Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
G3 (Bethesda) ; 13(3)2023 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-36653023

RESUMEN

The Germinal Center Kinase III (GckIII) pathway is a Hippo-like kinase module defined by sequential activation of Ste20 kinases Thousand and One (Tao) and GckIII, followed by nuclear dbf2-related (NDR) kinase Tricornered (Trc). We previously uncovered a role for the GckIII pathway in Drosophila melanogaster tracheal (respiratory) tube morphology. The trachea form a network of branched epithelial tubes essential for oxygen transport, and are structurally analogous to branched tubular organs in vertebrates, such as the vascular system. In the absence of GckIII pathway function, aberrant dilations form in tracheal tubes characterized by mislocalized junctional and apical proteins, suggesting that the pathway is important in maintaining tube integrity in development. Here, we observed a genetic interaction between trc and Cerebral cavernous malformations 3 (Ccm3), the Drosophila ortholog of a human vascular disease gene, supporting our hypothesis that the GckIII pathway functions downstream of Ccm3 in trachea, and potentially in the vertebrate cerebral vasculature. However, how GckIII pathway signaling is regulated and the mechanisms that underpin its function in tracheal development are unknown. We undertook biochemical and genetic approaches to identify proteins that interact with Trc, the most downstream GckIII pathway kinase. We found that known GckIII and NDR scaffold proteins are likely to control GckIII pathway signaling in tracheal development, consistent with their conserved roles in Hippo-like modules. Furthermore, we show genetic interactions between trc and multiple enzymes in glycolysis and oxidative phosphorylation, suggesting a potential function of the GckIII pathway in integrating cellular energy requirements with maintenance of tube integrity.


Asunto(s)
Proteínas de Drosophila , Proteínas Serina-Treonina Quinasas , Animales , Humanos , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Quinasas del Centro Germinal/genética , Quinasas del Centro Germinal/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Transducción de Señal
2.
Aging (Albany NY) ; 14(15): 6255-6268, 2022 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-35963645

RESUMEN

Diabetic retinopathy (DR) is an important ocular vascular disease in working-age adults. However, the molecular mechanism underlying retinal vascular dysfunction is still not fully understood in DR. Circular RNAs have been recognized as the crucial regulators in many biological processes and human diseases. Herein, we determined the role of circular RNA-MAP4K2 (cMAP4K2) in diabetes-induced retinal vascular dysfunction. The results showed that high glucose treatment led to increased levels of cMAP4K2 expression in vitro and in vivo. Silencing of cMAP4K2 could reduce endothelial cell viability, proliferation, migration, and tube formation in vitro and alleviate retinal vascular dysfunction in vivo as shown by decreased vascular leakage and inflammation. By contrast, cMAP4K2 overexpression had an opposite effect on retinal vascular dysfunction. Mechanistically, cMAP4K2 acted as miR-377 sponge to affect the biological activity of miR-377, which led to increased expression of vascular endothelial growth factor A (VEGFA). Clinically, cMAP4K2 expression was significantly up-regulated in the clinical sample of DR patients. Collectively, cMAP4K2 is shown as a potential target for the diagnosis and treatment of diabetic retinopathy.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Quinasas del Centro Germinal/metabolismo , MicroARNs , Proliferación Celular , Diabetes Mellitus/metabolismo , Retinopatía Diabética/genética , Retinopatía Diabética/metabolismo , Células Endoteliales/metabolismo , Glucosa/metabolismo , Humanos , MicroARNs/metabolismo , ARN Circular/genética , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo
3.
Mol Med Rep ; 25(5)2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35293603

RESUMEN

Type 2 diabetes mellitus (T2DM) is a metabolic disorder characterized by persistent hyperglycemia and is associated with serious complications. The risk factors for T2DM include both genetic and lifestyle factors. Genome­wide association studies have indicated the association of genetic variations with many diseases, including T2DM. Glucokinase (GCK) plays a key role in the regulation of insulin release in the pancreas and catalyzes the first step in glycolysis in the liver. Genetic alterations in the GCK gene have been implicated in both hyperglycemia and hypoglycemia. MicroRNAs (miRNAs/miRs) are small non­coding RNA molecules that are involved in the important physiological processes including glucose metabolism. In the present study, the association of the single nucleotide polymorphisms (SNPs) in the GCK, MIR­196A­2 and MIR­423 genes with susceptibility to T2DM in patients from two regions of Saudi Arabia were examined, using the tetra­primer amplification refractory mutation system. The results showed that the AA genotype and the A allele of GCK rs1799884 were associated with T2DM [odds ratio (OR)=2.25, P=0.032 and OR=1.55, P=0.021, respectively]. Likewise, the CT genotype and T allele of MIR­196A­2 rs11614913 were associated with an increased risk of T2DM (OR=2.36, P=0.0059 and OR=1.74, P=0.023, respectively). In addition, the CA genotype of MIR­423 rs6505162 C>A was found to be linked with T2DM (OR=2.12 and P=0.021). It was concluded in the present research study that gene variations in GCK, MIR­196A­2 and MIR­423 are potentially associated with an increased risk of T2DM. These results, in the future, may help in the identification and stratification of individuals susceptible to T2DM. Future longitudinal studies with larger sample sizes and in different ethnic populations are recommended to validate these findings.


Asunto(s)
Diabetes Mellitus Tipo 2 , Quinasas del Centro Germinal/metabolismo , MicroARNs , Estudios de Casos y Controles , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Glucoquinasa/genética , Humanos , MicroARNs/genética , Polimorfismo de Nucleótido Simple , Arabia Saudita
4.
Stroke ; 53(3): 976-986, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35130716

RESUMEN

BACKGROUND: Cavernous cerebral malformations can arise because of mutations in the CCM1, CCM2, or CCM3 genes, and lack of Cdc42 has also been reported to induce these malformations in mice. However, the role of the CCM3 (cerebral cavernous malformation 3)-associated kinases in cavernoma development is not known, and we, therefore, have investigated their role in the process. METHODS: We used a combination of an in vivo approach, using mice genetically modified to be deficient in the CCM3-associated kinases STK24 and STK25 (serine/threonine kinases 24 and 25), and the in vitro model of human endothelial cells in which expression of STK24 and STK25 was inhibited by RNA interference. RESULTS: Mice deficient for both Stk24 and Stk25, but not for either of them individually, developed aggressive vascular lesions with the characteristics of cavernomas at an early age. Stk25 deficiency also gave rise to vascular anomalies in the context of Stk24 heterozygosity. Human endothelial cells deficient for both kinases phenocopied several of the consequences of CCM3 loss, and single STK25 deficiency also induced KLF2 expression, Golgi dispersion, altered distribution of ß-catenin, and appearance of stress fibers. CONCLUSIONS: The CCM3-associated kinases STK24 and STK25 play a major role in the inhibition of cavernoma development.


Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Quinasas del Centro Germinal/genética , Hemangioma Cavernoso del Sistema Nervioso Central/genética , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas Serina-Treonina Quinasas/genética , Animales , Neoplasias del Sistema Nervioso Central/metabolismo , Quinasas del Centro Germinal/metabolismo , Hemangioma Cavernoso del Sistema Nervioso Central/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Ratones Noqueados , Fosforilación , Proteínas Serina-Treonina Quinasas/metabolismo
5.
Blood ; 137(13): 1754-1764, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33036022

RESUMEN

In multiple myeloma (MM), frequent mutations of NRAS, KRAS, or BRAF are found in up to 50% of newly diagnosed patients. The majority of the NRAS, KRAS, and BRAF mutations occur in hotspots causing constitutive activation of the corresponding proteins. Thus, targeting RAS mutation in MM will increase therapeutic efficiency and potentially overcome drug resistance. We identified germinal center kinase (GCK) as a novel therapeutic target in MM with RAS mutation. GCK knockdown (KD) in MM cells demonstrated in vitro and in vivo that silencing of GCK induces MM cell growth inhibition, associated with blocked MKK4/7-JNK phosphorylation and impaired degradation of IKZF1/3, BCL-6, and c-MYC. These effects were rescued by overexpression of a short hairpin RNA (shRNA)-resistant GCK, thereby excluding the potential off-target effects of GCK KD. In contrast, overexpression of shRNA-resistant GCK kinase-dead mutant (K45A) inhibited MM cell proliferation and failed to rescue the effects of GCK KD on MM growth inhibition, indicating that GCK kinase activity is critical for regulating MM cell proliferation and survival. Importantly, the higher sensitivity to GCK KD in RASMut cells suggests that targeting GCK is effective in MM, which harbors RAS mutations. In accordance with the effects of GCK KD, the GCK inhibitor TL4-12 dose-dependently downregulated IKZF1 and BCL-6 and led to MM cell proliferation inhibition accompanied by induction of apoptosis. Here, our data identify GCK as a novel target in RASMut MM cells, providing a rationale to treat RAS mutations in MM. Furthermore, GCK inhibitors might represent an alternative therapy to overcome immunomodulatory drug resistance in MM.


Asunto(s)
Silenciador del Gen , Quinasas del Centro Germinal/genética , Mieloma Múltiple/terapia , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas ras/genética , Animales , Línea Celular Tumoral , Femenino , Regulación Neoplásica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Terapia Genética , Quinasas del Centro Germinal/metabolismo , Humanos , Ratones SCID , Terapia Molecular Dirigida , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Mutación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos
6.
Proc Natl Acad Sci U S A ; 117(52): 33597-33607, 2020 12 29.
Artículo en Inglés | MEDLINE | ID: mdl-33318207

RESUMEN

Axon injury is a hallmark of many neurodegenerative diseases, often resulting in neuronal cell death and functional impairment. Dual leucine zipper kinase (DLK) has emerged as a key mediator of this process. However, while DLK inhibition is robustly protective in a wide range of neurodegenerative disease models, it also inhibits axonal regeneration. Indeed, there are no genetic perturbations that are known to both improve long-term survival and promote regeneration. To identify such a neuroprotective target, we conducted a set of complementary high-throughput screens using a protein kinase inhibitor library in human stem cell-derived retinal ganglion cells (hRGCs). Overlapping compounds that promoted both neuroprotection and neurite outgrowth were bioinformatically deconvoluted to identify specific kinases that regulated neuronal death and axon regeneration. This work identified the role of germinal cell kinase four (GCK-IV) kinases in cell death and additionally revealed their unexpected activity in suppressing axon regeneration. Using an adeno-associated virus (AAV) approach, coupled with genome editing, we validated that GCK-IV kinase knockout improves neuronal survival, comparable to that of DLK knockout, while simultaneously promoting axon regeneration. Finally, we also found that GCK-IV kinase inhibition also prevented the attrition of RGCs in developing retinal organoid cultures without compromising axon outgrowth, addressing a major issue in the field of stem cell-derived retinas. Together, these results demonstrate a role for the GCK-IV kinases in dissociating the cell death and axonal outgrowth in neurons and their druggability provides for therapeutic options for neurodegenerative diseases.


Asunto(s)
Axones/enzimología , Axones/patología , Sistema Nervioso Central/patología , Quinasas del Centro Germinal/metabolismo , Regeneración Nerviosa , Animales , Secuencia de Bases , Sistemas CRISPR-Cas/genética , Muerte Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Dependovirus/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones Endogámicos C57BL , Regeneración Nerviosa/efectos de los fármacos , Proyección Neuronal/efectos de los fármacos , Traumatismos del Nervio Óptico/metabolismo , Traumatismos del Nervio Óptico/patología , Organoides/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Transducción de Señal/efectos de los fármacos
7.
Int J Mol Sci ; 21(20)2020 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-33092268

RESUMEN

The epidermal growth factor receptor (EGFR) signaling is important for normal development, such as vulval development in Caenorhabditis elegans, and hyperactivation of the EGFR is often associated with cancer development. Our previous report demonstrated the multivulva (Muv) phenotype, a tumor model in C. elegans (jgIs25 strain) by engineering LET-23/EGFR with a TKI-resistant human EGFR T790-L858 mutant. Because Rab proteins regulate vesicle transport, which is important for receptor signaling, we screened the RNAi in the jgIs25 strain to find the Rabs critical for Muv formation. Herein, we show that rab-8 RNAi and the rab-8 (-/-) mutation effectively reduce Muv formation. We demonstrate that RABN-8, an ortholog of Rabin8, known as a GEF for Rab8, is also required for Muv formation by promoting the secretion of EGL-17/FGF from vulval precursor cells. In addition, FGFR inhibitors decreased Muv formation mediated by mutant EGFR. Our data suggest that Rab8 and Rabin8 mediate Muv formation through FGF secretion in the EGFR-TKI-resistant nematode model. Furthermore, FGFR-TKIs more effectively inhibit the growth of lung cancer cell lines in H1975 (EGFR T790M-L858R; EGFR-TKI-resistant) than H522 (wild-type EGFR) and H1650 (EGFR exon 19 deletion; EGFR-TKI-sensitive) cells, suggesting that FGFR-TKIs could be used to control cancers with EGFR-TKI-resistant mutations.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/metabolismo , Receptores ErbB/metabolismo , Quinasas del Centro Germinal/metabolismo , Neoplasias Pulmonares/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas de Unión al GTP rab/metabolismo , Animales , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Modelos Animales de Enfermedad , Receptores ErbB/genética , Clorhidrato de Erlotinib/farmacología , Gefitinib/farmacología , Quinasas del Centro Germinal/genética , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Mutación , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Unión al GTP rab/genética
8.
Mol Biol Rep ; 47(9): 6759-6768, 2020 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-32860162

RESUMEN

Maturity-onset diabetes of the young (MODY) is a form of monogenic diabetes caused by the variants in MODY-related genes. In addition to coding variants, variants in the promoter region of MODY-related genes can cause the disease as well. In this study, we screened the promoter regions of the most common MODY-related genes GCK, HNF1A, HNF4A and HNF1B in our cohort of 29 MODY patients. We identified one genetic variant in the HNF1A gene, a 7 bp insertion c.-154-160insTGGGGGT, and three variants in the GCK gene, -282C>T; -194A>G; 402C>G appearing as set. Chloramphenicol acetyltransferase (CAT) assay was performed to test the effect of the 7 bp insertion and the variant set on the activity of the reporter gene in HepG2 and RIN-5F cell, respectively, where a decreasing trend was observed for both variants. In silico analysis and electrophoretic mobility shift assay showed that the 7 bp insertion did not create the binding site for new transcriptional factors, but gave rise to additional binding sites for the existing ones. Results from our study indicated that the 7 bp insertion in the HNF1A gene could be associated with the patient's diabetes. As for the GCK variant set, it is probably not associated with diabetes in patients, but it may modify the fasting glucose level by causing small elevation in variant set carriers. We have presented two promoter variants in MODY-related genes. Variant in the HNF1A gene is presumed to be disease-causing and the GCK promoter variant set could be a phenotype modifier.


Asunto(s)
Diabetes Mellitus Tipo 2/genética , Quinasas del Centro Germinal/genética , Factor Nuclear 1-alfa del Hepatocito/genética , Estudios de Cohortes , Diabetes Mellitus Tipo 2/metabolismo , Estudios de Asociación Genética , Genotipo , Quinasas del Centro Germinal/metabolismo , Células Hep G2 , Factor Nuclear 1-alfa del Hepatocito/metabolismo , Heterocigoto , Humanos , Mutación , Fenotipo , Polimorfismo de Nucleótido Simple , Regiones Promotoras Genéticas
9.
Methods Mol Biol ; 2152: 437-443, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32524571

RESUMEN

One of the CCM genes, CCM3/PDCD10, binds to the protein kinase family GCKIII, which comprises MST3/STK24, SOK1/STK25, and MST4/STK26. These proteins have been shown to have the same effect as CCM3, both in endothelial cells and in animal models such as zebrafish and are most likely involved in CCM pathogenesis. We describe here an in vitro kinase assay of GCKIII proteins which can be used to study their regulation in endothelial and other cells under different circumstances.


Asunto(s)
Pruebas de Enzimas , Quinasas del Centro Germinal/metabolismo , Animales , Activación Enzimática , Pruebas de Enzimas/métodos , Hepatocitos/enzimología
10.
EMBO J ; 39(12): e103499, 2020 06 17.
Artículo en Inglés | MEDLINE | ID: mdl-32368833

RESUMEN

Primary cilia are antenna-like organelles on the surface of most mammalian cells that receive sonic hedgehog (Shh) signaling in embryogenesis and carcinogenesis. Cellular cholesterol functions as a direct activator of a seven-transmembrane oncoprotein called Smoothened (Smo) and thereby induces Smo accumulation on the ciliary membrane where it transduces the Shh signal. However, how cholesterol is supplied to the ciliary membrane remains unclear. Here, we report that peroxisomes are essential for the transport of cholesterol into the ciliary membrane. Zellweger syndrome (ZS) is a peroxisome-deficient hereditary disorder with several ciliopathy-related features and cells from these patients showed a reduced cholesterol level in the ciliary membrane. Reverse genetics approaches revealed that the GTP exchange factor Rabin8, the Rab GTPase Rab10, and the microtubule minus-end-directed kinesin KIFC3 form a peroxisome-associated complex to control the movement of peroxisomes along microtubules, enabling communication between peroxisomes and ciliary pocket membranes. Our findings suggest that insufficient ciliary cholesterol levels may underlie ciliopathies.


Asunto(s)
Colesterol/metabolismo , Cilios/metabolismo , Síndrome de Zellweger/metabolismo , Células Cultivadas , Colesterol/genética , Cilios/genética , Cilios/patología , Quinasas del Centro Germinal/genética , Quinasas del Centro Germinal/metabolismo , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Microtúbulos/genética , Microtúbulos/metabolismo , Microtúbulos/patología , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Síndrome de Zellweger/genética , Síndrome de Zellweger/patología , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
11.
Proc Natl Acad Sci U S A ; 117(7): 3789-3796, 2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-32015134

RESUMEN

The facultative intracellular pathogen Listeria monocytogenes uses an actin-based motility process to spread within human tissues. Filamentous actin from the human cell forms a tail behind bacteria, propelling microbes through the cytoplasm. Motile bacteria remodel the host plasma membrane into protrusions that are internalized by neighboring cells. A critical unresolved question is whether generation of protrusions by Listeria involves stimulation of host processes apart from actin polymerization. Here we demonstrate that efficient protrusion formation in polarized epithelial cells involves bacterial subversion of host exocytosis. Confocal microscopy imaging indicated that exocytosis is up-regulated in protrusions of Listeria in a manner that depends on the host exocyst complex. Depletion of components of the exocyst complex by RNA interference inhibited the formation of Listeria protrusions and subsequent cell-to-cell spread of bacteria. Additional genetic studies indicated important roles for the exocyst regulators Rab8 and Rab11 in bacterial protrusion formation and spread. The secreted Listeria virulence factor InlC associated with the exocyst component Exo70 and mediated the recruitment of Exo70 to bacterial protrusions. Depletion of exocyst proteins reduced the length of Listeria protrusions, suggesting that the exocyst complex promotes protrusion elongation. Collectively, these results demonstrate that Listeria exploits host exocytosis to stimulate intercellular spread of bacteria.


Asunto(s)
Exocitosis , Listeria monocytogenes/fisiología , Listeriosis/microbiología , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células CACO-2 , Quinasas del Centro Germinal/genética , Quinasas del Centro Germinal/metabolismo , Interacciones Huésped-Patógeno , Humanos , Listeria monocytogenes/genética , Listeriosis/genética , Listeriosis/metabolismo , Listeriosis/fisiopatología , Unión Proteica , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo
12.
J Biol Chem ; 294(42): 15418-15434, 2019 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-31467083

RESUMEN

The primary cilium is a cellular sensor that detects light, chemicals, and movement and is important for morphogen and growth factor signaling. The small GTPase Rab11-Rab8 cascade is required for ciliogenesis. Rab11 traffics the guanine nucleotide exchange factor (GEF) Rabin8 to the centrosome to activate Rab8, needed for ciliary growth. Rabin8 also requires the transport particle protein complex (TRAPPC) proteins for centrosome recruitment during ciliogenesis. Here, using an MS-based approach for identifying Rabin8-interacting proteins, we identified C7orf43 (also known as microtubule-associated protein 11 (MAP11)) as being required for ciliation both in human cells and zebrafish embryos. We find that C7orf43 directly binds to Rabin8 and that C7orf43 knockdown diminishes Rabin8 preciliary centrosome accumulation. Interestingly, we found that C7orf43 co-sediments with TRAPPII complex subunits and directly interacts with TRAPPC proteins. Our findings establish that C7orf43 is a TRAPPII-specific complex component, referred to here as TRAPPC14. Additionally, we show that TRAPPC14 is dispensable for TRAPPII complex integrity but mediates Rabin8 association with the TRAPPII complex. Finally, we demonstrate that TRAPPC14 interacts with the distal appendage proteins Fas-binding factor 1 (FBF1) and centrosomal protein 83 (CEP83), which we show here are required for GFP-Rabin8 centrosomal accumulation, supporting a role for the TRAPPII complex in tethering preciliary vesicles to the mother centriole during ciliogenesis. In summary, our findings have revealed an uncharacterized TRAPPII-specific component, C7orf43/TRAPPC14, that regulates preciliary trafficking of Rabin8 and ciliogenesis and support previous findings that the TRAPPII complex functions as a membrane tether.


Asunto(s)
Centriolos/metabolismo , Cilios/metabolismo , Vesículas Citoplasmáticas/metabolismo , Quinasas del Centro Germinal/metabolismo , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Centriolos/genética , Cilios/genética , Vesículas Citoplasmáticas/genética , Quinasas del Centro Germinal/genética , Humanos , Proteínas Asociadas a Microtúbulos/genética , Morfogénesis , Unión Proteica , Pez Cebra
13.
Biochemistry ; 58(33): 3546-3554, 2019 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-31361120

RESUMEN

GTPases are key players during cellular signaling. Phosphorylation of Rab proteins, which belong to the Ras superfamily of small GTPases regulating intracellular transport, has been implicated in the pathogenesis of Parkinson's disease. For Rab8a, it was shown that serine 111 phosphorylation (pS111) is dependent on the protein kinase PINK1 and that mimicking the phosphorylation at S111 by a serine/glutamate substitution (S111E) impaired Rab8a activation by its cognate nucleotide exchange factor (GEF) Rabin8. However, Ser111 is not part of the interface of the Rab8a:Rabin8 complex. Here, we performed comparative molecular dynamics and free energy simulations on Rab8a and Rab8a:Rabin8 complexes to elucidate the molecular details of how pS111 and S111E may influence the interaction with Rabin8. The simulations indicate that S111E and pS111 establish an intramolecular interaction with arginine 79 (R79). The interaction persists in the complex and perturbs a favorable intermolecular salt-bridge contact between R79 in Rab8a and aspartate 187 in Rabin8. Binding free energy analysis reveals that S111E and pS111, as well as the R79A mutation, drastically decrease the binding affinity for Rabin8. Combining the R79A mutation with S111E or pS111 nearly diminishes Rab8a-Rabin8 binding. In vitro experiments confirm our computational results showing a >80% decrease in the nucleotide exchange rate of the respective Rab8a mutants in the presence of Rabin8 compared to that of the wild type. In addition to insights into how S111 phosphorylation of Rab8a influences GEF-mediated activation, the simulations demonstrate how side chain modifications in general can allosterically influence the surface side chain interaction network between binding partners.


Asunto(s)
Quinasas del Centro Germinal/metabolismo , Dominios y Motivos de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Proteínas de Unión al GTP rab/metabolismo , Regulación Alostérica , Simulación por Computador , Humanos , Mutación , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/metabolismo , Fosforilación , Procesamiento Proteico-Postraduccional , Proteínas de Unión al GTP rab/genética
14.
Oxid Med Cell Longev ; 2019: 9148535, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31214284

RESUMEN

Oxidative stress is detrimental to animals and can depress the growth performance and regulate the gene expression of animals. However, it remains unclear how oxidative stress regulates the expression of long noncoding RNAs (lncRNAs) and mRNAs. Therefore, the purpose of this article was to explore the profiles of lncRNAs and mRNAs in the liver of piglets under oxidative stress. Here, we constructed a piglet oxidative stress model induced by diquat and evaluated the effects of oxidative stress on the growth performance and antioxidant enzyme activity of piglets. We also used RNA-Seq to examine the global expression of lncRNAs and mRNAs in piglets under oxidative stress. The targets of lncRNAs and mRNAs were enriched in gene ontology (GO) terms and signaling pathways. The results show that the growth performance and activities of antioxidant enzymes were decreased in piglets under oxidative stress. Moreover, eight lncRNAs (6 upregulated and 2 downregulated) and 30 mRNAs (8 upregulated and 22 downregulated) were differentially expressed in the oxidative stress group of piglets compared to the negative control group. According to biological processes in enriched GO terms, the oxoacid metabolic process, intramolecular oxidoreductase activity, and oxidation-reduction process play important roles in oxidative stress. Pathway analysis showed that the signaling pathways involved in insulin and glucose metabolism had a close relationship with oxidative stress. Further in vitro experiments showed that the expression of the upregulated gene GNMT was significantly increased in primary porcine hepatocytes after diquat stimulation. In contrast, the level of the downregulated gene GCK was significantly decreased at 12 h in primary porcine hepatocytes after diquat stimulation. Our results expand our knowledge of the lncRNAs and mRNAs transcribed in the livers of piglets under oxidative stress and provide a basis for future research on the molecular mechanisms mediating oxidative stress and tissue damage.


Asunto(s)
Hepatocitos/metabolismo , Hígado/fisiología , Estrés Oxidativo , ARN Largo no Codificante/genética , ARN Mensajero/genética , Animales , Diquat , Regulación de la Expresión Génica , Ontología de Genes , Quinasas del Centro Germinal/genética , Quinasas del Centro Germinal/metabolismo , Glicina N-Metiltransferasa/genética , Glicina N-Metiltransferasa/metabolismo , Hepatocitos/patología , Masculino , Análisis de Secuencia de ARN , Transducción de Señal , Porcinos
15.
Mol Genet Genomic Med ; 7(7): e00728, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31197960

RESUMEN

BACKGROUND: Homozygous inactivating GCK mutations have been repeatedly reported to cause severe hyperglycemia, presenting as permanent neonatal diabetes mellitus (PNDM). Conversely, only two cases of GCK homozygous mutations causing mild hyperglycemia have been so far described. We here report a novel GCK mutation (c.1116G>C, p.E372D), in a family with one homozygous member showing mild hyperglycemia. METHODS: GCK mutational screening was carried out by Sanger sequencing. Computational analyses to investigate pathogenicity and molecular dynamics (MD) were performed for GCK-E372D and for previously described homozygous mutations associated with mild (n = 2) or severe (n = 1) hyperglycemia, used as references. RESULTS: Of four mildly hyperglycemic family-members, three were heterozygous and one, diagnosed in the adulthood, was homozygous for GCK-E372D. Two nondiabetic family members carried no mutations. Fasting glucose (p = 0.016) and HbA1c (p = 0.035) correlated with the number of mutated alleles (0-2). In-silico predicted pathogenicity was not correlated with the four mutations' severity. At MD, GCK-E372D conferred protein structure flexibility intermediate between mild and severe GCK mutations. CONCLUSIONS: We present the third case of homozygous GCK mutations associated with mild hyperglycemia, rather than PNDM. Our in-silico analyses support previous evidences suggesting that protein stability plays a role in determining clinical severity of GCK mutations.


Asunto(s)
Diabetes Mellitus/genética , Quinasas del Centro Germinal/genética , Adulto , Preescolar , Diabetes Mellitus/metabolismo , Familia , Femenino , Quinasas del Centro Germinal/metabolismo , Homocigoto , Humanos , Hiperglucemia/genética , Hiperglucemia/metabolismo , Masculino , Persona de Mediana Edad , Mutación , Mutación Missense , Linaje , Polimorfismo de Nucleótido Simple/genética
16.
J Diabetes Investig ; 10(6): 1454-1462, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31094068

RESUMEN

AIMS/INTRODUCTION: The principal aim of this study was to investigate the clinical, genetic and functional characteristics of two cases of congenital hyperinsulinism (CHI) caused by glucokinase (GCK) mutations in young patients. MATERIALS AND METHODS: Novel mutations were detected by CHI next-generation sequencing, and the kinetic parameters and thermal stability of recombinant wild-type and mutant glucokinase were determined in vitro. In addition, 18 naturally occurring GCK-CHI mutations reported previously were also summarized. RESULTS: A de novo mutation (M197V) was found in a 17-year-old male with an epilepsy history, whereas an autosomal dominant mutation (K90R) was found in a 20-year-old female with inherited asymptomatic hypoglycemia. Kinetic analysis showed increased enzyme activity for both mutants (RAI 4.7 for M197V and 1.6 for K90R) and enhanced thermal stability for the M197V mutant. However, of all the GCK-CHI mutants, the increase in enzyme activity (RAI between 1.6 and 130) did not correlate strongly with the severity of hypoglycemia. The de novo group (7/19) showed distinctive phenotypes from the autosomal dominant group (12/19), such as a higher proportion of diazoxide unresponsiveness (28.6% vs 0%), a higher incidence of macrosomia (85.7% vs 40%) and a rarer incidence of adulthood onset (0% vs 25%). CONCLUSIONS: The clinical phenotypes of GCK-CHIs were highly heterogeneous. We have identified two novel GCK-CHI mutations in young patients and investigated their pathogenicity by enzyme kinetic analysis, which expanded the spectrum of this rare disease.


Asunto(s)
Hiperinsulinismo Congénito/patología , Quinasas del Centro Germinal/genética , Quinasas del Centro Germinal/metabolismo , Hipoglucemia/patología , Mutación , Adolescente , Adulto , Hiperinsulinismo Congénito/complicaciones , Hiperinsulinismo Congénito/genética , Hiperinsulinismo Congénito/metabolismo , Femenino , Humanos , Hipoglucemia/complicaciones , Hipoglucemia/genética , Hipoglucemia/metabolismo , Masculino , Linaje , Fenotipo , Pronóstico , Adulto Joven
17.
Exp Cell Res ; 381(2): 301-310, 2019 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-31095939

RESUMEN

Insulin resistance is a significant feature of type 2 diabetes mellitus and glucose and lipid metabolism disorders. Activation of NF-κB signaling pathway plays an important role in the formation of insulin resistance. FoxO1 plays a major role in regulating glucose and lipid metabolism, as well as insulin signaling pathway. Previous studies have shown that Progestin and AdipoQ Receptor 3 (PAQR3) suppresses the activity of PI3K/Akt, which is an upstream pathway of FoxO1, and additionally promotes the pathological process of diabetic renal inflammatory fibrosis via activating NF-κB pathway. On this basis, it has caused us great concern whether NF-κB is involved in PAQR3 regulation of FoxO1 under insulin resistance. In this study, we aimed to investigate whether PAQR3 regulates phosphorylation of FoxO1 via NF-κB pathway in palmitic acid (PA)-induced insulin-resistant HepG2 cells, thereby causing glucose and lipid metabolism disorders. We found that PA stimulation and PAQR3 overexpression decreased the phosphorylation of FoxO1 and the expressions of glucokinase (GCK) and low density lipoprotein receptor (LDLR), in addition, promoted the nuclear accumulation of NF-κB. Inhibition of NF-κB pathway increased the phosphorylation of FoxO1 and the expressions of GCK and LDLR which were downregulated by PA stimulation and PAQR3 overexpression. Taken together, in PA-induced insulin-resistant HepG2 cells, PAQR3 might regulate the phosphorylation of FoxO1 and the expressions of GCK and LDLR through NF-κB pathway, thereby regulating the glucose and lipid metabolism disorders induced by insulin resistance.


Asunto(s)
Proteína Forkhead Box O1/metabolismo , Resistencia a la Insulina , Péptidos y Proteínas de Señalización Intracelular/fisiología , Hígado/metabolismo , Proteínas de la Membrana/fisiología , FN-kappa B/metabolismo , Animales , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/patología , Quinasas del Centro Germinal/genética , Quinasas del Centro Germinal/metabolismo , Células Hep G2 , Humanos , Resistencia a la Insulina/genética , Metabolismo de los Lípidos/genética , Fosforilación , Procesamiento Proteico-Postraduccional/genética , Ratas , Ratas Sprague-Dawley , Receptores de LDL/genética , Receptores de LDL/metabolismo , Transducción de Señal/genética
18.
Biochim Biophys Acta Proteins Proteom ; 1867(12): 140154, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30316861

RESUMEN

Unconventional secretion has emerged as an increasingly important cellular process in eukaryotic cells. The underlying translocation mechanisms are diverse and often little understood. We study unconventional secretion of chitinase Cts1 in the corn smut fungus Ustilago maydis. This protein participates in the cytokinesis of yeast cells. During budding it localizes to the septated fragmentation zone where it presumably functions in the degradation of remnant chitin to allow separation of mother and daughter cell. However, the mechanistic details of Cts1 export remain unclear. Here we investigated the mechanism of unconventional Cts1 secretion with a focus on cytokinesis. Cell-cycle inhibition experiments supported the hypothesis that Cts1 export is connected to cytokinesis. To substantiate this finding we analysed gene deletion mutants impaired in cell separation and discovered that strains defective in secondary septum formation were affected in Cts1 export. The germinal centre kinase Don3 had a particularly strong influence on unconventional secretion. Using a synthetic switch, we unambiguously verified an essential role of Don3 for cytokinesis-dependent Cts1 export via the fragmentation zone. Thus, we gained novel insights into the mechanism of unconventional secretion and discovered the first regulatory component of this process.


Asunto(s)
Quitinasas/metabolismo , Proteínas Fúngicas/metabolismo , Quinasas del Centro Germinal/metabolismo , Ustilago/metabolismo , Ciclo Celular , Transporte de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA