Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 571
Filtrar
1.
Chem Asian J ; 19(8): e202400105, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38447112

RESUMEN

Hydroxyl radical (•OH), a highly reactive oxygen species (ROS), is assumed as one of the most aggressive free radicals. This radical has a detrimental impact on cells as it can react with different biological substrates leading to pathophysiological disorders, including inflammation, mitochondrion dysfunction, and cancer. Quantification of this free radical in-situ plays critical roles in early diagnosis and treatment monitoring of various disorders, like macrophage polarization and tumor cell development. Luminescence analysis using responsive probes has been an emerging and reliable technique for in-situ detection of various cellular ROS, and some recently developed •OH responsive nanoprobes have confirmed the association with cancer development. This paper aims to summarize the recent advances in the characterization of •OH in living organisms using responsive nanoprobes, covering the production, the sources of •OH, and biological function, especially in the development of related diseases followed by the discussion of luminescence nanoprobes for •OH detection.


Asunto(s)
Radical Hidroxilo , Nanotecnología , Animales , Humanos , Colorantes Fluorescentes/química , Colorantes Fluorescentes/síntesis química , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Nanopartículas/química , Nanotecnología/métodos
2.
Environ Sci Technol ; 58(4): 1823-1831, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38235527

RESUMEN

Air pollution causes morbidity and excess mortality. In the epithelial lining fluid of the respiratory tract, air pollutants trigger a chemical reaction sequence that causes the formation of noxious hydroxyl radicals that drive oxidative stress. For hitherto unknown reasons, individuals with pre-existing inflammatory disorders are particularly susceptible to air pollution. Through detailed multiphase chemical kinetic analysis, we show that the commonly elevated concentrations of endogenous nitric oxide in diseased individuals can increase the production of hydroxyl radicals via peroxynitrite formation. Our findings offer a molecular rationale of how adverse health effects and oxidative stress caused by air pollutants may be exacerbated by inflammatory disorders.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/análisis , Óxido Nítrico/análisis , Óxido Nítrico/farmacología , Material Particulado/análisis , Cinética , Estrés Oxidativo , Contaminación del Aire/análisis , Radical Hidroxilo/análisis , Radical Hidroxilo/farmacología
3.
Environ Sci Technol ; 58(6): 2808-2816, 2024 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-38227742

RESUMEN

Hydroxyl radical (•OH) is a powerful oxidant abundantly found in nature and plays a central role in numerous environmental processes. On-site detection of •OH is highly desirable for real-time assessments of •OH-centered processes and yet is restrained by a lack of an analysis system suitable for field applications. Here, we report the development of a flow-injection chemiluminescence analysis (FIA-CL) system for the continuous field detection of •OH. The system is based on the reaction of •OH with phthalhydrazide to generate 5-hydroxy-2,3-dihydro-1,4-phthalazinedione, which emits chemiluminescence (CL) when oxidatively activated by H2O2 and Cu3+. The FIA-CL system was successfully validated using the Fenton reaction as a standard •OH source. Unlike traditional absorbance- or fluorescence-based methods, CL detection could minimize interference from an environmental medium (e.g., organic matter), therefore attaining highly sensitive •OH detection (limits of detection and quantification = 0.035 and 0.12 nM, respectively). The broad applications of FIA-CL were illustrated for on-site 24 h detection of •OH produced from photochemical processes in lake water and air, where the temporal variations on •OH productions (1.0-12.2 nM in water and 1.5-37.1 × 107 cm-3 in air) agreed well with sunlight photon flux. Further, the FIA-CL system enabled field 24 h field analysis of •OH productions from the oxidation of reduced substances triggered by tidal fluctuations in coastal soils. The superior analytical capability of the FIA-CL system opens new opportunities for monitoring •OH dynamics under field conditions.


Asunto(s)
Radical Hidroxilo , Luminiscencia , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Peróxido de Hidrógeno , Oxidación-Reducción , Agua
4.
Environ Sci Technol ; 58(1): 795-804, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38095914

RESUMEN

Iron plaque, as a natural barrier between rice and soil, can reduce the accumulation of pollutants in rice by adsorption, contributing to the safe production of rice in contaminated soil. In this study, we unveiled a new role of iron plaque, i.e., producing hydroxyl radicals (·OH) by activating root-secreted oxygen to degrade pollutants. The ·OH was produced on the iron plaque surface and then diffused to the interfacial layer between the surface and the rhizosphere environment. The iron plaque activated oxygen via a successive three-electron transfer to produce ·OH, involving superoxide and hydrogen peroxide as the intermediates. The structural Fe(II) in iron plaque played a dominant role in activating oxygen rather than the adsorbed Fe(II), since the structural Fe(II) was thermodynamically more favorable for oxygen activation. The oxygen vacancies accompanied by the structural Fe(II) played an important role in oxygen activation to produce ·OH. The interfacial ·OH selectively degraded rhizosphere pollutants that could be adsorbed onto the iron plaque and was less affected by the rhizosphere environments than the free ·OH. This study uncovered the oxidative role of iron plaque mediated by its produced ·OH, reshaping our understanding of the role of iron plaque as a barrier for rice.


Asunto(s)
Contaminantes Ambientales , Oryza , Contaminantes del Suelo , Hierro/química , Contaminantes Ambientales/análisis , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Rizosfera , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Suelo/química , Compuestos Ferrosos/análisis , Compuestos Ferrosos/metabolismo , Oxígeno/análisis
5.
Environ Sci Technol ; 58(1): 805-815, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38156625

RESUMEN

Free available chlorine has been and is being applied in global water treatment and readily reacts with dissolved organic matter (DOM) in aquatic environments, leading to the formation of chlorinated products. Chlorination enhances the photoreactivity of DOM, but the influence of chlorinated compounds on the photogeneration of hydroxyl radicals (•OH) has remained unexplored. In this study, a range of chlorinated carboxylate-substituted phenolic model compounds were employed to assess their •OH photogeneration capabilities. These compounds demonstrated a substantial capacity for •OH production, exhibiting quantum yields of 0.1-5.9 × 10-3 through direct photolysis under 305 nm and 0.2-9.5 × 10-3 through a triplet sensitizer (4-benzoylbenzoic acid)-inducing reaction under 365 nm LED irradiation. Moreover, the chlorinated compounds exhibited higher light absorption and •OH quantum yields compared to those of their unchlorinated counterparts. The •OH photogeneration capacity of these compounds exhibited a positive correlation with their triplet state one-electron oxidation potentials. Molecular-level compositional analysis revealed that aromatic structures rich in hydroxyl and carboxyl groups (e.g., O/C > 0.5 with H/C < 1.5) within DOM serve as crucial sources of •OH, and chlorination of these compounds significantly enhances their capacity to generate •OH upon irradiation. This study provides novel insights into the enhanced photogeneration of •OH from chlorinated DOM, which is helpful for understanding the fate of trace pollutants in chlorinated waters.


Asunto(s)
Radical Hidroxilo , Contaminantes Químicos del Agua , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Materia Orgánica Disuelta , Fotólisis , Oxidación-Reducción , Ácidos Carboxílicos , Contaminantes Químicos del Agua/análisis
6.
Environ Int ; 180: 108240, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37797479

RESUMEN

Atmospheric particulate matter (PM) poses great adverse effects through the production of reactive oxygen species (ROS). Various components in PM are acknowledged to induce ROS formation, while the interactions among chemicals remain to be elucidated. Here, we systematically investigate the influence of Brown carbon (BrC) surrogates (e.g., imidazoles, nitrocatechols and humic acid) on hydroxyl radical (OH) generation from transition metals (TMs) in simulated lung fluid. Present results show that BrC has an antagonism (interaction factor: 20-90 %) with Cu2+ in OH generation upon the interaction with glutathione, in which the concentrations of BrC and TMs influence the extent of antagonism. Rapid OH generation in glutathione is observed for Fe2+, while OH formation is very little for Fe3+. The compositions of antioxidants (e.g., glutathione, ascorbate, urate), resembling the upper and lower respiratory tract, respond differently to BrC and TMs (Cu2+, Fe2+ and Fe3+) in OH generation and the degree of antagonism. The complexation equilibrium constants and site numbers between Cu2+ and humic acid were further analyzed using fluorescence quenching experiments. Possible complexation products among TMs, 4-nitrocatechol and glutathione were also identified using quadropule-time-of-flight mass spectrometry. The results suggest atmospheric BrC widely participate in complexation with TMs which influence OH formation in the human lung fluid, and complexation should be considered in evaluating ROS formation mediated by ambient PM.


Asunto(s)
Contaminantes Atmosféricos , Radical Hidroxilo , Humanos , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Especies Reactivas de Oxígeno/análisis , Sustancias Húmicas/análisis , Material Particulado/análisis , Pulmón/química , Glutatión , Carbono/análisis , Contaminantes Atmosféricos/análisis
7.
Environ Sci Technol ; 57(2): 896-908, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36603843

RESUMEN

The hydroxyl radical (OH) is the dominant oxidant in the outdoor environment, controlling the lifetimes of volatile organic compounds (VOCs) and contributing to the growth of secondary organic aerosols. Despite its importance outdoors, there have been relatively few measurements of the OH radical in indoor environments. During the House Observations of Microbial and Environmental Chemistry (HOMEChem) campaign, elevated concentrations of OH were observed near a window during cooking events, in addition to elevated mixing ratios of nitrous acid (HONO), VOCs, and nitrogen oxides (NOX). Particularly high concentrations were measured during the preparation of a traditional American Thanksgiving dinner, which required the use of a gas stove and oven almost continually for 6 h. A zero-dimensional chemical model underpredicted the measured OH concentrations even during periods when direct sunlight illuminated the area near the window, which increases the rate of OH production by photolysis of HONO. Interferences with measurements of nitrogen dioxide (NO2) and ozone (O3) suggest that unmeasured photolytic VOCs were emitted during cooking events. The addition of a VOC that photolyzes to produce peroxy radicals (RO2), similar to pyruvic acid, into the model results in better agreement with the OH measurements. These results highlight our incomplete understanding of the nature of oxidation in indoor environments.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Ozono , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Fotólisis , Contaminación del Aire Interior/análisis , Óxidos de Nitrógeno/análisis , Ozono/análisis , Culinaria , Ácido Nitroso/análisis , Ácido Nitroso/química , Contaminantes Atmosféricos/análisis
8.
Chemosphere ; 313: 137528, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36528164

RESUMEN

Air cleaning technologies are needed to reduce indoor concentrations and exposure to volatile organic compounds (VOCs). Currently, air cleaning technologies lack an accepted test standard to evaluate their VOC removal performance. A protocol to evaluate the VOC removal performance of air cleaning devices was developed and piloted with two devices. This method injects a VOC mixture and carbon dioxide into a test chamber, supplies outdoor air at a standard building ventilation rate, periodically measures the VOC concentrations in the chamber using solid phase microextraction-gas chromatography-mass spectrometry over a 3-h decay period, and compares the decay rate of VOCs to carbon dioxide to measure the VOC removal air cleaning performance. The method was demonstrated with both a hydroxyl radical generator and an activated carbon air cleaner. It was shown that the activated carbon air cleaner device tested had a clean air delivery rate an order of magnitude greater than the hydroxyl radical generator device (72.10 vs 6.32 m3/h).


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Compuestos Orgánicos Volátiles , Compuestos Orgánicos Volátiles/análisis , Contaminación del Aire Interior/prevención & control , Contaminación del Aire Interior/análisis , Contaminantes Atmosféricos/análisis , Carbón Orgánico/análisis , Dióxido de Carbono/análisis , Radical Hidroxilo/análisis , Monitoreo del Ambiente
9.
J Environ Sci (China) ; 124: 557-569, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182163

RESUMEN

Atmospheric oxidizing capacity (AOC) is the fundamental driving factors of chemistry process (e.g., the formation of ozone (O3) and secondary organic aerosols (SOA)) in the troposphere. However, accurate quantification of AOC still remains uncertainty. In this study, a comprehensive field campaign was conducted during autumn 2019 in downtown of Beijing, where O3 and PM2.5 episodes had been experienced successively. The observation-based model (OBM) is used to quantify the AOC at O3 and PM2.5 episodes. The strong intensity of AOC is found at O3 and PM2.5 episodes, and hydroxyl radical (OH) is the dominating daytime oxidant for both episodes. The photolysis of O3 is main source of OH at O3 episode; the photolysis of nitrous acid (HONO) and formaldehyde (HCHO) plays important role in OH formation at PM2.5 episode. The radicals loss routines vary according to precursor pollutants, resulting in different types of air pollution. O3 budgets and sensitivity analysis indicates that O3 production is transition regime (both VOC and NOx-limited) at O3 episode. The heterogeneous reaction of hydroperoxy radicals (HO2) on aerosol surfaces has significant influence on OH and O3 production rates. The HO2 uptake coefficient (γHO2) is the determining factor and required accurate measurement in real atmospheric environment. Our findings could provide the important bases for coordinated control of PM2.5 and O3 pollution.


Asunto(s)
Contaminantes Atmosféricos , Ozono , Compuestos Orgánicos Volátiles , Aerosoles/análisis , Contaminantes Atmosféricos/análisis , Beijing , China , Monitoreo del Ambiente , Formaldehído , Radical Hidroxilo/análisis , Ácido Nitroso , Oxidantes , Oxidación-Reducción , Ozono/análisis , Material Particulado/análisis , Compuestos Orgánicos Volátiles/análisis
10.
J Environ Public Health ; 2022: 4382491, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36193391

RESUMEN

Water quality, whether utilized for home, irrigation, or recreational reasons, is crucial for health in both developing and developed countries around the world. For the treatment of nitrate (NO3) and phosphate (PO3) from coffee processing wastewater, photoelectrochemical oxidation was used. This process is mainly used to destroy pollutants through the production and use of powerful oxidized species such as hydroxyl radical (OH). It investigated the effects of Uv/H2O2 on electrochemical processes and the effects of various parameters such as pH, time, current, and electrolytes. The results were calculated and analyzed using response surface methodology and Microsoft Excel. Hybrid photoelectrochemical oxidation (PECO) using UV and hydrogen peroxide (UV/H2O2) methods removed nitrates (99.823%) and phosphates (99.982%). These results were obtained with pH 7, current 0.40 amperes, and 1.5 g calcium chloride after 40 minutes of electrolysis. CaCl2 was more effective in removing organic compounds from coffee processing wastewater. An analysis of variance (ANOVA) with a 95% confidence limit was used to determine the significance of the independent variable.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Cloruro de Calcio , Café , Peróxido de Hidrógeno/análisis , Peróxido de Hidrógeno/química , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Nitratos/química , Fosfatos/análisis , Rayos Ultravioleta , Eliminación de Residuos Líquidos/métodos , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
11.
Science ; 377(6610): 1071-1077, 2022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36048928

RESUMEN

Hydroxyl (OH) radicals are highly reactive species that can oxidize most pollutant gases. In this study, high concentrations of OH radicals were found when people were exposed to ozone in a climate-controlled chamber. OH concentrations calculated by two methods using measurements of total OH reactivity, speciated alkenes, and oxidation products were consistent with those obtained from a chemically explicit model. Key to establishing this human-induced oxidation field is 6-methyl-5-hepten-2-one (6-MHO), which forms when ozone reacts with the skin-oil squalene and subsequently generates OH efficiently through gas-phase reaction with ozone. A dynamic model was used to show the spatial extent of the human-generated OH oxidation field and its dependency on ozone influx through ventilation. This finding has implications for the oxidation, lifetime, and perception of chemicals indoors and, ultimately, human health.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Radical Hidroxilo , Ozono , Aire Acondicionado , Contaminantes Atmosféricos/efectos adversos , Alquenos , Humanos , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Oxidación-Reducción , Ozono/efectos adversos , Ventilación
12.
BMC Vet Res ; 18(1): 347, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-36109808

RESUMEN

BACKGROUND: Cottonseed meal (CSM), a relatively rich source of protein and amino acids, is used as an inexpensive alternative to soybean meal (SBM) in poultry diets. However, the toxicity of free gossypol in CSM has been a primary concern. The present study was conducted to investigate the effects of CSM on growth performance, serum biochemical parameters, and liver redox status in goslings at 1 to 28 days of age. Three hundred 1-day-old male goslings were randomly divided into 5 groups (10 goslings/pen, 6 replicate pens/group) and subjected to a 28-day experiment. Five isonitrogenous and isoenergetic diets were formulated such that 0% (control), 25% (CSM25), 50% (CSM50), 75% (CSM75), and 100% (CSM100) of protein from SBM was replaced by protein from CSM. The free gossypol contents in the five diets were 0, 56, 109, 166, and 222 mg/kg, respectively. RESULTS: The results showed that dietary CSM was associated with linear decreases in body weight, average daily feed intake and average daily gain and linear increases in the feed-to-gain ratio from 1 to 28 days of age (P < 0.001). As the dietary CSM concentration increased, a numerical increase was found in the mortality of goslings. According to a single-slope broken-line model, the breakpoints for the average daily gain of dietary free gossypol concentration on days 1 to 14, 15 to 28, and 1 to 28 occurred at 23.63, 14.78, and 18.53 mg/kg, respectively. As the dietary CSM concentration increased, serum albumin (P < 0.001) concentrations decreased linearly and serum uric acid (P = 0.011) increased linearly. The hydroxyl radical scavenging ability (P = 0.002) and catalase (P < 0.001) and glutathione peroxidase (P = 0.001) activities of the liver decreased linearly with increasing dietary CSM. However, dietary CSM did not affect the concentrations of reactive oxygen metabolites, malondialdehyde, or protein carbonyl in the liver. CONCLUSIONS: The increasing dietary CSM increased the concentration of free gossypol and altered the composition of some amino acids in the diet. A high concentration of CSM reduced the growth performance of goslings aged 1 to 28 days by decreasing feed intake, liver metabolism, and antioxidant capacity. From the primary concern of free gossypol in CSM, the tolerance of goslings to free gossypol from CSM is low, and the toxicity of free gossypol has a cumulative effect over time.


Asunto(s)
Aceite de Semillas de Algodón , Gosipol , Aminoácidos/metabolismo , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Catalasa , Aceite de Semillas de Algodón/análisis , Aceite de Semillas de Algodón/metabolismo , Aceite de Semillas de Algodón/farmacología , Gansos/metabolismo , Glutatión Peroxidasa , Gosipol/análisis , Gosipol/metabolismo , Gosipol/farmacología , Radical Hidroxilo/análisis , Radical Hidroxilo/metabolismo , Radical Hidroxilo/farmacología , Hígado/metabolismo , Masculino , Malondialdehído/metabolismo , Oxidación-Reducción , Oxígeno/metabolismo , Albúmina Sérica/análisis , Glycine max/metabolismo , Ácido Úrico/análisis
13.
Environ Int ; 169: 107534, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36152361

RESUMEN

Bio-stabilization sludge contains numerous dissolved organic matter (DOM) that could enter aquatic environments by soil leaching after sludge land use, but a clear understanding of their photochemical behavior is still lacking. In this study, we systematically investigated the photoactivity and photochemical transformation of aerobic composting sludge-derived DOM (DOMACS) and anaerobic digestion sludge-derived DOM (DOMADS) by using multispectral analysis coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results indicated that DOMACS and DOMADS have a higher proportion of highly unsaturated and phenolic compounds (HuPh)with high DBEwa, but the different polyphenols (Polyph) abundance of them, causing the different photoactivity between them. DOMACS had much higher apparent quantum yields (AQY) for triplet states of dissolved natural organic matter (3DOM*) and hydroxyl radical (•OH) but slightly lower AQY for singlet oxygen (1O2) than DOMADS under simulated sunlight conditions. As the irradiation time increased, HuPh and Polyph (associated with humic-like substances) contained in DOMACS (DOMADS) decreased by 12.0% (14.1%) and 3.0% (0.2%), respectively, with concurrent decrease in average molecular weight and aromaticity moieties, resulting in more generation of aliphatic compounds. Furthermore, based on 27 types of photochemical transformation reactions, DOMACS containing higher fractions of O10-15 and N1-3Oy class preferred dealkyl group and carboxylic acid reactions, whereas DOMADS composed of more N4Oy and S2Oy fragments preferred oxygen addition and anmine reactions. Consequently, photochemical transformations reduced the Cd (II) ion activity in the presence of DOMACS (DOMADS). This study is believed to unveil the photochemical transformation of bio-stabilization sludge-derived DOM and its impact on pollutants' fate in the aquatic environment.


Asunto(s)
Contaminantes Ambientales , Aguas del Alcantarillado , Cadmio/análisis , Materia Orgánica Disuelta , Contaminantes Ambientales/análisis , Sustancias Húmicas/análisis , Radical Hidroxilo/análisis , Compuestos Orgánicos/análisis , Oxígeno/análisis , Polifenoles/análisis , Oxígeno Singlete/química , Suelo/química
14.
Huan Jing Ke Xue ; 43(9): 4597-4607, 2022 Sep 08.
Artículo en Chino | MEDLINE | ID: mdl-36096600

RESUMEN

The degradation of chloroquine phosphate (CQP), an anti-COVID-19 drug, was investigated in a UV-activated persulfate system (UV/PS). The second-order rate constants of CQP with hydroxyl radicals (HO·) and sulfate radicals (SO4-·) were determined using a competition kinetics experiment, and the effects of persulfate concentration, pH, and inorganic anions on the degradation of CQP were also systematically studied. Furthermore, a kinetic model was established to predict the concentration of CQP and major free radicals to explore its mechanism of influence. The results showed that the degradation efficiency of CQP could reach 91.3% after 10 min under UV/PS, which was significantly higher than that under UV, sunlight, or PS alone. At pH=6.9, the second-order rate reaction constants of CQP with HO· and SO4-· were 8.9×109 L·(mol·s)-1and 1.4×1010 L·(mol·s)-1, respectively, and the main active species was SO4-·. The degradation rate of CQP increased with increasing concentrations of PS and decreased with the addition of HCO3- and Cl-. The removal efficiency of CQP was inhibited under stronger alkaline conditions. N-de-ethylation, cleavage of the C-N bond, and hydrogen abstraction were proposed as the principal pathways of CQP degradation based on LC-MS analysis. The mineralization rate of CQP could be improved by increasing PS concentration and pH values. This study could be helpful for the treatment of anti-COVID-19 pharmaceutical wastewater.


Asunto(s)
Contaminantes Químicos del Agua , Cloroquina/análogos & derivados , Radical Hidroxilo/análisis , Radical Hidroxilo/química , Oxidación-Reducción , Aguas Residuales/análisis , Contaminantes Químicos del Agua/análisis
15.
Environ Sci Pollut Res Int ; 29(52): 78832-78847, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35699880

RESUMEN

This study used coagulation sludge from a landfill leachate treatment to prepare a modified coagulation sludge (MCS) catalyst by the limited oxygen pyrolysis method, and the adsorption, degradation efficiency, and reaction mechanism of bisphenol A (BPA) in the MCS activated peroxymonosulfate (MCS/PMS) process were investigated. The pyrolysis temperature determined the adsorption capacity and the activation ability of MCS. At a pyrolysis temperature of 300 °C for 2 h, the MCS300-2 test material had the best adsorption capacity for BPA, while MCS450-2 prepared at a pyrolysis temperature of 450 °C for 2 h had a better catalytic performance towards PMS. In the MCS/PMS process, BPA (20 mg/L) could be completely degraded at 120 min under room temperature when the initial pH = 7, PMS dosage = 3 g/L, and MCS dosage = 0.3 g/L. Radical quenching experiments indicated that both hydroxyl radical (·OH) and sulfate radical (SO4-·) existed in the MCS/PMS process, and ·OH played a major role in BPA degradation. The changes in morphology, functional groups, components, and surface element valence state of MCS catalysts before and after the reaction were investigated. It was found that the BPA degradation reaction was a coupled adsorption and oxidation process, in which homogenous in situ and heterogeneous effects were included in the reactions. In addition, the stability of the MCS/PMS process was verified in different environmental scenarios, including ultrapure water, tap water, and municipal wastewater. Furthermore, the degradation intermediates (such as p-hydroxyl phenol and p-hydroxybenzoic acid) of BPA were determined by ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry, and the reaction mechanisms in the MCS/PMS process were investigated.


Asunto(s)
Aguas del Alcantarillado , Contaminantes Químicos del Agua , Aguas Residuales/química , Contaminantes Químicos del Agua/análisis , Radical Hidroxilo/análisis , Peróxidos/química , Fenoles/análisis , Agua/análisis , Oxígeno/análisis
16.
Environ Res ; 213: 113637, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35688221

RESUMEN

Power plants emit sulfur dioxide (SO2) during combustion, which is typically removed via wet flue gas desulfurization, but this process produces numerous secondary pollutants. Ionic liquids (ILs) can potentially be used to remove SO2, but they suffer from poor mass transfer rates. Hydroxyl ammonium ILs are classical cheap ILs that contain electron-rich O and N sites that favor high absorption capacities. To accelerate mass transfer, two hydroxyl ammonium ILs, triethanolamine citrate and triethanolamine lactate, were immobilized on activated carbon (SILs) and used to capture SO2 from simulated flue gas. They exhibited excellent adsorption at low SO2 partial pressures due to the presence of a large gas-liquid interface. The molar adsorption ratios reached 7.65 and 2.40 mol/mol at 10 kPa SO2. The SILs possessed good SO2 selectivity in SO2/CO2 and SO2/O2 mixtures, because of the only 8% reduction in the total adsorption of SILs at 60 °C. And they exhibited excellent reversibility in which their total adsorption capacities were unaffected after 5 adsorption-desorption cycles. The mechanism analysis revealed that chemical adsorption was the major adsorption route, although physical adsorption also occurred. The main reactive sites included C-O and N-H groups in the ionic liquid. These SILs may potentially replace traditional chemical absorption materials for the separation of SO2 from flue gas.


Asunto(s)
Contaminantes Atmosféricos , Compuestos de Amonio , Líquidos Iónicos , Contaminantes Atmosféricos/análisis , Compuestos de Amonio/análisis , Carbón Orgánico , Radical Hidroxilo/análisis , Líquidos Iónicos/química , Dióxido de Azufre/análisis
17.
Indoor Air ; 32(6): e13054, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35762241

RESUMEN

The importance of photolysis as an initiator of air chemistry outdoors is widely recognized, but its role in chemical processing indoors is often ignored. This paper uses recent experimental data to modify a detailed chemical model, using it to investigate the impacts of glass type, artificial indoor lighting, cloudiness, time of year and latitude on indoor photolysis rates and hence indoor air chemistry. Switching from an LED to an uncovered fluorescent tube light increased predicted indoor hydroxyl radical concentrations by ~13%. However, moving from glass that transmitted outdoor light at wavelengths above 380 nm to one that transmitted sunlight above 315 nm led to an increase in predicted hydroxyl radicals of more than 400%. For our studied species, including ozone, nitrogen oxides, nitrous acid, formaldehyde, and hydroxyl radicals, the latter were most sensitive to changes in indoor photolysis rates. Concentrations of nitrogen dioxide and formaldehyde were largely invariant, with exchange with outdoors and internal deposition controlling their indoor concentrations. Modern lights such as LEDs, together with low transmission glasses, will likely reduce the effects of photolysis indoors and the production of potentially harmful species. Research is needed on the health effects of different indoor air mixtures to confirm this conclusion.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire Interior , Contaminantes Atmosféricos/análisis , Contaminación del Aire Interior/análisis , Formaldehído/análisis , Radical Hidroxilo/análisis , Ácido Nitroso/análisis , Fotólisis
18.
Chemosphere ; 302: 134771, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35500635

RESUMEN

The application of waste biomass-derived hydrochar to soil may cause extremely intensive nitrous oxide (N2O) fluxes that can challenge our current mechanistic understanding of the global nitrogen cycle in the biosphere. In this study, two waste biomasses were used to prepare cyanobacterial biomas-derived hydrochar (CHC) and wheat straw-derived hydrochar (SHC) for short-term incubation experiments to identify their effects and mechanisms of waste biomass-derived hydrochar on soil N2O efflux, with time-series samples collected for N2O efflux and soil analysis. The results showed that CHC and SHC caused short-term bursts of N2O effluxes without nitrogen inputs. Moreover, the enrichment of exogenous organics and nutrients at the hydrochar-soil interface was identified as the key factor for enhancing N2O fluxes, which stimulated microbial nitrification (i.e., increased gene copy number of ammonia oxidizing bacteria) and denitrification (i.e., increased gene copy number of nitrate and N2O reducing bacteria) processes. The concentrations of Fe (II) and hydroxyl radicals (HO•) were 6.49 and 5.63 times higher, respectively, in the hydrochar layer of CHC than SHC amendment. Furthermore, structural equation models demonstrated that HO•, as well as soil microbiomes, played an important role in driving N2O fluxes. Together, our findings provide a deeper insight into the assessment and prognosis of the short-term environmental risk arising from agricultural waste management in integrated agriculture. Further studies under practical field application conditions are warranted to verify the findings.


Asunto(s)
Óxido Nitroso , Suelo , Agricultura , Bacterias/genética , Radical Hidroxilo/análisis , Nitrificación , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo/química , Microbiología del Suelo
19.
Proc Natl Acad Sci U S A ; 119(16): e2117399119, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35412909

RESUMEN

The hydroxyl radical (OH) is the most important oxidant on global and local scales in the troposphere. Urban OH controls the removal rate of primary pollutants and triggers the production of ozone. Interannual trends of OH in urban areas are not well documented or understood due to the short lifetime and high spatial heterogeneity of OH. We utilize machine learning with observational inputs emphasizing satellite remote sensing observations to predict surface OH in 49 North American cities from 2005 to 2014. We observe changes in the summertime OH over one decade, with wide variation among different cities. In 2014, compared to the summertime OH in 2005, 3 cities show a significant increase of OH, whereas, in 27 cities, OH decreases in 2014. The year-to-year variation of OH is mapped to the decline of the NO2 column. We conclude that these cities in this analysis are either in the NOx-limited regime or at the transition from a NOx suppressed regime to a NOx-limited regime. The result emphasizes that, in the future, controlling NOx emissions will be most effective in regulating the ozone pollution in these cities.


Asunto(s)
Contaminantes Atmosféricos , Radical Hidroxilo , Ozono , Contaminantes Atmosféricos/análisis , Atmósfera , Ciudades , Monitoreo del Ambiente , Radical Hidroxilo/análisis , América del Norte , Ozono/análisis
20.
Ultrason Sonochem ; 85: 105983, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35338999

RESUMEN

In Part I, we outlined the importance of sustainable sonochemical treatment to intensify oil sands process affected water (OSPW) treatment empirically and hypothesized degradation pathways. Herein, we elucidate the formation of intermediate products with well-defined molecular level solutions. Proposed mechanisms describe hydroxylation, decarboxylation and bond scission which drive the degradation of intermediates towards mineralization. This comprehensive first study on in silico screening of sonochemical degradation investigates quantum methods using density functional theory to explain the postulated degradation mechanisms through a theoretical radical attack approach, based on condensed Fukui reactivity indicators. A nudged elasticity band (NEB) approach is applied to find a minimum energy path (MEP), allowing the determination of intermediate products and energy barriers associated with naphthenic acid degradation. This approach provides structures and energies of the breakdown compounds formed along the reaction pathway enabling the determination of molecular reaction kinetics. In continuation of Part 1, the focus of this study is to evaluate sonochemically-induced hydroxyl radical (OH•) reactions of benzoic acid using density functional theory. Hydroxylation and decarboxylation mechanisms of the model naphthenic acid compound and its intermediates were simulated to determine the prospective pathway to ideal mineralization. DFT was applied to calculate interaction energies, Mulliken charges, Hirshfeld population analysis, dipole moments, frontier orbitals, and polarizability. Electronic properties and frontier orbital trends were also compared to computational work by Riahi et al.[1] to confirm the transition states by Nudged Elastic Band Transition State theory (NEB-TS). In combination with Hirshfeld Population analysis, Fukui indices suggest a more linear degradation pathway narrowed down from earlier experimental work by Singla et al.[2]. The linear free energy relationship for the newly suggested computational benzoic acid degradation can be determined by lnkTST/W=-1.677ΔG-15.41 with a R2 of 0.9997 according to classic transition state theory and Wigner tunneling. This computational method can be used to explore possible degradation pathways of other NAs and bridges molecular-to-macroscale sonochemical degradation of NA's through a manifestation of molecular solutions.


Asunto(s)
Yacimiento de Petróleo y Gas , Contaminantes Químicos del Agua , Ácido Benzoico/análisis , Ácidos Carboxílicos/química , Radical Hidroxilo/análisis , Estudios Prospectivos , Agua/análisis , Contaminantes Químicos del Agua/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...