Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 276
Filtrar
1.
Carbohydr Polym ; 344: 122545, 2024 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-39218561

RESUMEN

The industry of insect-based proteins as feed and food products has been encountering a huge development since the last decade, and industrial-scale factories are now arising worldwide. Among all the species studied, Black Soldier Fly is one of the most promising and farmed. This rearing activity generates several by-products in the form of chitin-rich biomass that can be valorised to keep a virtuous production cycle embedded in the scope of the bioeconomy. Herein, we report the isolation of chitin and, for the first time, chitin nanocrystals (ChNCs) from all the BSF rearing by-products, i.e., moults (larval exuviae, puparium) and dead adults. Extraction yields, were dependent on the type of by-products and ranged from 5.8 % to 20.0 %, and the chemical structure of the extracts exhibited typical features of α-chitin, confirmed by FTIR, NMR, XRD and TGA analysis. Both STEM in SEM and AFM analysis confirmed the isolation of chitin nanocrystals presenting a rod-like morphology. The average nanocrystal height estimated by AFM ranged from 13 to 27 nm depending on the by-product sample. The following results highlighted the potential of BSF rearing by-products, promoting an approach to valorise those industrial waste and paving the way towards insect-based biorefinery.


Asunto(s)
Quitina , Nanopartículas , Quitina/química , Quitina/aislamiento & purificación , Animales , Nanopartículas/química , Larva/química , Simuliidae/química , Pupa/química
2.
Carbohydr Polym ; 345: 122565, 2024 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-39227120

RESUMEN

A green protocol to extract chitin from crab shells using water soluble ionic liquids (ILs) is here reported. Compared to conventional multistep acid-base extraction methods, this one-pot procedure achieves pulping of recalcitrant crustacean waste shells by employing ammonium acetate, ammonium formate and hydroxylammonium acetate as water-soluble, low-cost and easy to prepare ILs. An extensive parametric analysis of the pulping process has been carried out with different ILs, different ratios, temperature and time. The optimized protocol provides a high-quality chitin comparable, if not better, to commercial chitin. The best results were obtained at 150 °C with ammonium formate prepared in-situ from aqueous ammonia and formic acid: chitin was isolated in a 17 wt% yield (based on dried crab shells as starting biowaste), a degree of acetylation (DA) > 94 %, a crystallinity index of 39-46 %, a molecular weight up to 6.6 × 105 g/mol and a polydispersity of ca 2.0.


Asunto(s)
Exoesqueleto , Braquiuros , Quitina , Animales , Quitina/química , Quitina/aislamiento & purificación , Exoesqueleto/química , Braquiuros/química , Líquidos Iónicos/química , Tecnología Química Verde/métodos , Acetilación , Temperatura , Formiatos/química , Arañas/química
3.
Int J Med Mushrooms ; 26(10): 69-81, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39171632

RESUMEN

The present review highlights the chitin/chitosan as biopolymers that are promising for biomedical research development. Our goal was to assess the potential for practical use of these biopolymers and to summarize information on traditional and innovative technologies for their production and purification. The widespread occurrence of chitin and chitosan in nature as well as the unique chemical and biological properties of chitosan are reasons of growing interest in the use of the latter in several pharmaceutical fields. The main stages of chitin extraction and its further modification into chitosan are deproteinization, demineralization, deacetylation, and the main methods of chitosan purification are filtration, dialysis and reprecipitation. The profitability of the production of chitin/chitosan from crustaceans and edible mushrooms is approximately at the same level. The cost of mushroom products can be reduced by using agricultural or forestry waste as nutrient substrates. This makes the use of fungi as sources of chitin/chitosan in forested regions a rather promising issue.


Asunto(s)
Quitina , Quitosano , Quitosano/química , Quitina/química , Quitina/aislamiento & purificación , Agaricales/química , Animales , Crustáceos/química
4.
Int J Biol Macromol ; 277(Pt 3): 134425, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39097065

RESUMEN

In this study, deep eutectic solvent (DES) prepared from choline chloride, lactic acid, and one of the four polyols (ethylene glycol, glycerol, xylitol, and sorbitol) were compared and assessed for their effectiveness in extracting chitin from lobster shells. Our results revealed that as the number of hydroxyl groups in polyols increased, the hydrogen bond network within the DESs became denser. However, this led to a corresponding increase in viscosity, which impacted the efficiency of chitin extraction. Among all prepared DESs, choline chloride-lactic acid/glycerol (CCLaGly) exhibited superior extractive ability, resulting in the extraction of pure chitin from lobster shells. The purity, crystallinity, and molecular weight of the extracted chitin using CCLaGly DES were comparable to those of chemically-isolated chitin, with purity reaching 94.76 ± 0.33 %, crystallinity at 78.78 %, and a molecular weight of 655 kDa. Additionally, the physicochemical properties of the DES-extracted chitins were characterized using Fourier-transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and scanning electron microscopy. This study conducted a comparative analysis of polyol effects on chitin extraction from lobster shells, thereby opening a promising avenue for the utilization of various crustacean shells in sustainable biomaterial production.


Asunto(s)
Exoesqueleto , Quitina , Disolventes Eutécticos Profundos , Polímeros , Quitina/química , Quitina/aislamiento & purificación , Animales , Polímeros/química , Exoesqueleto/química , Disolventes Eutécticos Profundos/química , Viscosidad , Peso Molecular , Solventes/química , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Nephropidae/química
5.
Int J Biol Macromol ; 273(Pt 1): 133046, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38857726

RESUMEN

Chitin-glucan complex (CGC) is an emerging novel prebiotic with numerous physiological activities in amelioration of clinical manifestations. In the present work, natural deep eutectic solvent (NADES), ultrasonication, and submerged fermentation using probiotic microorganisms were deployed for the extraction of CGC from Shiitake fruiting bodies. CGC obtained through non-ultrasonication assisted fermentation employing Lactiplantibacillus plantarum exhibited maximum polysaccharide yield (27.86 ± 0.82 % w/w). However, based on antioxidant potential, NADES combination of urea: glycerol (1:1 M ratio) was selected for further characterization. The rheological behavior of CGC under optimized conditions showed shear thinning property in both 0.1 M NaCl and salt-free solution. FTIR, 1H-(1D), and 2D 1H1H Homonuclear NMR spectra displayed distinctive patterns associated with ß-glycosidic linkage and ß-d-glucopyranose sugar moiety. XRD profiles of CGC exhibited characteristic peaks at 2θ = 23°, 25°, and 28° with corresponding hkl values of (220), (101), and (130) lattice planes, respectively. Enhanced radical scavenging activities were noticed due to the triple helical structure and anionic nature of CGC. CGC exhibited potential prebiotic activity (prebiotic score 118-134 %) and short chain fatty acids liberation (maximum 9.99 ± 0.41 mM by Lactobacillus delbrueckii). Simulated static in-vitro digestion demonstrated that CGC withstands acidic environment of gastric phase, which indicated its suitability for use as a prebiotic in nutraceutical-enriched food products.


Asunto(s)
Quitina , Disolventes Eutécticos Profundos , Cuerpos Fructíferos de los Hongos , Glucanos , Prebióticos , Hongos Shiitake , Glucanos/química , Glucanos/aislamiento & purificación , Cuerpos Fructíferos de los Hongos/química , Quitina/química , Quitina/aislamiento & purificación , Hongos Shiitake/química , Disolventes Eutécticos Profundos/química , Antioxidantes/química , Antioxidantes/farmacología , Fermentación , Lactobacillus plantarum/metabolismo
6.
Int J Biol Macromol ; 273(Pt 2): 133224, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38897518

RESUMEN

In recent years, with the booming of the edible mushroom industry, chitin production has become increasingly dependent on fungi and other non-traditional sources. Fungal chitin has advantages including superior performance, simpler separation processes, abundant raw materials, and the absence of shellfish allergens. As a kind of edible mushroom, flammulina velutipes (F. velutipes) also has the advantages of wide source and large annual yield. This provided the possibility for the extraction of chitin. Here, a procedure to extract chitin from F. velutipes waste be presented. This method comprises low-concentration acid pretreatment coupled with consolidated bioprocessing with Aspergillus niger. Characterization by SEM, FTIR, XRD, NMR, and TGA confirmed that the extracted chitin was ß-chitin. To achieve optimal fermentation of F. velutipes waste (80 g/L), ammonium sulfate and glucose were selected as nitrogen and carbon sources (5 g/L), with a fermentation time of 5 days. The extracted chitin could be further deacetylated and purified to obtain high-purity chitosan (99.2 % ± 1.07 %). This chitosan exhibited a wide degree of deacetylation (50.0 % ± 1.33 % - 92.1 % ± 0.97 %) and a molecular weight distribution of 92-192 kDa. Notably, the yield of chitosan extracted in this study was increased by 56.3 % ± 0.47 % compared to the traditional chemical extraction method.


Asunto(s)
Aspergillus niger , Quitina , Fermentación , Flammulina , Aspergillus niger/metabolismo , Flammulina/química , Quitina/química , Quitina/aislamiento & purificación , Residuos , Ácidos/química , Peso Molecular
7.
J Appl Biomater Funct Mater ; 22: 22808000241248887, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38742818

RESUMEN

OBJECTIVE: Chitin a natural polymer is abundant in several sources such as shells of crustaceans, mollusks, insects, and fungi. Several possible attempts have been made to recover chitin because of its importance in biomedical applications in various forms such as hydrogel, nanoparticles, nanosheets, nanowires, etc. Among them, deep eutectic solvents have gained much consideration because of their eco-friendly and recyclable nature. However, several factors need to be addressed to obtain a pure form of chitin with a high yield. The development of an innovative system for the production of quality chitin is of prime importance and is still challenging. METHODS: The present study intended to develop a novel and robust approach to investigate chitin purity from various crustacean shell wastes using deep eutectic solvents. This investigation will assist in envisaging the important influencing parameters to obtain a pure form of chitin via a machine learning approach. Different machine learning algorithms have been proposed to model chitin purity by considering the enormous experimental dataset retrieved from previously conducted experiments. Several input variables have been selected to assess chitin purity as the output variable. RESULTS: The statistical criteria of the proposed model have been critically investigated and it was observed that the results indicate XGBoost has the maximum predictive accuracy of 0.95 compared with other selected models. The RMSE and MAE values were also minimal in the XGBoost model. In addition, it revealed better input variables to obtain pure chitin with minimal processing time. CONCLUSION: This study validates that machine learning paves the way for complex problems with substantial datasets and can be an inexpensive and time-saving model for analyzing chitin purity from crustacean shells.


Asunto(s)
Quitina , Crustáceos , Disolventes Eutécticos Profundos , Aprendizaje Automático , Quitina/química , Quitina/aislamiento & purificación , Animales , Crustáceos/química , Disolventes Eutécticos Profundos/química , Exoesqueleto/química
8.
Molecules ; 29(9)2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38731405

RESUMEN

Chitin, a ubiquitous biopolymer, holds paramount scientific and economic significance. Historically, it has been primarily isolated from marine crustaceans. However, the surge in demand for chitin and the burgeoning interest in biopolymers have necessitated the exploration of alternative sources. Among these methods, the mulberry silkworm (Bombyx mori) has emerged as a particularly intriguing prospect. To isolate chitin from Bombyx mori, a chemical extraction methodology was employed. This process involved a series of meticulously orchestrated steps, including Folch extraction, demineralization, deproteinization, and decolorization. The resultant chitin was subjected to comprehensive analysis utilizing techniques such as attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), 13C nuclear magnetic resonance (NMR) spectroscopy, and wide-angle X-ray scattering (WAXS). The obtained results allow us to conclude that the Bombyx mori represents an attractive alternative source of α-chitin.


Asunto(s)
Bombyx , Quitina , Bombyx/química , Animales , Quitina/química , Quitina/aislamiento & purificación , Espectroscopía Infrarroja por Transformada de Fourier , Difracción de Rayos X , Espectroscopía de Resonancia Magnética , Morus/química
9.
Int J Biol Macromol ; 268(Pt 2): 131855, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38679259

RESUMEN

In this work, chitin (CT) was isolated from shrimp shell waste (SSW) and was then phosphorylated using diammonium hydrogen phosphate (DAP) as a phosphorylating agent in the presence of urea. The prepared samples were characterized using Scanning Electron Microscopy (SEM) and EDX-element mapping, Fourier Transform Infrared Spectroscopy (ATR-FTIR), X-Ray Diffraction (XRD), Thermogravimetric Analysis (TGA/DTG), conductometric titration, Degree of Substitution (DS) and contact angle measurements. The results of characterization techniques reveal the successful extraction and phosphorylation of chitin. The charge content of the phosphorylated chitin (P-CT) was 1.510 mmol·kg-1, the degree of substitution of phosphorus groups grafted on the CT surface achieved the value of 0.33. The adsorption mechanisms appeared to involve electrostatic attachment, specific adsorption (CdO or hydroxyl binding), and ion exchange. Regarding the adsorption of Cd2+, the effect of the adsorbent mass, initial concentration of Cd2+, contact time, pH, and temperature were studied in batch experiments, and optimum values for each parameter were identified. The experimental results revealed that P-CT enhanced the Cd2+ removal capacity by 17.5 %. The kinetic analyses favored the pseudo-second-order model over the pseudo-first-order model for describing the adsorption process accurately. Langmuir model aptly represented the adsorption isotherms, suggesting unimolecular layer adsorption with a maximum capacity of 62.71 mg·g-1 under optimal conditions of 30 °C, 120 min, pH 8, and a P-CT dose of 3 g·L-1. Regeneration experiments evidenced that P-CT can be used for 6 cycles without significant removal capacity loss. Consequently, P-CT presents an efficient and cost-effective potential biosorbent for Cd2+ removal in wastewater treatment applications.


Asunto(s)
Cadmio , Quitina , Quitina/química , Quitina/aislamiento & purificación , Cadmio/química , Cadmio/aislamiento & purificación , Animales , Adsorción , Contaminantes Químicos del Agua/química , Contaminantes Químicos del Agua/aislamiento & purificación , Exoesqueleto/química , Fosforilación , Concentración de Iones de Hidrógeno , Cinética , Temperatura , Purificación del Agua/métodos , Residuos , Espectroscopía Infrarroja por Transformada de Fourier
10.
Int J Biol Macromol ; 268(Pt 1): 131815, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38670192

RESUMEN

We report on the extraction of ß-chitin from pens (or Gladius) of Uroteuthis edulis, a squid species prevalent in the Pacific coastal regions of East Asia. In particular, we employ cryogenic mechanical grinding (or cryomilling) as a pre-treatment process for the raw squid pens. We show that the cryomilling step enables an effective pulverization of the raw materials, which facilitates the removal of protein residues allowing the extraction of high-purity ß-chitin with a high acetylation degree (∼97 %) and crystallinity (∼82 %). We also demonstrate that the Uroteuthis edulis extract ß-chitin affords a free-standing film with excellent optical transmittance and mechanical properties.


Asunto(s)
Quitina , Decapodiformes , Quitina/química , Quitina/aislamiento & purificación , Decapodiformes/química , Animales , Acetilación
11.
Molecules ; 28(7)2023 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-37050017

RESUMEN

Chitin is mostly produced from crustaceans, but it is difficult to supply raw materials due to marine pollution, and the commonly used chemical chitin extraction method is not environmentally friendly. Therefore, this study aims to establish a chitin extraction process using enzymes and to develop edible insect-derived chitin as an eco-friendly new material. The response surface methodology (RSM) was used to determine the optimal conditions for enzymatic hydrolysis. The optimal conditions for enzymatic hydrolysis by RSM were determined to be the substrate concentration (7.5%), enzyme concentration (80 µL/g), and reaction time (24 h). The solubility and DDA of the mealworm chitosan were 45% and 37%, respectively, and those of the commercial chitosan were 61% and 57%, respectively. In regard to the thermodynamic properties, the exothermic peak of mealworm chitin was similar to that of commercial chitin. In the FT-IR spectrum, a band was observed in mealworm chitin corresponding to the C=O of the NHCOCH3 group at 1645 cm-1, but this band showed low-intensity C=O in the mealworm chitosan due to deacetylation. Collectively, mealworm chitosan shows almost similar physical and chemical properties to commercial chitosan. Therefore, it is shown that an eco-friendly process can be introduced into chitosan production by using enzyme-extracted mealworms for chitin/chitosan production.


Asunto(s)
Quitina , Quitosano , Subtilisinas , Tenebrio , Animales , Acetilación , Rastreo Diferencial de Calorimetría , Quitina/química , Quitina/aislamiento & purificación , Quitina/metabolismo , Quitosano/química , Quitosano/aislamiento & purificación , Quitosano/metabolismo , Crustáceos/química , Insectos Comestibles/química , Insectos Comestibles/metabolismo , Hidrólisis , Proteolisis , Solubilidad , Espectroscopía Infrarroja por Transformada de Fourier , Subtilisinas/metabolismo , Tenebrio/química , Tenebrio/metabolismo , Termodinámica
12.
Braz. j. biol ; 83: 1-8, 2023. ilus, graf, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468881

RESUMEN

Chitin and its derived products have immense economic value due to their vital role in various biological activities as well as biomedical and industrial application. Insects, microorganism and crustaceans are the main supply of chitin but the crustaceans shell like shrimp, krill, lobsters and crabs are the main commercial sources. Chitin content of an individual varies depending on the structures possessing the polymer and the species. In this study edible crabs’ shells (Callinectes sapidus) were demineralized and deproteinized resulting in 13.8% (dry weight) chitin recovery from chitin wastes. FTIR and XRD analyses of the experimental crude as well as purified chitins revealed that both were much comparable to the commercially purchased controls. The acid pretreatment ceded 54g of colloidal chitin that resulted in 1080% of the crude chitin. The colloidal chitin was exploited for isolation of eighty five chitinolytic bacterial isolates from different sources. Zone of clearance was displayed by the thirty five isolates (41.17%) succeeding their growth at pH 7 on colloidal chitin agar medium. Maximum chitinolytic activity i.e. 301.55 U/ml was exhibited by isolate JF70 when cultivated in extracted chitin containing both carbon and nitrogen. The study showed wastes of blue crabs can be utilized for extraction of chitin and isolation of chitinolytic bacteria that can be used to degrade chitin waste, resolve environmental pollution as well as industrial purpose.


A quitina e seus produtos derivados têm imenso valor econômico devido ao seu papel vital em várias atividades biológicas, bem como em aplicações biomédicas e industriais. Insetos, microrganismos e crustáceos são o principal suprimento de quitina, mas a casca dos crustáceos como camarão, krill, lagosta e caranguejo são as principais fontes comerciais. O conteúdo de quitina de um indivíduo varia dependendo das estruturas que possuem o polímero e da espécie. Neste estudo, as cascas de caranguejos comestíveis (Callinectes sapidus) foram desmineralizadas e desproteinizadas, resultando em 13,8% (peso seco) de recuperação de quitina a partir de resíduos de quitina. As análises de FTIR e XRD do bruto experimental, bem como das quitinas purificadas, revelaram que ambas eram muito comparáveis aos controles adquiridos comercialmente. O pré-tratamento com ácido cedeu 54 g de quitina coloidal que resultou em 1.080% da quitina bruta. A quitina coloidal foi analisada para isolamento de 85 isolados bacterianos quitinolíticos de diferentes fontes. A zona de eliminação foi exibida pelos 35 isolados (41,17%) que sucederam seu crescimento a pH 7 em meio de ágar de quitina coloidal. A atividade quitinolítica máxima, ou seja, 301,55 U / ml, foi exibida pelo isolado JF70 quando cultivado em quitina extraída contendo carbono e nitrogênio. O estudo mostrou que resíduos de caranguejos azuis podem ser utilizados para extração de quitina e isolamento de bactérias quitinolíticas que podem ser usadas para degradar resíduos de quitina, resolver a poluição ambiental e também para fins industriais.


Asunto(s)
Quitina/análisis , Quitina/economía , Quitina/aislamiento & purificación , Quitinasas
13.
Int J Biol Macromol ; 194: 843-850, 2022 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838575

RESUMEN

The properties of chitin-based adsorbents varied among studies since they are influenced by different factors, such as the types of base and acid used to extract the chitin. Therefore, this works aimed to investigate the impact of four different acid solutions on the extraction and properties of chitin from shrimp shell waste, and to evaluate the adsorption performance of the obtained chitin on removing dye from an aqueous solution. The result showed that H2SO4, HCl, and HNO3 could remove high minerals from the shrimp shell, while the effect of CH3COOH was inferior. The Fourier Transform Infrared (FTIR) and X-ray diffraction (XRD) indicated that the extracted chitin was α-amorphous structure, regardless of the type of acid solution. However, the type of acid solution influenced the crystallinity index of the extracted chitin. The Scanning Electron Microscope (SEM) showed both fibrillar material and porous structures. In addition, the chitin extracted through demineralization using H2SO4 was more effective in removing RBBR dye from aqueous solution, followed by HCl, HNO3, and the last, CH3COOH treatment. The performances of chitin-based adsorbent could be attributed to the strength of acid solution used to remove mineral during the extraction process and the obtained pore structures.


Asunto(s)
Ácidos/química , Exoesqueleto/química , Quitina/química , Quitina/aislamiento & purificación , Crustáceos/química , Soluciones/química , Adsorción , Animales , Fraccionamiento Químico , Cinética , Análisis Espectral , Residuos
14.
Molecules ; 26(24)2021 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-34946682

RESUMEN

Chitin, the second most abundant biopolymer on earth, is utilised in a wide range of applications including wastewater treatment, drug delivery, wound healing, tissue engineering, and stem cell technology among others. This review compares the most prevalent strategies for the extraction of chitin from crustacean sources including chemical methods that involve the use of harsh solvents and emerging methods using deep eutectic solvents (DES). In recent years, a significant amount of research has been carried out to identify and develop environmentally friendly processes which might facilitate the replacement of problematic chemicals utilised in conventional chemical extraction strategies with DES. This article provides an overview of different experimental parameters used in the DES-mediated extraction of chitin while also comparing the purity and yields of associated extracts with conventional methods. As part of this review, we compare the relative proportions of chitin and extraneous materials in different marine crustaceans. We show the importance of the species of crustacean shell in relation to chitin purity and discuss the significance of varying process parameters associated with different extraction strategies. The review also describes some recent applications associated with chitin. Following on from this review, we suggest recommendations for further investigation into chitin extraction, especially for experimental research pertaining to the enhancement of the "environmentally friendly" nature of the process. It is hoped that this article will provide researchers with a platform to better understand the benefits and limitations of DES-mediated extractions thereby further promoting knowledge in this area.


Asunto(s)
Exoesqueleto/química , Quitina , Crustáceos/química , Disolventes Eutécticos Profundos/química , Animales , Quitina/química , Quitina/aislamiento & purificación
15.
Int J Biol Macromol ; 186: 218-226, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34246672

RESUMEN

The extraction of nanochitin from marine waste has attracted great industrial interest due to its unique properties, namely biodegradability, biocompatibility and as a functional reinforcing agent. Conventional acid hydrolysis isolation of nanochitin requires high temperatures and acid concentration, time and energy. Herein, for the first time, microwave irradiation method was used as an eco-friendly approach to isolate nanochitin from different sources. The isolation conditions were optimized through an experimental Box-Behnken design using surface response methodology. The data showed optimal conditions of 1 M HCl, 10.00 min and 124.75 W to obtain lobster nanocrystals; 1 M HCl, 14.34 min and 50.21 W to obtain shrimp nanocrystals; and 1 M HCl, 29.08 min and 54.08 W to obtain squid pen nanofibres, reducing time and HCl concentration. The obtained isolation yields where of 85.30, 79.92 and 80.59 % for lobster, shrimp and squid, respectively. The morphology of the nanochitins was dependent of the chitin origin, and the lengths of the nanochitins were of 314.74, 386.12 and > 900 nm for lobster, shrimp and squid pen, respectively. The thermal stability of the ensuing nanochitins was maintained after treatment. The results showed that nanochitin could be obtained by using an eco-friendly approach like microwave irradiation.


Asunto(s)
Quitina/aislamiento & purificación , Tecnología Química Verde , Microondas , Nanofibras , Nanopartículas , Alimentos Marinos , Residuos , Animales , Conformación de Carbohidratos , Fraccionamiento Químico , Decapodiformes/química , Manipulación de Alimentos , Ácido Clorhídrico/química , Concentración de Iones de Hidrógeno , Hidrólisis , Nephropidae/química , Penaeidae/química , Relación Estructura-Actividad , Factores de Tiempo
16.
Int J Biol Macromol ; 186: 92-99, 2021 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-34246675

RESUMEN

The efficient use of waste from food processing industry is one of the innovative approaches within sustainable development, because it can be transferred into added value products, which could improve economic, energetic and environmental sectors. In this context, the squid pen waste from seafood industry was used as raw material to obtain nanofibrous ß-chitin films. In order to extend functionality of obtained films, elderberry extract obtained from biomass was added at different concentrations. The tensile strength of chitin-elderberry extract films was improved by 52%, elongation at break by 153% and water vapor barrier by 65%. The obtained material showed distinct color change when subjected to acidic or basic solutions. It was proven by CIELab color analysis that all color changes could be easily perceived visually. In addition, the obtained nanofibrous film was successfully used to monitor the freshness of Hake fish. Namely, when the film was introduced in a package that contained fresh fish, its color was efficiently changed within the time during the storage at 4 °C. The obtained results demonstrated that food processing waste could be efficiently valorized, and could give sustainable food package design as a spoilage indicator of high protein food.


Asunto(s)
Quitina/aislamiento & purificación , Decapodiformes , Manipulación de Alimentos , Embalaje de Alimentos , Nanofibras , Alimentos Marinos , Materiales Inteligentes/aislamiento & purificación , Residuos , Animales , Color , Colorimetría , Contaminación de Alimentos , Almacenamiento de Alimentos , Frutas , Gadiformes , Concentración de Iones de Hidrógeno , Nanotecnología , Extractos Vegetales/química , Sambucus , Temperatura , Resistencia a la Tracción , Tiempo
17.
Mar Drugs ; 19(4)2021 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-33810536

RESUMEN

ß-chitin was isolated from marine waste, giant Humboldt squid Dosidicus gigas, and further converted to nanofibers by use of a collider machine under acidic conditions (pH 3). The FTIR, TGA, and NMR analysis confirmed the efficient extraction of ß-chitin. The SEM, TEM, and XRD characterization results verified that ß-chitin crystalline structure were maintained after mechanical treatment. The mean particle size of ß-chitin nanofibers was in the range between 10 and 15 nm, according to the TEM analysis. In addition, the ß-chitin nanofibers were converted into films by the simple solvent-casting and drying process at 60 °C. The obtained films had high lightness, which was evidenced by the CIELAB color test. Moreover, the films showed the medium swelling degree (250-290%) in aqueous solutions of different pH and good mechanical resistance in the range between 4 and 17 MPa, depending on film thickness. The results obtained in this work show that marine waste can be efficiently converted to biomaterial by use of mild extractive conditions and simple mechanical treatment, offering great potential for the future development of sustainable multifunctional materials for various industrial applications such as food packaging, agriculture, and/or wound dressing.


Asunto(s)
Materiales Biocompatibles , Quitina/aislamiento & purificación , Decapodiformes/metabolismo , Nanofibras , Residuos , Animales , Conformación de Carbohidratos , Quitina/química , Tamaño de la Partícula , Propiedades de Superficie , Viscosidad
18.
Molecules ; 26(4)2021 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-33672446

RESUMEN

Over the past decade, reckless usage of synthetic pesticides and fertilizers in agriculture has made the environment and human health progressively vulnerable. This setting leads to the pursuit of other environmentally friendly interventions. Amongst the suggested solutions, the use of chitin and chitosan came about, whether alone or in combination with endophytic bacterial strains. In the framework of this research, we reported an assortment of studies on the physico-chemical properties and potential applications in the agricultural field of two biopolymers extracted from shrimp shells (chitin and chitosan), in addition to their uses as biofertilizers and biostimulators in combination with bacterial strains of the genus Bacillus sp. (having biochemical and enzymatic properties).


Asunto(s)
Bacillus/metabolismo , Quitina/metabolismo , Quitosano/metabolismo , Productos Agrícolas/metabolismo , Exoesqueleto/química , Animales , Conformación de Carbohidratos , Quitina/química , Quitina/aislamiento & purificación , Quitosano/química , Quitosano/aislamiento & purificación , Crustáceos
19.
Carbohydr Polym ; 258: 117720, 2021 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-33593582

RESUMEN

To simplify the process of chitin bio-extraction from shrimp shells powder (SSP), successive co-fermentation using Bacillus subtilis and Acetobacter pasteurianus was explored in this work. Among three protease-producer (B. licheniformis, B. subtilis, and B. cereus), only B. subtilis exhibited high compatibility with A. pasteurianus in co-culture. Successive co-fermentation was constructed as follows: deproteinization was performed for 3 d by culturing B. subtilis in the medium containing 50 g·L-1 SSP, 50 g·L-1 glucose, and 1 g·L-1 yeast extracts; After feeding 5 g·L-1 KH2PO4 and 6 % (v/v) ethanol, A. pasteurianus was cultured for another 2 d without replacing and re-sterilizing medium. Through 5 d of fermentation, the final deproteinization, demineralization efficiency, and chitin yield reached 94.5 %, 92.0 %, and 18.0 %, respectively. This purified chitin had lower molecular weight (12.8 kDa) and higher deacetylation degree (19.6 %) compared with commercial chitin (18.5 kDa, 6.7 %), and showed excellent structural characterization of FESEM and FT-IR analysis.


Asunto(s)
Acetobacter/metabolismo , Bacillus subtilis/metabolismo , Quitina/aislamiento & purificación , Fermentación , Penaeidae/metabolismo , Exoesqueleto/química , Animales , Calcio/química , Quitina/química , Técnicas de Cocultivo , Medios de Cultivo , Glucosa/análisis , Microscopía Electrónica de Rastreo , Peso Molecular , Polvos/análisis , Espectroscopía Infrarroja por Transformada de Fourier , Factores de Tiempo
20.
Int J Biol Macromol ; 167: 1319-1328, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33202268

RESUMEN

Interest in insects as a source of valuable biologically active substances has significantly increased over the past few years. Insects serve as an alternative source of chitin, which forms up to 40% of their exoskeleton. Chitosan, a deacetylated derivative of chitin, attracts the attention of scientists due to its unique properties (sorption, antimicrobial, film-forming, wound healing). Furthermore, some insect species are unique and can be used to obtain chitin- and chitosan-melanin complexes in the later stages of ontogenesis. Due to the synergistic effect, chitosan and melanin can enhance each other's biological activity, providing a wide range of potential applications.


Asunto(s)
Quitina/análogos & derivados , Quitina/aislamiento & purificación , Quitosano/aislamiento & purificación , Insectos/química , Melaninas/aislamiento & purificación , Animales , Quitina/química , Quitosano/química , Melaninas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA