadores/farmacología , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Potenciales Postsinápticos Excitadores/efectos de la radiación , Quinasas MAP Reguladas por Señal Extracelular/clasificación , Depuradores de Radicales Libres/farmacología , Hipocampo/enzimología , Imidazolinas/farmacología , Técnicas In Vitro , Isoindoles , Lisina/análogos & derivados , Lisina/farmacología , Metaloporfirinas/farmacología , Ratones , Ratones Endogámicos C57BL , N-Metilaspartato/farmacología , NG-Nitroarginina Metil Éster/farmacología , Neuronas/efectos de los fármacos , Compuestos de Organoselenio/farmacología , Técnicas de Placa-Clamp/métodos , Fosforilación/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Superóxido Dismutasa/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA