Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Poult Sci ; 103(7): 103788, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38692177

RESUMEN

This study aims to identify candidate genes related to ovarian development after ovarian tissue transplantation through transcriptome sequencing (RNA-seq) and expression network analyses, as well as to provide a reference for determining the molecular mechanism of improving ovarian development following ovarian tissue transplantation. We collected ovarian tissues from 15 thirty-day-old ducks and split each ovary into 4 equal portions of comparable sizes before orthotopically transplanting them into 2-day-old ducks. Samples were collected on days 0 (untransplanted), 3, 6, and 9. The samples were paraffin sectioned and then subjected to Hematoxylin-Eosin (HE) staining and follicular counting. We extracted RNA from ovarian samples via the Trizol method to construct a transcriptome library, which was then sequenced by the Illumina Novaseq 6000 sequencing platform. The sequencing results were examined for differentially expressed genes (DEG) through gene ontology (GO) function and the Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses, gene set enrichment analysis (GSEA), weighted correlation network analysis (WGCNA), and protein-protein interaction (PPI) networks. Some of the candidate genes were selected for verification using real-time fluorescence quantitative PCR (qRT-PCR). Histological analysis revealed a significant reduction in the number of morphologically normal follicles at 3, 6, and 9 d after ovarian transplantation, along with significantly higher abnormality rates (P < 0.05). The transcriptome analysis results revealed 2,114, 2,224, and 2,257 upregulated DEGs and 2,647, 2,883, and 2,665 downregulated DEGs at 3, 6, and 9 d after ovarian transplantation, respectively. Enrichment analysis revealed the involvement multiple pathways in inflammatory signaling, signal transduction, and cellular processes. Furthermore, WGCNA yielded 13 modules, with 10, 4, and 6 candidate genes mined at 3, 6 and 9 d after ovarian transplantation, respectively. Transcription factor (TF) prediction showed that STAT1 was the most important TF. Finally, the qRT-PCR verification results revealed that 12 candidate genes exhibited an expression trend consistent with sequencing data. In summary, significant differences were observed in the number of follicles in duck ovaries following ovarian transplantation. Candidate genes involved in ovarian vascular remodeling and proliferation were screened using RNA-Seq and WGCNA.


Asunto(s)
Patos , Ovario , RNA-Seq , Animales , Femenino , Ovario/metabolismo , Patos/genética , RNA-Seq/veterinaria , Transcriptoma , Redes Reguladoras de Genes , Perfilación de la Expresión Génica/veterinaria , Análisis de Secuencia de ARN/veterinaria
2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38551023

RESUMEN

Alternative splicing (AS) plays an important role in the co-transcription and post-transcriptional regulation of gene expression during mammalian spermatogenesis. The dzo is the male F1 offspring of an interspecific hybrid between a domestic bull (Bos taurus ♂) and a yak (Bos grunniens ♀) which exhibits male sterility. This study aimed to identify the testis-specific genes and AS associated with hybrid male sterility in dzo. The iDEP90 program and rMATS software were used to identify the differentially expressed genes (DEG) and differential alternative splicing genes (DSG) based on RNA-seq data from the liver (n = 9) and testis (n = 6) tissues of domestic cattle, yak, and dzo. Splicing factors (SF) were obtained from the AmiGO2 and the NCBI databases, and Pearson correlation analysis was performed on the differentially expressed SFs and DSGs. We focused on the testis-specific DEGs and DSGs between dzo and cattle and yak. Among the top 3,000 genes with the most significant variations between these 15 samples, a large number of genes showed testis-specific expression involved with spermatogenesis. Cluster analysis showed that the expression levels of these testis-specific genes were dysregulated during mitosis with a burst downregulation during the pachynema spermatocyte stage. The occurrence of AS events in the testis was about 2.5 fold greater than in the liver, with exon skipping being the major AS event (81.89% to 82.73%). A total of 74 DSGs were specifically expressed in the testis and were significantly enriched during meiosis I, synapsis, and in the piRNA biosynthesis pathways. Notably, STAG3 and DDX4 were of the exon skipping type, and DMC1 was a mutually exclusive exon. A total of 36 SFs were significantly different in dzo testis, compared with cattle and yak. DDX4, SUGP1, and EFTUD2 were potential SFs leading to abnormal AS of testis-specific genes in dzo. These results show that AS of testis-specific genes can affect synapsis and the piRNA biosynthetic processes in dzo, which may be important factors associated with hybrid male sterility in dzo.


The interspecific hybrid offspring of a domestic bull (Bos taurus) and a yak (Bos grunniens) display heterosis in meat and milk production. The hybrid offspring are particularly adaptable to the harsh environments of the Qinghai-Tibet Plateau. However, the male F1 to F3 offspring of this interspecies hybrid are infertile, and spermatogenesis is arrested at meiosis preventing the prolonged utilization of the benefits of heterosis. This study aimed to identify the testis-specific genes and alternative splicing (AS) associated with hybrid male sterility using RNA-Seq data from the liver and testis tissues of domestic cattle, yaks, and their F1 offspring (dzo). The expression of the testis-specific genes became disordered during mitosis and meiosis in dzo. Their testis-specific genes with AS events were enriched during synapsis and in the piRNA biosynthetic processes. In addition, we identified the potential splicing factors associated with abnormal testis-specific AS gene expression in dzo. These results reveal the important role of AS in the meiotic arrest of dzo.


Asunto(s)
Empalme Alternativo , Infertilidad Masculina , Hígado , Testículo , Animales , Masculino , Bovinos/genética , Bovinos/fisiología , Testículo/metabolismo , Hígado/metabolismo , Infertilidad Masculina/genética , Infertilidad Masculina/veterinaria , Espermatogénesis/genética , ARN Mensajero/genética , ARN Mensajero/metabolismo , Hibridación Genética , RNA-Seq/veterinaria
3.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38364365

RESUMEN

Circular RNAs (circRNAs) are a class of non-coding RNAs that play important roles in preadipocyte differentiation and adipogenesis. However, little is known about genome-wide identification, expression profile, and function of circRNAs in sheep. To investigate the role of circRNAs during ovine adipogenic differentiation, the subcutaneous adipose tissue of Tibetan rams was collected in June 2022. Subsequently, the preadipocytes were immediately isolated from collected adipose tissue and then induced to begin differentiation. The adipocytes samples cultured on days 0, 2, and 8 of preadipocytes differentiation were used to perform RNA sequencing (RNA-seq) analysis to construct the expression profiles of circRNAs. Subsequently, the function of differentially expressed circRNAs was investigated by performing the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of their parent genes. Finally, a circRNAs-miRNAs-mRNAs network involved in adipogenic differentiation was been analyzed. As a result, a total of 6,449 candidate circRNAs were identified in ovine preadipocytes. Of these circRNAs identified, 63 candidate circRNAs were differentially expressed among the three differentiation stages and their parent genes were mainly enriched in acetyl-CoA metabolic process, positive regulation of lipid biosynthetic process, positive regulation of steroid biosynthetic process, and focal adhesion pathway (P < 0.05). Based on a circRNAs-miRNAs-mRNAs regulatory network constructed, circ_004977, circ_006132 and circ_003788 were found to function as competing endogenous RNAs (ceRNAs) to regulate ovine preadipocyte differentiation and lipid metabolism. The results provide an improved understanding of functions and molecular mechanisms of circRNAs underlying ovine adipogenesis in sheep.


The moderate fat deposition contributes to improve mutton quality, which is associated with the differentiation of preadipocytes. To investigate roles of circular RNAs (circRNAs) in preadipocyte differentiation, we identified circRNAs on days 0, 2, and 8 of preadipocytes differentiation and compared the expression profile of circRNAs at different adipogenic differentiation stages. A total of 6,449 candidate circRNAs were identified, among which 63 candidate circRNAs were differentially expressed among the three differentiation stages. The parent genes of differentially expressed circRNAs were enriched in several biological process and pathways related to lipid metabolism and synthesis. In addition, several circRNAs may regulate ovine preadipocyte differentiation by interacting with microRNAs (miRNAs). The results reveal the potential roles of circRNAs in adipogenic differentiation of sheep.


Asunto(s)
MicroARNs , ARN Circular , Ovinos/genética , Animales , Masculino , ARN Circular/genética , Adipogénesis/genética , RNA-Seq/veterinaria , MicroARNs/genética , ARN Mensajero/genética , Redes Reguladoras de Genes , Análisis de Secuencia de ARN/veterinaria , Oveja Doméstica/genética
4.
Zool Res ; 45(1): 201-214, 2024 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-38199974

RESUMEN

Glycogen serves as the principal energy reserve for metabolic processes in aquatic shellfish and substantially contributes to the flavor and quality of oysters. The Jinjiang oyster ( Crassostrea ariakensis) is an economically and ecologically important species in China. In the present study, RNA sequencing (RNA-seq) and assay for transposase-accessible chromatin using sequencing (ATAC-seq) were performed to investigate gene expression and chromatin accessibility variations in oysters with different glycogen contents. Analysis identified 9 483 differentially expressed genes (DEGs) and 7 215 genes with significantly differential chromatin accessibility (DCAGs) were obtained, with an overlap of 2 600 genes between them. Notably, a significant proportion of these genes were enriched in pathways related to glycogen metabolism, including "Glycogen metabolic process" and "Starch and sucrose metabolism". In addition, genome-wide association study (GWAS) identified 526 single nucleotide polymorphism (SNP) loci associated with glycogen content. These loci corresponded to 241 genes, 63 of which were categorized as both DEGs and DCAGs. This study enriches basic research data and provides insights into the molecular mechanisms underlying the regulation of glycogen metabolism in C. ariakensis.


Asunto(s)
Crassostrea , Animales , Crassostrea/genética , Estudio de Asociación del Genoma Completo/veterinaria , Secuenciación de Inmunoprecipitación de Cromatina/veterinaria , RNA-Seq/veterinaria , Análisis de Secuencia de ARN/veterinaria , Cromatina , Glucógeno
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA