Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Reprod Immunol ; 153: 103692, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35970080

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) are key enzymes for tryptophan degradation, regulating immune tolerance during pregnancy. The intrauterine renin-angiotensin system is also involved in the progression of a healthy pregnancy. Angiotensin(1-7) maintains the integrity of fetal membranes via counteracting the pro-inflammatory actions of Angiotensin II. No data are available on placental Angiotensin(1-7) co-expression with TDO. We aimed to characterize TDO mRNA expression and its localization in different areas of the placenta of physiological pregnancies delivered at term; its co-expression with Angiotensin(1-7) and its correlation with the plasma kynurenine/tryptophan (Kyn/Trp) ratio was investigated. This prospective observational study included a nonconsecutive series of 20 singleton uncomplicated pregnancies delivered vaginally. TDO mRNA was expressed in both maternal and fetal sides of the placentas and TDO protein also in the villi and it was co-expressed with IDO1 in almost half of the placental cells at these sites. The percentage of TDO+ and IDO1+ cells appeared to be influenced by maternal pre-gestational smoking and newborn weight. A strong correlation was found between the percentage of TDO+ and IDO1+ cells in the villi. TDO+ cells also expressed Angiotensin(1-7), with a higher percentage on the fetal side and in the villi compared to the maternal one. Kyn/Trp plasma ratio was not correlated with IDO and TDO expression nor with the patient's characteristics. Collectively, our data indicate that TDO is detectable in placental tissue and is co-expressed with IDO and with Angiotensin(1-7)+ on the fetal side and in the villi.


Asunto(s)
Angiotensina I , Tolerancia Inmunológica , Indolamina-Pirrol 2,3,-Dioxigenasa , Fragmentos de Péptidos , Placenta , Triptófano Hidroxilasa , Angiotensina I/genética , Angiotensina I/inmunología , Angiotensina II/inmunología , Femenino , Humanos , Tolerancia Inmunológica/genética , Tolerancia Inmunológica/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/biosíntesis , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Recién Nacido , Quinurenina/análisis , Quinurenina/genética , Quinurenina/inmunología , Fragmentos de Péptidos/genética , Fragmentos de Péptidos/inmunología , Placenta/enzimología , Placenta/inmunología , Embarazo , ARN Mensajero , Triptófano/análisis , Triptófano/genética , Triptófano/inmunología , Triptófano Hidroxilasa/genética , Triptófano Hidroxilasa/inmunología , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/inmunología
2.
J Clin Invest ; 132(2)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35040434

RESUMEN

As cancers progress, they produce a local environment that acts to redirect, paralyze, exhaust, or otherwise evade immune detection and destruction. The tumor microenvironment (TME) has long been characterized as a metabolic desert, depleted of essential nutrients such as glucose, oxygen, and amino acids, that starves infiltrating immune cells and renders them dysfunctional. While not incorrect, this perspective is only half the picture. The TME is not a metabolic vacuum, only consuming essential nutrients and never producing by-products. Rather, the by-products of depleted nutrients, "toxic" metabolites in the TME such as lactic acid, kynurenine, ROS, and adenosine, play an important role in shaping immune cell function and cannot be overlooked in cancer immunotherapy. Moreover, while the metabolic landscape is distinct, it is not unique, as these toxic metabolites are encountered in non-tumor tissues, where they evolutionarily shape immune cells and their response. In this Review, we discuss how depletion of essential nutrients and production of toxic metabolites shape the immune response within the TME and how toxic metabolites can be targeted to improve current cancer immunotherapies.


Asunto(s)
Neoplasias/inmunología , Microambiente Tumoral/inmunología , Adenosina/inmunología , Adenosina/metabolismo , Animales , Humanos , Inmunoterapia , Quinurenina/inmunología , Quinurenina/metabolismo , Ácido Láctico/inmunología , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Neoplasias/terapia , Especies Reactivas de Oxígeno/inmunología , Especies Reactivas de Oxígeno/metabolismo
3.
Int J Mol Sci ; 22(18)2021 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-34576041

RESUMEN

The kynurenine pathway (KP) is highly regulated in the immune system, where it promotes immunosuppression in response to infection or inflammation. Indoleamine 2,3-dioxygenase 1 (IDO1), the main enzyme of KP, has a broad spectrum of activity on immune cells regulation, controlling the balance between stimulation and suppression of the immune system at sites of local inflammation, relevant to a wide range of autoimmune and inflammatory diseases. Various autoimmune diseases, among them endocrinopathies, have been identified to date, but despite significant progress in their diagnosis and treatment, they are still associated with significant complications, morbidity, and mortality. The precise cellular and molecular mechanisms leading to the onset and development of autoimmune disease remain poorly clarified so far. In breaking of tolerance, the cells of the innate immunity provide a decisive microenvironment that regulates immune cells' differentiation, leading to activation of adaptive immunity. The current review provided a comprehensive presentation of the known role of IDO1 and KP activation in the regulation of the innate and adaptive arms of the immune system. Significant attention has been paid to the immunoregulatory role of IDO1 in the most prevalent, organ-specific autoimmune endocrinopathies-type 1 diabetes mellitus (T1DM) and autoimmune thyroiditis.


Asunto(s)
Inmunidad Adaptativa/genética , Enfermedades Autoinmunes/inmunología , Enfermedades del Sistema Endocrino/inmunología , Inmunidad Innata/inmunología , Quinurenina/genética , Enfermedades Autoinmunes/genética , Enfermedades del Sistema Endocrino/genética , Humanos , Quinurenina/inmunología , Quinurenina/metabolismo , Transducción de Señal/inmunología
4.
FASEB J ; 35(10): e21888, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34473368

RESUMEN

Endogenous tryptophan metabolism pathways lead to the production of serotonin (5-hydroxytryptamine; 5-HT), kynurenine, and several downstream metabolites which are involved in a multitude of immunological functions in both health and disease states. Ingested tryptophan is largely shunted to the kynurenine pathway (95%) while only minor portions (1%-2%) are sequestered for 5-HT production. Though often associated with the functioning of the central nervous system, significant production of 5-HT, kynurenine and their downstream metabolites takes place within the gut. Accumulating evidence suggests that these metabolites have essential roles in regulating immune cell function, intestinal inflammation, as well as in altering the production and suppression of inflammatory cytokines. In addition, both 5-HT and kynurenine have a considerable influence on gut microbiota suggesting that these metabolites impact host physiology both directly and indirectly via compositional changes. It is also now evident that complex interactions exist between the two pathways to maintain gut homeostasis. Alterations in 5-HT and kynurenine are implicated in the pathogenesis of many gastrointestinal dysfunctions, including inflammatory bowel disease. Thus, these pathways present numerous potential therapeutic targets, manipulation of which may aid those suffering from gastrointestinal disorders. This review aims to update both the role of 5-HT and kynurenine in immune regulation and intestinal inflammation, and analyze the current knowledge of the relationship and interactions between 5-HT and kynurenine pathways.


Asunto(s)
Microbioma Gastrointestinal/inmunología , Enfermedades Inflamatorias del Intestino/inmunología , Quinurenina/inmunología , Serotonina/inmunología , Transducción de Señal/inmunología , Triptófano/inmunología , Animales , Humanos , Inflamación/inmunología , Inflamación/patología , Enfermedades Inflamatorias del Intestino/microbiología , Enfermedades Inflamatorias del Intestino/patología
5.
Front Immunol ; 12: 636081, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33708223

RESUMEN

Blockade of the immunosuppressive tryptophan catabolism mediated by indoleamine 2,3-dioxygenase 1 (IDO1) and tryptophan 2,3-dioxygenase (TDO) holds enormous promise for sensitising cancer patients to immune checkpoint blockade. Yet, only IDO1 inhibitors had entered clinical trials so far, and those agents have generated disappointing clinical results. Improved understanding of molecular mechanisms involved in the immune-regulatory function of the tryptophan catabolism is likely to optimise therapeutic strategies to block this pathway. The immunosuppressive role of tryptophan metabolite kynurenine is becoming increasingly clear, but it remains a mystery if tryptophan exerts functions beyond serving as a precursor for kynurenine. Here we hypothesise that tryptophan acts as a rheostat of kynurenine-mediated immunosuppression by competing with kynurenine for entry into immune T-cells through the amino acid transporter called System L. This hypothesis stems from the observations that elevated tryptophan levels in TDO-knockout mice relieve immunosuppression instigated by IDO1, and that the vacancy of System L transporter modulates kynurenine entry into CD4+ T-cells. This hypothesis has two potential therapeutic implications. Firstly, potent TDO inhibitors are expected to indirectly inhibit IDO1 hence development of TDO-selective inhibitors appears advantageous compared to IDO1-selective and dual IDO1/TDO inhibitors. Secondly, oral supplementation with System L substrates such as leucine represents a novel potential therapeutic modality to restrain the immunosuppressive kynurenine and restore anti-tumour immunity.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Neoplasias/enzimología , Triptófano Oxigenasa/metabolismo , Triptófano/metabolismo , Escape del Tumor , Animales , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/metabolismo , Inhibidores Enzimáticos/uso terapéutico , Humanos , Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Quinurenina/inmunología , Quinurenina/metabolismo , Terapia Molecular Dirigida , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Neoplasias/patología , Triptófano/inmunología , Triptófano Oxigenasa/antagonistas & inhibidores , Escape del Tumor/efectos de los fármacos , Microambiente Tumoral
6.
Biochimie ; 182: 131-139, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33460767

RESUMEN

Tryptophan (Trp) metabolism is associated with diverse biological processes, including nerve conduction, inflammation, and the immune response. The majority of free Trp is broken down through the kynurenine (Kyn) pathway (KP), in which indoleamine-2,3-dioxygenase (IDO) and tryptophan-2,3-dioxygenase (TDO) catalyze the rate-limiting step. Clinical studies have demonstrated that Trp metabolism promotes tumor progression due to modulation of the immunosuppressive microenvironment through multiple mechanisms. In this process, IDO-expressing dendritic cells (DCs) exhibit tolerogenic potential and orchestrate T cell immune responses. Various signaling molecules control IDO expression, initiating the immunoregulatory pathway of Trp catabolism. Based on these characteristics, KP enzymes and catabolites are emerging as significant prognostic indicators and potential therapeutic targets of cancer. The physiological and oncologic roles of Trp metabolism are briefly summarized here, along with great challenges for treatment strategies.


Asunto(s)
Tolerancia Inmunológica , Indolamina-Pirrol 2,3,-Dioxigenasa , Proteínas de Neoplasias , Neoplasias , Triptófano Oxigenasa , Triptófano , Microambiente Tumoral/inmunología , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/inmunología , Quinurenina/metabolismo , Proteínas de Neoplasias/inmunología , Proteínas de Neoplasias/metabolismo , Neoplasias/inmunología , Neoplasias/metabolismo , Neoplasias/terapia , Triptófano/inmunología , Triptófano/metabolismo , Triptófano Oxigenasa/inmunología , Triptófano Oxigenasa/metabolismo
7.
Trends Immunol ; 41(11): 1037-1050, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33055013

RESUMEN

Polyamines (i.e., putrescine, spermidine, and spermine) are bioactive polycations capable of binding nucleic acids and proteins and modulating signaling pathways. Polyamine functions have been studied most extensively in tumors, where they can promote cell transformation and proliferation. Recently, spermidine was found to exert protective effects in an experimental model of multiple sclerosis (MS) and to confer immunoregulatory properties on dendritic cells (DCs), via the indoleamine 2,3-dioxygenase 1 (IDO1) enzyme. IDO1 converts l-tryptophan into metabolites, collectively known as kynurenines, endowed with several immunoregulatory effects via activation of the arylhydrocarbon receptor (AhR). Because AhR activation increases polyamine production, the emerging scenario has identified polyamines and kynurenines as actors of an immunoregulatory circuitry with potential implications for immunotherapy in autoimmune diseases and cancer.


Asunto(s)
Enfermedades Autoinmunes , Inmunomodulación , Quinurenina , Esclerosis Múltiple , Poliaminas , Animales , Enfermedades Autoinmunes/inmunología , Modelos Animales de Enfermedad , Humanos , Inmunomodulación/inmunología , Quinurenina/inmunología , Esclerosis Múltiple/enzimología , Esclerosis Múltiple/inmunología , Poliaminas/inmunología , Transducción de Señal
8.
Biomolecules ; 10(9)2020 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-32899743

RESUMEN

In mammals, amino acid metabolism has evolved to act as a critical regulator of innate and adaptive immune responses. Rheumatoid arthritis (RA) is the most common form of inflammatory arthropathy sustained by autoimmune responses. We examine here the current knowledge of tryptophan and arginine metabolisms and the main immunoregulatory pathways in amino acid catabolism, in both RA patients and experimental models of arthritis. We found that l-tryptophan (Trp) metabolism and, in particular, the kynurenine pathway would exert protective effects in all experimental models and in some, but not all, RA patients, possibly due to single nucleotide polymorphisms in the gene coding for indoleamine 2,3-dioxygenase 1 (IDO1; the enzyme catalyzing the rate-limiting step of the kynurenine pathway). The function, i.e., either protective or pathogenetic, of the l-arginine (Arg) metabolism in RA was less clear. In fact, although immunoregulatory arginase 1 (ARG1) was highly induced at the synovial level in RA patients, its true functional role is still unknown, possibly because of few available preclinical data. Therefore, our analysis would indicate that amino acid metabolism represents a fruitful area of research for new drug targets for a more effective and safe therapy of RA and that further studies are demanding to pursue such an important objective.


Asunto(s)
Arginina/inmunología , Arginina/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Triptófano/inmunología , Triptófano/metabolismo , Animales , Humanos , Quinurenina/inmunología , Quinurenina/metabolismo , Microbiota/inmunología , Microbiota/fisiología , Serotonina/inmunología , Serotonina/metabolismo
9.
Nat Commun ; 11(1): 4011, 2020 08 11.
Artículo en Inglés | MEDLINE | ID: mdl-32782249

RESUMEN

Tryptophan catabolism by the enzymes indoleamine 2,3-dioxygenase 1 and tryptophan 2,3-dioxygenase 2 (IDO/TDO) promotes immunosuppression across different cancer types. The tryptophan metabolite L-Kynurenine (Kyn) interacts with the ligand-activated transcription factor aryl hydrocarbon receptor (AHR) to drive the generation of Tregs and tolerogenic myeloid cells and PD-1 up-regulation in CD8+ T cells. Here, we show that the AHR pathway is selectively active in IDO/TDO-overexpressing tumors and is associated with resistance to immune checkpoint inhibitors. We demonstrate that IDO-Kyn-AHR-mediated immunosuppression depends on an interplay between Tregs and tumor-associated macrophages, which can be reversed by AHR inhibition. Selective AHR blockade delays progression in IDO/TDO-overexpressing tumors, and its efficacy is improved in combination with PD-1 blockade. Our findings suggest that blocking the AHR pathway in IDO/TDO expressing tumors would overcome the limitation of single IDO or TDO targeting agents and constitutes a personalized approach to immunotherapy, particularly in combination with immune checkpoint inhibitors.


Asunto(s)
Quinurenina/inmunología , Macrófagos/inmunología , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Linfocitos T Reguladores/inmunología , Animales , Resistencia a Antineoplásicos , Humanos , Tolerancia Inmunológica , Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ratones , Neoplasias/inmunología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Transducción de Señal , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/metabolismo , Células Tumorales Cultivadas , Microambiente Tumoral
10.
J Neuroimmunol ; 347: 577330, 2020 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-32731051

RESUMEN

We investigated serum levels of 29 cytokines and immune-activated kynurenine and tetrahydrobiopterin pathway metabolites in 15 complex regional pain syndrome (CRPS) subjects and 14 healthy controls. Significant reductions in interleukin-37 and tryptophan were found in CRPS subjects, along with positive correlations between kynurenine/tryptophan ratio and TNF-α levels with kinesiophobia, tetrahydrobiopterin levels with McGill pain score, sRAGE, and xanthurenic acid and neopterin levels with depression, anxiety and stress scores. Using machine learning, we identified a set of binary variables, including IL-37 and GM-CSF, capable of distinguishing controls from established CRPS subjects. These results suggest possible involvement of various inflammatory markers in CRPS pathogenesis.


Asunto(s)
Síndromes de Dolor Regional Complejo/diagnóstico , Síndromes de Dolor Regional Complejo/inmunología , Interleucina-1/inmunología , Quinurenina/inmunología , Triptófano/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Adulto , Anciano , Biomarcadores/sangre , Síndromes de Dolor Regional Complejo/sangre , Femenino , Humanos , Interleucina-1/sangre , Quinurenina/sangre , Aprendizaje Automático , Masculino , Persona de Mediana Edad , Proyectos Piloto , Triptófano/sangre , Factor de Necrosis Tumoral alfa/sangre
11.
Front Immunol ; 11: 388, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32194572

RESUMEN

The importance of the kynurenine pathway in normal immune system function has led to an appreciation of its possible contribution to autoimmune disorders such as rheumatoid arthritis. Indoleamine-2,3-dioxygenase (IDO) activity exerts a protective function, limiting the severity of experimental arthritis, whereas deletion or inhibition exacerbates the symptoms. Other chronic disorder with an inflammatory component, such as atherosclerosis, are also suppressed by IDO activity. It is suggested that this overall anti-inflammatory activity is mediated by a change in the relative production or activity of Th17 and regulatory T cell populations. Kynurenines may play an anti-inflammatory role also in CNS disorders such as Huntington's disease, Alzheimer's disease and multiple sclerosis, in which signs of inflammation and neurodegeneration are involved. The possibility is discussed that in Huntington's disease kynurenines interact with other anti-inflammatory molecules such as Human Lymphocyte Antigen-G which may be relevant in other disorders. Kynurenine involvement may account for the protection afforded to animals with cerebral malaria and trypanosomiasis when they are treated with an inhibitor of kynurenine-3-monoxygenase (KMO). There is some evidence that changes in IL-10 may contribute to this protection and the relationship between kynurenines and IL-10 in arthritis and other inflammatory conditions should be explored. In addition, metabolites of kynurenine downstream of KMO, such as anthranilic acid and 3-hydroxy-anthranilic acid can influence inflammation, and the ratio of these compounds is a valuable biomarker of inflammatory status although the underlying molecular mechanisms of the changes require clarification. Hence it is essential that more effort be expended to identify their sites of action as potential targets for drug development. Finally, we discuss increasing awareness of the epigenetic regulation of IDO, for example by DNA methylation, a phenomenon which may explain differences between individuals in their susceptibility to arthritis and other inflammatory disorders.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Quinurenina/metabolismo , Enfermedades del Sistema Nervioso/inmunología , Enfermedades del Sistema Nervioso/metabolismo , Animales , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Quinurenina/inmunología
12.
Cancer Immunol Immunother ; 69(1): 57-67, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31802183

RESUMEN

Tumors can utilize a diverse repertoire of immunosuppressive mechanisms to evade attack by the immune system. Despite promising success with blockade of immune checkpoints like PD-1 the majority of patients does not respond to current immunotherapies. The degradation of tryptophan into immunosuppressive kynurenine is an important immunosuppressive pathway. Recent attempts to target the key enzymes of this pathway-IDO1 and TDO2-have so far failed to show therapeutic benefit in the clinic, potentially caused by insufficient target engagement. We, therefore, sought to add an alternative, highly efficient approach to block the degradation of tryptophan by inhibiting the expression of IDO1 and TDO2 using locked nucleic acid (LNA)-modified antisense oligonucleotides (ASOs). We show that LNA-modified ASOs can profoundly inhibit the expression of IDO1 and TDO2 in cancer cells in vitro without using a transfection reagent with IC50 values in the sub-micromolar range. We furthermore measured kynurenine production by ASO-treated cancer cells in vitro and observed potently reduced kynurenine levels. Accordingly, inhibiting IDO1 expression in cancer cells in an in vitro system leads to increased proliferation of activated T cells in coculture. We furthermore show that combined treatment of cancer cells in vitro with IDO1-specific ASOs and small molecule inhibitors can reduce the production of kynurenine by cancer cells in a synergistic manner. In conclusion, we propose that a combination of LNA-modified ASOs and small molecule inhibitors should be considered as a strategy for efficient blockade of the degradation of tryptophan into kynurenine in cancer immunotherapy.


Asunto(s)
Antineoplásicos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Neoplasias/terapia , Oligonucleótidos Antisentido/farmacología , Triptófano Oxigenasa/antagonistas & inhibidores , Antineoplásicos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Técnicas de Cocultivo , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Humanos , Inmunoterapia/métodos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Concentración 50 Inhibidora , Quinurenina/inmunología , Quinurenina/metabolismo , Activación de Linfocitos/efectos de los fármacos , Neoplasias/inmunología , Oligonucleótidos/administración & dosificación , Oligonucleótidos/química , Oligonucleótidos Antisentido/química , Linfocitos T/inmunología , Triptófano/inmunología , Triptófano/metabolismo , Triptófano Oxigenasa/metabolismo
13.
Sci Rep ; 9(1): 18455, 2019 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-31804586

RESUMEN

The improvement of body's own immune system is considered one of the safest approaches to fight against cancer and several other diseases. Excessive catabolism of the essential amino acid, L-tryptophan (L-Trp) assists the cancer cells to escape normal immune obliteration. The formation of disproportionate kynurenine and other downstream metabolites suppress the T cell functions. Blocking of this immunosuppressive mechanism is considered as a promising approach against cancer, neurological disorders, autoimmunity, and other immune-mediated diseases. Overexpression of indoleamine 2,3-dioxygenase 1 (IDO1) enzyme is directly related to the induction of immunosuppressive mechanisms and represents an important therapeutic target. Several classes of small molecule-based IDO1 inhibitors have been already reported, but only few compounds are currently being evaluated in various stages of clinical trials as adjuvants or in combination with chemo- and radiotherapies. In the quest for novel structural class(s) of IDO1 inhibitors, we developed a series of 4,5-disubstituted 1,2,3-triazole derivatives. The optimization of 4,5-disubstituted 1,2,3-triazole scaffold and comprehensive biochemical and biophysical studies led to the identification of compounds, 3i, 4i, and 4k as potent and selective inhibitors of IDO1 enzyme with IC50 values at a low nanomolar level. These potent compounds also showed strong IDO1 inhibitory activities in MDA-MB-231 cells with no/negligible level of cytotoxicity. The T cell activity studies revealed that controlled regulation of IDO1 enzyme activity in the presence of these potent compounds could induce immune response against breast cancer cells. The compounds also showed excellent in vivo antitumor efficacy (of tumor growth inhibition = 79-96%) in the female Swiss albino mice. As a consequence, this study describes the first example of 4,5-disubstituted 1,2,3-triazole based IDO1 inhibitors with potential applications for immunotherapeutic studies.


Asunto(s)
Antineoplásicos Inmunológicos/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Linfocitos T Citotóxicos/efectos de los fármacos , Triazoles/farmacología , Animales , Antineoplásicos Inmunológicos/química , Antineoplásicos Inmunológicos/uso terapéutico , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Carcinoma de Ehrlich/tratamiento farmacológico , Carcinoma de Ehrlich/inmunología , Carcinoma de Ehrlich/patología , Línea Celular Tumoral , Ensayos de Selección de Medicamentos Antitumorales , Pruebas de Enzimas , Femenino , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Concentración 50 Inhibidora , Quinurenina/inmunología , Quinurenina/metabolismo , Redes y Vías Metabólicas/efectos de los fármacos , Redes y Vías Metabólicas/inmunología , Ratones , Simulación del Acoplamiento Molecular , Cultivo Primario de Células , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Linfocitos T Citotóxicos/inmunología , Triazoles/química , Triazoles/uso terapéutico , Triptófano/inmunología , Triptófano/metabolismo , Triptófano Oxigenasa/antagonistas & inhibidores , Triptófano Oxigenasa/química , Triptófano Oxigenasa/metabolismo , Escape del Tumor/efectos de los fármacos
14.
Front Immunol ; 10: 1801, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31417567

RESUMEN

Immunooncology is still a growing area in cancer therapy. Drugs within this therapeutic approach do not directly target/attack the tumor but interfere with immune checkpoints and target or reprogram key metabolic pathways critical for anti-cancer immune defense. Indolamine 2,3-dioxygenase 1 (IDO1) and the tryptophan (TRP)-kynurenine pathway were identified as critical mechanisms in cancer immune escape and their inhibition as an approach with promising therapeutic potential. Particularly, a multitude of IDO1 inhibiting tryptophan analogs are widely applied in several clinical trials. However, this therapy results in a variety of implications for the patient's physiology. This is not only due to the inhibition of an enzyme important in almost every organ and tissue in the body but also because of the general nature of the inhibitor as an analog of a proteinogenic amino acid as well as the initiation of cellular detoxification known to affect inflammatory pathways. In this review we provide a deeper insight into the physiological consequences of an IDO1 inhibiting therapy based on TRP related molecules. We discuss potential side and off-target effects that contribute to the interpretation of unexpected positive as well as negative results of ongoing or discontinued clinical studies while we also highlight the potential of these inhibitors independent of the IDO1 signaling pathway.


Asunto(s)
Inhibidores Enzimáticos/uso terapéutico , Inmunoterapia , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Proteínas de Neoplasias/antagonistas & inhibidores , Neoplasias , Triptófano/uso terapéutico , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/inmunología , Quinurenina/inmunología , Proteínas de Neoplasias/inmunología , Neoplasias/inmunología , Neoplasias/patología , Neoplasias/terapia , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología
15.
Psychoneuroendocrinology ; 109: 104371, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31325802

RESUMEN

Inflammation has an important physiological influence on mood and behavior. Kynurenine metabolism is hypothesized to be a pathway linking inflammation and depressed mood, in part through the impact of kynurenine metabolites on glutamate neurotransmission in the central nervous system. This study evaluated whether the circulating concentrations of kynurenine and related compounds change acutely in response to an inflammatory challenge (endotoxin administration) in a human model of inflammation-induced depressed mood, and whether such metabolite changes relate to mood change. Adults (n = 115) were randomized to receive endotoxin or placebo. Mood (Profile of Mood States), plasma cytokine (interleukin-6, tumor necrosis factor-α) and metabolite (kynurenine, tryptophan, kynurenic acid, quinolinic acid) concentrations were repeatedly measured before the intervention, and at 2 and 6 h post-intervention. Linear mixed models were used to evaluate relationships between mood, kynurenine and related compounds, and cytokines. Kynurenine, kynurenic acid, and tryptophan (but not quinolinic acid) concentrations changed acutely (p's all <0.001) in response to endotoxin as compared to placebo. Neither kynurenine, kynurenic acid nor tryptophan concentrations were correlated at baseline with cytokine concentrations, but all three were significantly correlated with cytokine concentrations over time in response to endotoxin. Quinolinic acid concentrations were not correlated with cytokine concentrations either before or following endotoxin treatment. In those who received endotoxin, kynurenine (p = 0.049) and quinolinic acid (p = 0.03) positively correlated with depressed mood, although these findings would not survive correction for multiple testing. Changes in tryptophan and kynurenine pathway metabolites did not mediate the relationship between cytokines and depressed mood. Further work is necessary to clarify the pathways leading from inflammation to depressed mood in humans.


Asunto(s)
Depresión/metabolismo , Quinurenina/inmunología , Quinurenina/metabolismo , Adulto , Afecto/efectos de los fármacos , Citocinas/metabolismo , Depresión/inmunología , Endotoxinas/farmacología , Femenino , Humanos , Inflamación/metabolismo , Interleucina-6/sangre , Interleucina-6/metabolismo , Ácido Quinurénico/sangre , Ácido Quinurénico/metabolismo , Masculino , Persona de Mediana Edad , Ácido Quinolínico/sangre , Ácido Quinolínico/metabolismo , Factores Sexuales , Triptófano/sangre , Triptófano/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
16.
Int Immunopharmacol ; 73: 527-538, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31176083

RESUMEN

The kynurenine pathway (KP), a major route of tryptophan catabolism, may be associated with the pathophysiology of depressive disorders. KP is responsible for ca. 99% of brain tryptophan metabolism via its degradation to kynurenine (KYN) catalyzed by indoleamine 2,3-dioxygenase (IDO). Some cytokines, such as interferon-γ (IFN-γ) and interleukin (IL)-6 are potent inducers of IDO. KYN is further converted by kynurenine aminotransferase (KAT) to the more neuroprotective kynurenic acid or by kynurenine 3-monooxygenase (KMO) to neurotoxic 3-hydroxykynurenine. The aim of the present study was to delineate whether the administration of imipramine (IMI) to rats subjected to chronic mild stress (CMS) may reverse behavioral changes induced by CMS in association with changes in immune-inflammatory markers and KP. We confirmed that the CMS procedure modeled one of the main symptoms of depression, i.e. anhedonia, and administration of IMI for 5 weeks resulted in a significant reduction in anhedonia in a majority of animals (CMS IMI-R animals), whereas 20% of animals did not respond to IMI treatment (CMS IMI-NR animals). We established that CMS procedure increased IFN-γ and IDO mRNA and decreased KAT II mRNA expression in the rat cortex. In the cortex and hippocampus, IMI treatment and non-responsiveness to IMI (in CMS IMI-NR animals) were associated with increased IL-6 mRNA expression. In the spleen, CMS increased production of IFN-γ and IL-6 proteins, while these cytokines were decreased by IMI in CMS IMI-R animals. Chronic IMI administration to CMS rats decreased IDO and KMO mRNA and protein expression and increased KAT II/KMO mRNA and protein ratio in IMI responders (CMS IMI-R) in comparison to CMS rats. In CMS IMI-NR rats, a significant increase in IDO mRNA expression and protein level in comparison with IMI responders was observed. Our findings indicate that resistance to therapeutic action of IMI could be explained by a deficiency of the inhibitory properties of IMI on IDO, KMO and KYN synthesis in the cortex. We conclude that the antidepressant activity of IMI may, at least in part, be explained by modulatory activities on the KAT II/KMO ratio in brain areas.


Asunto(s)
Depresión/inmunología , Resistencia a Medicamentos/inmunología , Quinurenina/inmunología , Estrés Psicológico/inmunología , Animales , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Conducta Animal/efectos de los fármacos , Proliferación Celular , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/inmunología , Citocinas/genética , Depresión/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/inmunología , Imipramina/farmacología , Imipramina/uso terapéutico , Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Masculino , Ratas Wistar , Bazo/citología , Estrés Psicológico/tratamiento farmacológico
17.
Ther Adv Cardiovasc Dis ; 13: 1753944719851950, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31144599

RESUMEN

Women are at increased risk for developing depression and cardiovascular disease (CVD) across the lifespan and their comorbidity is associated with adverse outcomes that contribute significantly to rates of morbidity and mortality in women worldwide. Immune-system activity has been implicated in the etiology of both depression and CVD, but it is unclear how inflammation contributes to sex differences in this comorbidity. This narrative review provides an updated synthesis of research examining the association of inflammation with depression and CVD, and their comorbidity in women. Recent research provides evidence of pro-inflammatory states and sex differences associated with alterations in the hypothalamic-pituitary-adrenal axis, the renin-angiotensin-aldosterone system and the serotonin/kynurenine pathway, that likely contribute to the development of depression and CVD. Changes to inflammatory cytokines in relation to reproductive periods of hormonal fluctuation (i.e. the menstrual cycle, perinatal period and menopause) are highlighted and provide a greater understanding of the unique vulnerability women experience in developing both depressed mood and adverse cardiovascular events. Inflammatory biomarkers hold substantial promise when combined with a patient's reproductive and mental health history to aid in the prediction, identification and treatment of the women most at risk for CVD and depression. However, more research is needed to improve our understanding of the mechanisms underlying inflammation in relation to their comorbidity, and how these findings can be translated to improve women's health.


Asunto(s)
Enfermedades Cardiovasculares/inmunología , Depresión/inmunología , Sistema Inmunológico/inmunología , Inflamación/inmunología , Reproducción/inmunología , Enfermedades Cardiovasculares/metabolismo , Enfermedades Cardiovasculares/fisiopatología , Depresión/metabolismo , Depresión/fisiopatología , Femenino , Humanos , Sistema Hipotálamo-Hipofisario/inmunología , Sistema Hipotálamo-Hipofisario/metabolismo , Sistema Hipotálamo-Hipofisario/fisiopatología , Sistema Inmunológico/metabolismo , Sistema Inmunológico/fisiopatología , Inflamación/metabolismo , Inflamación/fisiopatología , Mediadores de Inflamación/inmunología , Mediadores de Inflamación/metabolismo , Quinurenina/inmunología , Quinurenina/metabolismo , Sistema Hipófiso-Suprarrenal/inmunología , Sistema Hipófiso-Suprarrenal/metabolismo , Sistema Hipófiso-Suprarrenal/fisiopatología , Sistema Renina-Angiotensina/inmunología , Serotonina/inmunología , Serotonina/metabolismo , Transducción de Señal
18.
Psychopharmacology (Berl) ; 236(10): 2997-3011, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30806743

RESUMEN

Depression is a common comorbidity in cancer cases, but this is not only due to the emotional distress of having a life-threatening disease. A common biological mechanism, involving a dysregulated immune system, seems to underpin this comorbidity. In particular, the activation of the kynurenine pathway of tryptophan degradation due to inflammation may play a key role in the development and persistence of both diseases. As a consequence, targeting enzymes involved in this pathway offers a unique opportunity to develop new strategies to treat cancer and depression at once. In this work, we provide a systematic review of the evidence up to date on the kynurenine pathway role in linking depression and cancer and on clinical implications of this evidence. In particular, complications due to chemotherapy are discussed, as well as the potential antidepressant efficacy of novel immunotherapies for cancer.


Asunto(s)
Depresión/metabolismo , Quinurenina/metabolismo , Neoplasias/metabolismo , Transducción de Señal/fisiología , Antidepresivos/uso terapéutico , Depresión/tratamiento farmacológico , Depresión/inmunología , Humanos , Inmunoterapia/métodos , Inmunoterapia/tendencias , Indolamina-Pirrol 2,3,-Dioxigenasa/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/uso terapéutico , Inflamación/tratamiento farmacológico , Inflamación/inmunología , Inflamación/metabolismo , Quinurenina/inmunología , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Receptores de Enterotoxina/inmunología , Receptores de Enterotoxina/metabolismo , Transducción de Señal/efectos de los fármacos
19.
Mol Cancer Res ; 17(1): 30-41, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30213797

RESUMEN

Tryptophan-2,3-dioxygenase (TDO2), a rate-limiting enzyme in the tryptophan catabolism pathway, is induced in triple-negative breast cancer (TNBC) by inflammatory signals and anchorage-independent conditions. TNBCs express extremely low levels of the miR-200 family compared with estrogen receptor-positive (ER+) breast cancer. In normal epithelial cells and ER+ breast cancers and cell lines, high levels of the family member miR-200c serve to target and repress genes involved in epithelial-to-mesenchymal transition (EMT). To identify mechanism(s) that permit TNBC to express TDO2 and other proteins not expressed in the more well-differentiated ER+ breast cancers, miRNA-200c was restored in TNBC cell lines. The data demonstrate that miR-200c targeted TDO2 directly resulting in reduced production of the immunosuppressive metabolite kynurenine. Furthermore, in addition to reversing a classic EMT signature, miR-200c repressed many genes encoding immunosuppressive factors including CD274/CD273, HMOX-1, and GDF15. Restoration of miR-200c revealed a mechanism, whereby TNBC hijacks a gene expression program reminiscent of that used by trophoblasts to suppress the maternal immune system to ensure fetal tolerance during pregnancy. IMPLICATIONS: Knowledge of the regulation of tumor-derived immunosuppressive factors will facilitate development of novel therapeutic strategies that complement current immunotherapy to reduce mortality for patients with TNBC.


Asunto(s)
MicroARNs/metabolismo , Neoplasias de la Mama Triple Negativas/metabolismo , Triptófano/metabolismo , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Quinurenina/biosíntesis , Quinurenina/genética , Quinurenina/inmunología , MicroARNs/genética , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/inmunología , Neoplasias de la Mama Triple Negativas/patología , Triptófano Oxigenasa/genética , Triptófano Oxigenasa/metabolismo
20.
Nat Commun ; 9(1): 1981, 2018 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-29773791

RESUMEN

The tryptophan metabolite kynurenine has critical immunomodulatory properties and can function as an aryl hydrocarbon receptor (AHR) ligand. Here we show that the ability of T cells to transport kynurenine is restricted to cells activated by the T-cell antigen receptor or proinflammatory cytokines. Kynurenine is transported across the T-cell membrane by the System L transporter SLC7A5. Accordingly, the ability of kynurenine to activate the AHR is restricted to T cells that express SLC7A5. We use the fluorescence spectral properties of kynurenine to develop a flow cytometry-based assay for rapid, sensitive and quantitative measurement of the kynurenine transport capacity in a single cell. Our findings provide a method to assess the susceptibility of T cells to kynurenine, and a sensitive single cell assay to monitor System L amino acid transport.


Asunto(s)
Quinurenina/inmunología , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Análisis de la Célula Individual , Linfocitos T/inmunología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Membrana Celular/metabolismo , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Humanos , Quinurenina/metabolismo , Transportador de Aminoácidos Neutros Grandes 1/genética , Transportador de Aminoácidos Neutros Grandes 1/inmunología , Listeriosis/inmunología , Listeriosis/microbiología , Ratones , Ratones Endogámicos C57BL , Cultivo Primario de Células , Receptores de Hidrocarburo de Aril/metabolismo , Linfocitos T/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...