Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Vascul Pharmacol ; 154: 107273, 2024 03.
Artículo en Inglés | MEDLINE | ID: mdl-38182082

RESUMEN

The current approach to myocardial ischemia has been influenced by the misconception of a close link between ischemia and coronary atherosclerotic obstructions. Recent guidelines have, however, acknowledged the multifactorial nature of this condition, with an identifiable cause present in less than half of angina patients, and a large fraction with angina of unknown origin. Because of this background, focusing on cardiac energy metabolim offers new opportunities to manage myocardial ischemia even when its cause is unknown.


Asunto(s)
Enfermedad de la Arteria Coronaria , Isquemia Miocárdica , Humanos , Ranolazina/efectos adversos , Ranolazina/metabolismo , Isquemia Miocárdica/inducido químicamente , Isquemia Miocárdica/metabolismo , Enfermedad de la Arteria Coronaria/metabolismo , Miocardio/metabolismo , Metabolismo Energético
2.
Am J Physiol Heart Circ Physiol ; 325(2): H264-H277, 2023 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-37389950

RESUMEN

Clinical studies suggest low testosterone levels are associated with cardiac arrhythmias, especially in later life. We investigated whether chronic exposure to low circulating testosterone promoted maladaptive electrical remodeling in ventricular myocytes from aging male mice and determined the role of late inward sodium current (INa,L) in this remodeling. C57BL/6 mice had a gonadectomy (GDX) or sham surgery (1 mo) and were aged to 22-28 mo. Ventricular myocytes were isolated; transmembrane voltage and currents were recorded (37°C). Action potential duration at 70 and 90% repolarization (APD70 and APD90) was prolonged in GDX compared with sham myocytes (APD90, 96.9 ± 3.2 vs. 55.4 ± 2.0 ms; P < 0.001). INa,L was also larger in GDX than sham (-2.4 ± 0.4 vs. -1.2 ± 0.2 pA/pF; P = 0.002). When cells were exposed to the INa,L antagonist ranolazine (10 µM), INa,L declined in GDX cells (-1.9 ± 0.5 vs. -0.4 ± 0.2 pA/pF; P < 0.001) and APD90 was reduced (96.3 ± 14.8 vs. 49.2 ± 9.4 ms; P = 0.001). GDX cells had more triggered activity (early/delayed afterdepolarizations, EADs/DADs) and spontaneous activity than sham. EADs were inhibited by ranolazine in GDX cells. The selective NaV1.8 blocker A-803467 (30 nM) also reduced INa,L, decreased APD and abolished triggered activity in GDX cells. Scn5a (NaV1.5) and Scn10a (NaV1.8) mRNA was increased in GDX ventricles, but only NaV1.8 protein abundance was increased in GDX compared with sham. In vivo studies showed QT prolongation and more arrhythmias in GDX mice. Thus, triggered activity in ventricular myocytes from aging male mice with long-term testosterone deficiency arises from APD prolongation mediated by larger NaV1.8- and NaV1.5-associated currents, which may explain the increase in arrhythmias.NEW & NOTEWORTHY Older men with low testosterone levels are at increased risk of developing cardiac arrhythmias. We found aged mice chronically exposed to low testosterone had more arrhythmias and ventricular myocytes had prolonged repolarization, abnormal electrical activity, larger late sodium currents, and increased expression of NaV1.8 sodium channels. Drugs that inhibit late sodium current or NaV1.8 channels abolished abnormal electrical activity and shortened repolarization. This suggests the late sodium current may be a novel target to treat arrhythmias in older testosterone-deficient men.


Asunto(s)
Sodio , Testosterona , Ratones , Masculino , Animales , Ranolazina/farmacología , Ranolazina/metabolismo , Testosterona/farmacología , Testosterona/metabolismo , Sodio/metabolismo , Ratones Endogámicos C57BL , Miocitos Cardíacos/metabolismo , Arritmias Cardíacas , Canales de Sodio/metabolismo , Potenciales de Acción , Envejecimiento
3.
Basic Clin Pharmacol Toxicol ; 133(2): 194-201, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269153

RESUMEN

AIMS: Recent studies have demonstrated that stimulating pyruvate dehydrogenase (PDH, gene Pdha1), the rate-limiting enzyme of glucose oxidation, can reverse obesity-induced non-alcoholic fatty liver disease (NAFLD), which can be achieved via treatment with the antianginal ranolazine. Accordingly, our aim was to determine whether ranolazine's ability to mitigate obesity-induced NAFLD and hyperglycaemia requires increases in hepatic PDH activity. METHODS: We generated liver-specific PDH-deficient (Pdha1Liver-/- ) mice, which were provided a high-fat diet for 12 weeks to induce obesity. Pdha1Liver-/- mice and their albumin-Cre (AlbCre ) littermates were randomized to treatment with either vehicle control or ranolazine (50 mg/kg) once daily via oral gavage during the final 5 weeks, following which we assessed glucose and pyruvate tolerance. RESULTS: Pdha1Liver-/- mice exhibited no overt phenotypic differences (e.g. adiposity, glucose tolerance) when compared to their AlbCre littermates. Of interest, ranolazine treatment improved glucose tolerance and mildly reduced hepatic triacylglycerol content in obese AlbCre mice but not in obese Pdha1Liver-/- mice. The latter was independent of changes in hepatic mRNA expression of genes involved in regulating lipogenesis. CONCLUSIONS: Liver-specific PDH deficiency is insufficient to promote an NAFLD phenotype. Nonetheless, hepatic PDH activity partially contributes to how the antianginal ranolazine improves glucose tolerance and alleviates hepatic steatosis in obesity.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Animales , Masculino , Ratones , Dieta Alta en Grasa/efectos adversos , Glucosa/metabolismo , Hígado/metabolismo , Ratones Endogámicos C57BL , Ratones Obesos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Obesidad/inducido químicamente , Oxidorreductasas/metabolismo , Ranolazina/efectos adversos , Ranolazina/metabolismo
4.
Stem Cell Reports ; 17(4): 804-819, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35334215

RESUMEN

Phospholamban (PLN) is a key regulator that controls the function of the sarcoplasmic reticulum (SR) and is required for the regulation of cardiac contractile function. Although PLN-deficient mice demonstrated improved cardiac function, PLN loss in humans can result in dilated cardiomyopathy (DCM) or heart failure (HF). The CRISPR-Cas9 technology was used to create a PLN knockout human induced pluripotent stem cell (hiPSC) line in this study. PLN deletion hiPSCs-CMs had enhanced contractility at day 30, but proceeded to a cardiac failure phenotype at day 60, with decreased contractility, mitochondrial damage, increased ROS production, cellular energy metabolism imbalance, and poor Ca2+ handling. Furthermore, adding ranolazine to PLN knockout hiPSCs-CMs at day 60 can partially restore Ca2+ handling disorders and cellular energy metabolism, alleviating the PLN knockout phenotype of HF, implying that the disorder of intracellular Ca2+ transport and the imbalance of cellular energy metabolism are the primary mechanisms for PLN deficiency pathogenesis.


Asunto(s)
Insuficiencia Cardíaca , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Animales , Calcio/metabolismo , Proteínas de Unión al Calcio/metabolismo , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , Insuficiencia Cardíaca/patología , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Ratones , Miocitos Cardíacos/metabolismo , Fenotipo , Células Madre Pluripotentes/metabolismo , Ranolazina/metabolismo , Ranolazina/farmacología
5.
Life Sci ; 267: 118920, 2021 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-33352171

RESUMEN

This study investigates the role of ranolazine in contrast-associated acute kidney injury (CA-AKI) and potential mechanisms. For in vivo studies, mouse models of CA-AKI and control mice were treated with ranolazine or vehicle. Blood urea nitrogen (BUN) and serum creatinine were detected by spectrophotometry. Anti-T-cell immunoglobulin and mucin domain 1 (TIM 1) and anti-lipocalin 2 antibody (LCN2) were detected by immunofluorescence. Hemodynamic parameters were detected via invasive blood pressure measurement and renal artery color doppler ultrasound, capillary density was measured by CD31 immunofluorescence, vascular permeability assay was performed by Evans blue dye. The expressions of oxidative stress and apoptotic markers were measured and analyzed by immunofluorescence and western blotting. For in vitro studies, intracellular calcium concentration of HUVECs was measured with Fluo 3-AM under confocal microscopy. Results show that compared with control mice, serum BUN, creatinine, TIM 1 and LCN2 levels were elevated in CA-AKI mice, but this effect was alleviated by ranolazine-pretreatment. Safe doses of ranolazine (less than 64 mg/kg) had no significant effect on overall blood pressure, but substantially improved renal perfusion, reduced contrast-induced microcirculation disturbance, improved renal capillary density and attenuated renal vascular permeability in ranolazine-pretreated CA-AKI mice. Mechanistically, ranolazine markedly down-regulated oxidative stress and apoptosis markers compared to CA-AKI mice. Intracellularly, ranolazine attenuated calcium overload in HUVECs. These results indicate that ranolazine alleviates CA-AKI through modulation of calcium independent oxidative stress and apoptosis.


Asunto(s)
Lesión Renal Aguda/tratamiento farmacológico , Medios de Contraste/efectos adversos , Ranolazina/farmacología , Lesión Renal Aguda/metabolismo , Animales , Apoptosis/efectos de los fármacos , Nitrógeno de la Urea Sanguínea , Calcio/metabolismo , Creatinina/análisis , Creatinina/sangre , Modelos Animales de Enfermedad , Receptor Celular 1 del Virus de la Hepatitis A/análisis , Riñón/citología , Riñón/metabolismo , Lipocalina 2/análisis , Masculino , Ratones , Ratones Endogámicos C57BL , Estrés Oxidativo/efectos de los fármacos , Estrés Oxidativo/fisiología , Ranolazina/metabolismo , Arteria Renal/metabolismo
6.
J Diabetes Res ; 2021: 4952447, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35005029

RESUMEN

BACKGROUND: Ranolazine is a second-line drug for the management of chronic coronary syndromes (CCS). Glucose-lowering and endothelial effects have also been reported with this agent. However, whether ranolazine may improve short-term glycemic variability (GV), strictly related to the prognosis of patients with type 2 diabetes (T2D), is unknown. Thus, we aimed to explore the effects of adding ranolazine to standard anti-ischemic and glucose-lowering therapy on long- and short-term GV as well as on endothelial function and oxidative stress in patients with T2D and CCS. METHODS: Patients starting ranolazine (n = 16) were evaluated for short-term GV, haemoglobin 1Ac (Hb1Ac) levels, endothelial-dependent flow-mediated vasodilation (FMD), and oxidative stress levels at enrolment and after 3-month follow-up. The same measurements were collected from 16 patients with CCS and T2D that did not receive ranolazine, matched for age, gender, and body mass index. RESULTS: A significant decline in Hb1Ac levels was reported after 3-month ranolazine treatment (mean change -0.60%; 2-way ANOVA p = 0.025). Moreover, among patients receiving ranolazine, short-term GV indexes were significantly improved over time compared with baseline (p = 0.001 for time in range; 2-way ANOVA p = 0.010). Conversely, no significant changes were reported in patients without ranolazine. Finally, greater FMD and lower oxidative stress levels were observed in patients on ranolazine at 3 months. CONCLUSIONS: Ranolazine added to standard anti-ischemic and glucose-lowering therapy demonstrated benefit in improving the glycemic status of patients with T2D and CCS. How this improvement contributes to the overall myocardial benefit of ranolazine requires further studies.


Asunto(s)
Diabetes Mellitus/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Control Glucémico/normas , Cardiopatías/tratamiento farmacológico , Ranolazina/farmacología , Análisis de Varianza , Diabetes Mellitus/fisiopatología , Células Endoteliales/metabolismo , Femenino , Control Glucémico/métodos , Control Glucémico/estadística & datos numéricos , Cardiopatías/fisiopatología , Humanos , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Ranolazina/metabolismo , Ranolazina/uso terapéutico , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacología , Bloqueadores de los Canales de Sodio/uso terapéutico , Estadísticas no Paramétricas
7.
Am J Physiol Heart Circ Physiol ; 318(1): H189-H202, 2020 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-31834840

RESUMEN

We hypothesized that ranolazine-induced adenosine release is responsible for its beneficial effects in ischemic heart disease. Sixteen open-chest anesthetized dogs with noncritical coronary stenosis were studied at rest, during dobutamine stress, and during dobutamine stress with ranolazine. Six additional dogs without stenosis were studied only at rest. Regional myocardial function and perfusion were assessed. Coronary venous blood was drawn. Murine endothelial cells and cardiomyocytes were incubated with ranolazine and adenosine metabolic enzyme inhibitors, and adenosine levels were measured. Cardiomyocytes were also exposed to dobutamine and dobutamine with ranolazine. Modeling was employed to determine whether ranolazine can bind to an enzyme that alters adenosine stores. Ranolazine was associated with increased adenosine levels in the absence (21.7 ± 3.0 vs. 9.4 ± 2.1 ng/mL, P < 0.05) and presence of ischemia (43.1 ± 13.2 vs. 23.4 ± 5.3 ng/mL, P < 0.05). Left ventricular end-systolic wall stress decreased (49.85 ± 4.68 vs. 57.42 ± 3.73 dyn/cm2, P < 0.05) and endocardial-to-epicardial myocardial blood flow ratio tended to normalize (0.89 ± 0.08 vs. 0.76 ± 0.10, P = nonsignificant). Adenosine levels increased in cardiac endothelial cells and cardiomyocytes when incubated with ranolazine that was reversed when cytosolic-5'-nucleotidase (cN-II) was inhibited. Point mutation of cN-II aborted an increase in its specific activity by ranolazine. Similarly, adenosine levels did not increase when cardiomyocytes were incubated with dobutamine. Modeling demonstrated plausible binding of ranolazine to cN-II with a docking energy of -11.7 kcal/mol. We conclude that the anti-adrenergic and cardioprotective effects of ranolazine-induced increase in tissue adenosine levels, likely mediated by increasing cN-II activity, may contribute to its beneficial effects in ischemic heart disease.NEW & NOTEWORTHY Ranolazine is a drug used for treatment of angina pectoris in patients with ischemic heart disease. We discovered a novel mechanism by which this drug may exhibit its beneficial effects. It increases coronary venous levels of adenosine both at rest and during dobutamine-induced myocardial ischemia. Ranolazine also increases adenosine levels in endothelial cells and cardiomyocytes in vitro, by principally increasing activity of the enzyme cytosolic-5'-nucleotidase. Adenosine has well-known myocardial protective and anti-adrenergic properties that may explain, in part, ranolazine's beneficial effect in ischemic heart disease.


Asunto(s)
Adenosina/metabolismo , Fármacos Cardiovasculares/farmacología , Estenosis Coronaria/tratamiento farmacológico , Miocitos Cardíacos/efectos de los fármacos , Ranolazina/farmacología , 5'-Nucleotidasa/química , 5'-Nucleotidasa/metabolismo , Animales , Sitios de Unión , Fármacos Cardiovasculares/química , Fármacos Cardiovasculares/metabolismo , Células Cultivadas , Estenosis Coronaria/metabolismo , Estenosis Coronaria/fisiopatología , Modelos Animales de Enfermedad , Perros , Hemodinámica/efectos de los fármacos , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Miocitos Cardíacos/metabolismo , Unión Proteica , Conformación Proteica , Ranolazina/química , Ranolazina/metabolismo , Relación Estructura-Actividad , Regulación hacia Arriba , Función Ventricular Izquierda/efectos de los fármacos
8.
Artículo en Inglés | MEDLINE | ID: mdl-25544118

RESUMEN

Chronic angina represents a condition that impairs quality of life and is associated with decreased life expectancy in the industrialized countries. Current therapies that reduce angina frequency include old drugs such as nitrates, ß -blockers and calcium antagonists. Several new investigational drugs are being tested for the treatment of chronic angina. This review will focus on ranolazine, a drug approved by the US Food and Drug Administration (FDA) in 2006 for patients with chronic angina who continue to be symptomatic despite optimized therapies. The main molecular mechanism underlying ranolazine-mediated beneficial effects has been identified as inhibition of the late Na+ current during the action potential, which potentially improves oxygen consumption, diastolic dysfunction and coronary blood flow. The aim of this review is to update the evidence for ranolazine treatment in chronic angina and discuss its therapeutic perspectives based on the most recent clinical and experimental studies.


Asunto(s)
Angina de Pecho/tratamiento farmacológico , Fármacos Cardiovasculares/uso terapéutico , Ranolazina/uso terapéutico , Bloqueadores de los Canales de Sodio/uso terapéutico , Angina de Pecho/metabolismo , Angina de Pecho/fisiopatología , Animales , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Fármacos Cardiovasculares/farmacología , Ensayos Clínicos Controlados como Asunto , Diástole/efectos de los fármacos , Humanos , Ranolazina/metabolismo , Ranolazina/farmacocinética , Ranolazina/farmacología , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/farmacocinética , Bloqueadores de los Canales de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...