Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
PLoS One ; 16(11): e0258657, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34735479

RESUMEN

Mitogen activated protein kinase kinase kinase (MAPKKK) form the upstream component of MAPK cascade. It is well characterized in several plants such as Arabidopsis and rice however the knowledge about MAPKKKs in tea plant is largely unknown. In the present study, MAPKKK genes of tea were obtained through a genome wide search using Arabidopsis thaliana as the reference genome. Among 59 candidate MAPKKK genes in tea, 17 genes were MEKK-like, 31 genes were Raf-like and 11 genes were ZIK- like. Additionally, phylogenetic relationships were established along with structural analysis, which includes gene structure, its location as well as conserved motifs, cis-acting regulatory elements and functional domain signatures that were systematically examined. Also, on the basis of one orthologous gene found between tea and Arabidopsis, functional interaction was carried out in C. sinensis based on an Arabidopsis association model. The expressional profiles indicated major involvement of MAPKKK genes from tea in response to various abiotic stress factors. Taken together, this study provides the targets for additional inclusive identification, functional study, and provides comprehensive knowledge for a better understanding of the MAPKKK cascade regulatory network in C. sinensis.


Asunto(s)
Camellia sinensis/genética , Genoma de Planta/genética , Quinasas Quinasa Quinasa PAM/genética , Filogenia , Arabidopsis/genética , Cromosomas de las Plantas/genética , Secuencia Conservada/genética , Duplicación de Gen/genética , Regulación de la Expresión Génica de las Plantas/genética , Quinasas Quinasa Quinasa PAM/clasificación , Sistema de Señalización de MAP Quinasas/genética , Familia de Multigenes/genética , Oryza/genética , Alineación de Secuencia , Estrés Fisiológico/genética
2.
PLoS One ; 16(4): e0250584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33891654

RESUMEN

Protein phosphorylation is regulated by the activity of enzymes generically known as kinases. One of those kinases is Mitogen-Activated Protein Kinases (MAPK), which operate through a phosphorylation cascade conformed by members from three related protein kinase families namely MAPK kinase kinase (MEKK), MAPK kinase (MEK), and MAPK; these three acts hierarchically. Establishing the evolution of these proteins in the plant kingdom is an interesting but complicated task because the current MAPK, MAPKK, and MAPKKK subfamilies arose from duplications and subsequent sub-functionalization during the early stage of the emergence of Viridiplantae. Here, an in silico genomic analysis was performed on 18 different plant species, which resulted in the identification of 96 genes not previously annotated as components of the MAPK (70) and MEK (26) families. Interestingly, a deeper analysis of the sequences encoded by such genes revealed the existence of putative domains not previously described as signatures of MAPK and MEK kinases. Additionally, our analysis also suggests the presence of conserved activation motifs besides the canonical TEY and TDY domains, which characterize the MAPK family.


Asunto(s)
Quinasas Quinasa Quinasa PAM/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Filogenia , Viridiplantae/clasificación , Secuencia de Aminoácidos/genética , Regulación de la Expresión Génica de las Plantas , Genómica/tendencias , Quinasas Quinasa Quinasa PAM/clasificación , Sistema de Señalización de MAP Quinasas , Quinasas de Proteína Quinasa Activadas por Mitógenos/clasificación , Familia de Multigenes/genética , Fosforilación/genética , Viridiplantae/genética
3.
PLoS One ; 12(6): e0179936, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28628649

RESUMEN

Protein kinases are critical drug targets for treating a large variety of human diseases. Type-III kinase inhibitors have attracted increasing attention as highly selective therapeutics. Thus, understanding the binding mechanism of existing type-III kinase inhibitors provides useful insights into designing new type-III kinase inhibitors. In this work, we have systematically studied the binding mode of MEK-targeted type-III inhibitors using structural systems pharmacology and molecular dynamics simulation. Our studies provide detailed sequence, structure, interaction-fingerprint, pharmacophore and binding-site information on the binding characteristics of MEK type-III kinase inhibitors. We hypothesize that the helix-folding activation loop is a hallmark allosteric binding site for type-III inhibitors. Subsequently, we screened and predicted allosteric binding sites across the human kinome, suggesting other kinases as potential targets suitable for type-III inhibitors.


Asunto(s)
Quinasas Quinasa Quinasa PAM/metabolismo , Inhibidores de Proteínas Quinasas/metabolismo , Regulación Alostérica , Secuencia de Aminoácidos , Sitios de Unión , Humanos , Ligandos , Quinasas Quinasa Quinasa PAM/antagonistas & inhibidores , Quinasas Quinasa Quinasa PAM/clasificación , Simulación de Dinámica Molecular , Filogenia , Inhibidores de Proteínas Quinasas/química , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína
4.
Dev Growth Differ ; 58(3): 260-9, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26948408

RESUMEN

Live cell imaging is a powerful technique to study cellular dynamics in vivo during animal development and regeneration. However, few live imaging methods have been reported for studying planarian regeneration. Here, we developed a simple method for steady visualization of gut tube remodeling during regeneration of a living freshwater planarian, Dugesia japonica. When planarians were fed blood several times, gut branches were well-visualized in living intact animals under normal bright-field illumination. Interestingly, tail fragments derived from these colored planarians enabled successive observation of the processes of the formation of a single anterior gut branch in the prepharyngeal region from the preexisting two posterior gut branches in the same living animals during head regeneration. Furthermore, we combined this method and RNA interference (RNAi) and thereby showed that a D. japonica raf-related gene (DjrafA) and mek-related gene (DjmekA) we identified both play a major role in the activation of extracellular signal-regulated kinase (ERK) signaling during planarian regeneration, as indicated by their RNAi-induced defects on gut tube remodeling in a time-saving initial screening using blood-feeding without immunohistochemical detection of the gut. Thus, this blood-feeding method is useful for live imaging of gut tube remodeling, and provides an advance for the field of regeneration study in planarians.


Asunto(s)
Sangre/metabolismo , Sistema Digestivo/metabolismo , Métodos de Alimentación , Planarias/fisiología , Regeneración/fisiología , Animales , Butadienos/farmacología , Diagnóstico por Imagen/métodos , Inhibidores Enzimáticos/farmacología , Fluorescencia , Inmunohistoquímica , Hibridación in Situ , Quinasas Quinasa Quinasa PAM/clasificación , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Sistema de Señalización de MAP Quinasas/genética , Sistema de Señalización de MAP Quinasas/fisiología , Nitrilos/farmacología , Planarias/genética , Planarias/metabolismo , Interferencia de ARN , Regeneración/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Xenopus laevis , Quinasas raf/clasificación , Quinasas raf/genética , Quinasas raf/metabolismo
5.
BMC Genomics ; 16: 228, 2015 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-25886731

RESUMEN

BACKGROUND: Brachypodium distachyon is emerging as a widely recognized model plant that has very close relations with several economically important Poaceae species. MAPK cascade is known to be an evolutionarily conserved signaling module involved in multiple stresses. Although the gene sequences of MAPK and MAPKK family have been fully identified in B. distachyon, the information related to the upstream MAPKKK gene family especially the regulatory network among MAPKs, MAPKKs and MAPKKKs upon multiple stresses remains to be understood. RESULTS: In this study, we have identified MAPKKKs which belong to the biggest gene family of MAPK cascade kinases. We have systematically investigated the evolution of whole MAPK cascade kinase gene family in terms of gene structures, protein structural organization, chromosomal localization, orthologs construction and gene duplication analysis. Our results showed that most BdMAPK cascade kinases were located at the low-CpG-density region, and the clustered members in each group shared similar structures of the genes and proteins. Synteny analysis showed that 62 or 21 pairs of duplicated orthologs were present between B. distachyon and Oryza sativa, or between B. distachyon and Arabidopsis thaliana respectively. Gene expression data revealed that BdMAPK cascade kinases were rapidly regulated by stresses and phytohormones. Importantly, we have constructed a regulation network based on co-expression patterns of the expression profiles upon multiple stresses performed in this study. CONCLUSIONS: BdMAPK cascade kinases were involved in the signaling pathways of multiple stresses in B. distachyon. The network of co-expression regulation showed the most of duplicated BdMAPK cascade kinase gene orthologs demonstrated their convergent function, whereas few of them developed divergent function in the evolutionary process. The molecular evolution analysis of identified MAPK family genes and the constructed MAPK cascade regulation network under multiple stresses provide valuable information for further investigation of the functions of BdMAPK cascade kinase genes.


Asunto(s)
Brachypodium/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes , Genes de Plantas , Sistema de Señalización de MAP Quinasas/genética , Brachypodium/enzimología , Evolución Molecular , Duplicación de Gen , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , Quinasas Quinasa Quinasa PAM/clasificación , Quinasas Quinasa Quinasa PAM/genética , Quinasas Quinasa Quinasa PAM/metabolismo , Quinasas de Proteína Quinasa Activadas por Mitógenos/clasificación , Quinasas de Proteína Quinasa Activadas por Mitógenos/genética , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Proteínas Quinasas Activadas por Mitógenos/clasificación , Proteínas Quinasas Activadas por Mitógenos/genética , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Familia de Multigenes , Filogenia , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética
6.
BMB Rep ; 44(3): 187-92, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21429297

RESUMEN

TGF-Β activated kinase-1 (TAK1) plays a pivotal role in developmental processes in many species. Previous research has mainly focused on the function of TAK1 in model organisms, and little is known about the function of TAK1 in hymenoptera insects. Here, we isolated and characterized the TAK1 gene from Apis cerana cerana. Promoter analysis of AccTAK1 revealed the presence of transcription factor binding sites related to early development. Real-time quantitative PCR and immunohistochemistry experiments revealed that AccTAK1 was expressed at high levels in fourth instar larvae, primarily in the abdomen, in the intestinal wall cells of the midgut and in the secretory cells of the salivary glands. In addition, AccTAK1 expression in fourth instar larvae could be dramatically induced by treatment with pesticides and organic solvents. These observations suggest that AccTAK1 may be involved in the regulation of early development in the larval salivary gland and midgut.


Asunto(s)
Abejas/crecimiento & desarrollo , Abejas/genética , Quinasas Quinasa Quinasa PAM/genética , Secuencia de Aminoácidos , Animales , Abejas/anatomía & histología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica/efectos de los fármacos , Larva/anatomía & histología , Larva/fisiología , Quinasas Quinasa Quinasa PAM/clasificación , Quinasas Quinasa Quinasa PAM/metabolismo , Datos de Secuencia Molecular , Plaguicidas/farmacología , Filogenia , Regiones Promotoras Genéticas , Alineación de Secuencia , Transducción de Señal/fisiología , Solventes/farmacología , Distribución Tisular
7.
DNA Res ; 17(3): 139-53, 2010 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-20395279

RESUMEN

Mitogen-Activated Protein Kinase Kinase Kinases (MAPKKKs) are important components of MAPK cascades, which are universal signal transduction modules and play important role in plant growth and development. In the sequenced Arabidopsis genome 80 MAPKKKs were identified and currently being analysed for its role in different stress. In rice, economically important monocot cereal crop only five MAPKKKs were identified so far. In this study using computational analysis of sequenced rice genome we have identified 75 MAPKKKs. EST hits and full-length cDNA sequences (from KOME or Genbank database) of 75 MAPKKKs supported their existence. Phylogenetic analyses of MAPKKKs from rice and Arabidopsis have classified them into three subgroups, which include Raf, ZIK and MEKK. Conserved motifs in the deduced amino acid sequences of rice MAPKKKs strongly supported their identity as members of Raf, ZIK and MEKK subfamilies. Further expression analysis of the MAPKKKs in MPSS database revealed that their transcripts were differentially regulated in various stress and tissue-specific libraries.


Asunto(s)
Biología Computacional , Quinasas Quinasa Quinasa PAM/genética , Oryza/genética , Proteínas de Plantas/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genoma de Planta , Quinasas Quinasa Quinasa PAM/clasificación , Datos de Secuencia Molecular , Filogenia , Homología de Secuencia de Aminoácido , Especificidad de la Especie
8.
Mol Plant Microbe Interact ; 21(5): 525-34, 2008 May.
Artículo en Inglés | MEDLINE | ID: mdl-18393612

RESUMEN

Insertional mutagenesis of Magnaporthe oryzae led to the identification of MCK1, a pathogenicity gene predicted to encode mitogen-activated protein kinase kinase kinase (MAPKKK) homologous to BCK1 in Saccharomyces cerevisiae. Targeted disruption of MCK1 resulted in the fungus undergoing autolysis and showing hypersensitivity to cell-wall-degrading enzyme. The mck1 produced significantly reduced numbers of conidia and developed appressoria in a slightly retarded manner compared with the wild type. Appressorium of the mck1 mutant was unable to penetrate into plant tissues, thereby rendering the mutant nonpathogenic. Cytorrhysis assay and monitoring of lipid mobilization suggested that the appressorial wall was altered, presumably affecting the level of turgor pressure within appressorium. Furthermore, the mck1 mutant failed to grow inside plant tissue. Complementation of the mutated gene restored its ability to cause disease symptoms, demonstrating that MCK1 is required for fungal pathogenicity. Taken together, our results suggest that MCK1 is an MAPKKK involved in maintaining cell wall integrity of M. oryzae, and that remodeling of the cell wall in response to host environments is essential for fungal pathogenesis.


Asunto(s)
Pared Celular/metabolismo , Proteínas Fúngicas/metabolismo , Quinasas Quinasa Quinasa PAM/metabolismo , Magnaporthe/metabolismo , Oryza/microbiología , Pared Celular/ultraestructura , Proteínas Fúngicas/clasificación , Proteínas Fúngicas/genética , Quinasas Quinasa Quinasa PAM/clasificación , Quinasas Quinasa Quinasa PAM/genética , Magnaporthe/genética , Magnaporthe/patogenicidad , Microscopía Electrónica de Rastreo , Mutación , Filogenia , Enfermedades de las Plantas/microbiología , Reacción en Cadena de la Polimerasa/métodos , Virulencia/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...