Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.324
Filtrar
1.
Sci Rep ; 14(1): 11524, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38773212

RESUMEN

The biological mechanisms triggered by low-dose exposure still need to be explored in depth. In this study, the potential mechanisms of low-dose radiation when irradiating the BEAS-2B cell lines with a Cs-137 gamma-ray source were investigated through simulations and experiments. Monolayer cell population models were constructed for simulating and analyzing distributions of nucleus-specific energy within cell populations combined with the Monte Carlo method and microdosimetric analysis. Furthermore, the 10 × Genomics single-cell sequencing technology was employed to capture the heterogeneity of individual cell responses to low-dose radiation in the same irradiated sample. The numerical uncertainties can be found both in the specific energy distribution in microdosimetry and in differential gene expressions in radiation cytogenetics. Subsequently, the distribution of nucleus-specific energy was compared with the distribution of differential gene expressions to guide the selection of differential genes bioinformatics analysis. Dose inhomogeneity is pronounced at low doses, where an increase in dose corresponds to a decrease in the dispersion of cellular-specific energy distribution. Multiple screening of differential genes by microdosimetric features and statistical analysis indicate a number of potential pathways induced by low-dose exposure. It also provides a novel perspective on the selection of sensitive biomarkers that respond to low-dose radiation.


Asunto(s)
Relación Dosis-Respuesta en la Radiación , Análisis de la Célula Individual , Análisis de la Célula Individual/métodos , Humanos , Método de Montecarlo , Radiometría/métodos , Línea Celular , Rayos gamma/efectos adversos
2.
Bull Exp Biol Med ; 176(5): 645-648, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38727954

RESUMEN

Using the method of dominant lethal mutations, we assessed the frequency of the death of Drosophila melanogaster embryos under combined exposure to ionizing γ-radiation and non-ionizing pulsed magnetic field at various doses and modes of exposure. Mutagenic effect of combined exposure is antagonistic in nature. The antagonism is more pronounced when the following mode of exposure was used: exposure to non-ionizing pulsed magnetic field for 5 h followed by exposure to γ-radiation at doses of 3, 10, and 60 Gy. In case of reverse sequence of exposures, the antagonistic effect was statistically significant after exposure to γ-radiation at doses of 3 and 10 Gy, whereas at a dose of 20 Gy, a synergistic interaction was noted.


Asunto(s)
Drosophila melanogaster , Rayos gamma , Animales , Drosophila melanogaster/efectos de la radiación , Drosophila melanogaster/genética , Rayos gamma/efectos adversos , Radiación Electromagnética , Relación Dosis-Respuesta en la Radiación , Campos Electromagnéticos/efectos adversos , Embrión no Mamífero/efectos de la radiación , Radiación Ionizante , Mutación/efectos de la radiación , Mutagénesis/efectos de la radiación
3.
J Cancer Res Ther ; 20(1): 261-267, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38554331

RESUMEN

BACKGROUND AND OBJECTIVE: Radiation therapy is a routine clinical practice that has been used for a long time in the treatment of cancer patients. The most important dose-limiting organ in patients receiving radiotherapy for various conditions is the brain. The mechanisms underlying brain and pituitary gland damage caused by radiation are largely unknown. It is of great importance to use radioprotective agents to protect against damage. This study aims to evaluate the neuroprotective effects of quercetin in experimental radiation-induced brain and pituitary gland damage. MATERIALS AND METHODS: A total of 60 adult male Wistar-albino rats were randomly divided into six groups (control, sham, radiation, quercetin, radiation + quercetin, and quercetin + radiation groups, with ten rats in each group). Quercetin was given to rats by oral gavage at 50 mg/kg/day. A whole-body single dose of 10 Gy radiation was applied to the rats. Tissue samples belonging to the groups were compared after excision. Histopathological changes in the brain tissue and pituitary gland were examined with hematoxylin-tissue samples in the groups and compared histologically and immunohistochemically. RESULTS: The histopathological examination of the brain and anterior pituitary gland sections showed marked damage in the radiation-treated rats, while the quercetin-administered groups showed normal tissue architecture. While neuropeptid Y immunoreactivity was increased, synaptophysin immunoreactivity was decreased in the brains of radiation-treated rats. However, when neuropeptide Y and synaptophysin expression were assessed in the anterior pituitary gland, there was no significant difference between the groups. CONCLUSION: Consequently, quercetin may be a potential pharmacological agent in modulating radiation-induced damage in rats. However, extra experimental and preclinical studies are needed to confirm our findings before they can be used clinically.


Asunto(s)
Fármacos Neuroprotectores , Quercetina , Humanos , Ratas , Masculino , Animales , Quercetina/farmacología , Quercetina/uso terapéutico , Rayos gamma/efectos adversos , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Sinaptofisina , Ratas Wistar , Estrés Oxidativo , Antioxidantes/farmacología
4.
BMC Pharmacol Toxicol ; 25(1): 22, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414079

RESUMEN

BACKGROUND: Radiation triggers salivary gland damage and excess iron accumulates in tissues induces cell injury. Flavonoids are found in some fruits and are utilized as potent antioxidants and radioprotective agents. This study aimed to evaluate the antioxidant and anti-inflammatory effects of hesperidin and rutin on gamma radiation and iron overload induced submandibular gland (SMG) damage and to evaluate their possible impact on mitigating the alteration in mTOR signaling pathway and angiogenesis. METHODS: Forty-eight adult male Wistar albino rats were randomly assigned to six groups: group C received a standard diet and distilled water; group H received hesperidin at a dose of 100 mg/kg; four times a week for four weeks; group U received rutin at a dose of 50 mg/kg; three times a week for three weeks; group RF received a single dose (5 Gy) of gamma radiation followed by iron at a dose of 100 mg/kg; five times a week for four weeks; group RFH received radiation and iron as group RF and hesperidin as group H; group RFU received radiation and iron as group RF and rutin as group U. SMG specimens from all groups were removed at the end of the experiment; and some were used for biochemical analysis, while others were fixed for histological and immunohistochemical examination. RESULTS: In the RF group, several genes related to antioxidants (Nrf-2 and SOD) and DNA damage (BRCA1) were significantly downregulated, while several genes related to inflammation and angiogenesis (TNFα, IL-1ß and VEGF) and the mTOR signaling pathway (PIK3ca, AKT and mTOR) were significantly upregulated. Acinar cytoplasmic vacuolation, nuclear pyknosis, and interacinar hemorrhage with distinct interacinar spaces were observed as histopathological changes in SMGs. The duct system suffered significant damage, eventually degenerating entirely as the cells were shed into the lumina. VEGF and NF-κB were also significantly overexpressed. Hesperidin and rutin cotreatment generated partial recovery as indicated by significant upregulation of Nrf-2, SOD and BRCA1 and considerable downregulation of TNF-α, IL-1ß, VEGF, PIK3ca, AKT, and mTOR. Although some acini and ducts continued to deteriorate, most of them had a normal appearance. There was a notable decrease in the expression of VEGF and NF-κB. CONCLUSIONS: In γ-irradiated rats with iron overload, the administration of hesperidin and rutin may mitigate salivary gland damage.


Asunto(s)
Hesperidina , Sobrecarga de Hierro , Ratas , Masculino , Animales , Hesperidina/farmacología , Hesperidina/uso terapéutico , Rutina/farmacología , Rutina/uso terapéutico , Rutina/metabolismo , Ratas Wistar , Glándula Submandibular/metabolismo , FN-kappa B/metabolismo , Rayos gamma/efectos adversos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/metabolismo , Sobrecarga de Hierro/tratamiento farmacológico , Sobrecarga de Hierro/metabolismo , Superóxido Dismutasa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Hierro/metabolismo , Fosfatidilinositol 3-Quinasa Clase I/metabolismo , Estrés Oxidativo
5.
Int J Radiat Biol ; 100(4): 627-649, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38319050

RESUMEN

PURPOSE: Sustainable wheat production and higher genetic gains can be realized by broadening the genetic base and improving the well adapted varieties. In the present study, a multi-year experiment involving induced mutagenesis was conducted to create genetic variation, assess trait associations and genetic divergence in four wheat varieties with differential grain texture treated with six doses of gamma rays and ethyl methane sulfonate using ten agro-morphological traits. MATERIALS AND METHODS: Healthy selfed seeds of four bread wheat varieties with differential texture were irradiated using six doses ranging from 175 Gy-300 Gy of gamma rays (Co60: BARC, Mumbai) and six concentrations of ethyl methanesulfonate (0.3-1.3%) (Sigma-Aldrich, Bangalore, India) to evaluate variability, character association and degree of genetic diversity induced among the mutagenic treatments of wheat varieties with differential grain texture. RESULTS: Significant inter-population differences were observed for almost all the traits. The sample mean of twelve mutant populations in each of the cultivar exhibited superior quantitative phenotypic traits and increased values of the genetic parameters. Based on association and variability studies, plant height, spike length, grain filling period, biological yield per plant and harvest index can be used as early generation criteria for maximum genetic improvement. Multivariate studies indicated the contribution of various traits towards divergence and indicated the efficiency of mutagens in generating variability. Gamma-irradiation dosages between 200-250 Gy and 0.5-1.1% EMS for soft-textured varieties, whereas doses between 225-275 Gy and 0.5-0.9% EMS were found to be most potent for semi-hard-textured varieties. CONCLUSIONS: Assessment of mutagen sensitivity showed that semi-hard wheat varieties were responsive to both mutagens, particularly EMS and generated higher variability and divergence than the soft textured varieties. Hence, gamma rays were proved to be more effective in generating higher variability than ethyl methanesulfonate. A total of 117 putative mutants were identified with desirable agro-morphological attributes. Among these, mutants with higher inter-cluster distance can be used as parents in hybridization programs and serve as important genetic resources in future wheat improvement programs.


Asunto(s)
Pan , Triticum , Metanosulfonato de Etilo/farmacología , Triticum/genética , Rayos gamma/efectos adversos , India , Genotipo , Fenotipo , Mutágenos/farmacología
6.
Ecotoxicol Environ Saf ; 273: 116128, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38387144

RESUMEN

BACKGROUND: Low-dose ionizing radiation-induced protection and damage are of great significance among radiation workers. We aimed to study the role of glutathione S-transferase Pi (GSTP1) in low-dose ionizing radiation damage and clarify the impact of ionizing radiation on the biological activities of cells. RESULTS: In this study, we collected peripheral blood samples from healthy adults and workers engaged in radiation and radiotherapy and detected the expression of GSTP1 by qPCR. We utilized γ-rays emitted from uranium tailings as a radiation source, with a dose rate of 14 µGy/h. GM12878 cells subjected to this radiation for 7, 14, 21, and 28 days received total doses of 2.4, 4.7, 7.1, and 9.4 mGy, respectively. Subsequent analyses, including flow cytometry, MTS, and other assays, were performed to assess the ionizing radiation's effects on cellular biological functions. In peripheral blood samples collected from healthy adults and radiologic technologist working in a hospital, we observed a decreased expression of GSTP1 mRNA in radiation personnel compared to the healthy controls. In cultured GM12878 cells exposed to low-dose ionizing radiation from uranium tailings, we noted significant changes in cell morphology, suppression of proliferation, delay in cell cycle progression, and increased apoptosis. These effects were partially reversed by overexpression of GSTP1. Moreover, low-dose ionizing radiation increased GSTP1 gene methylation and downregulated GSTP1 expression. Furthermore, low-dose ionizing radiation affected the expression of GSTP1-related signaling molecules. CONCLUSIONS: This study shows that low-dose ionizing radiation damages GM12878 cells and affects their proliferation, cell cycle progression, and apoptosis. In addition, GSTP1 plays a modulating role under low-dose ionizing radiation damage conditions. Low-dose ionizing radiation affects the expression of Nrf2, JNK, and other signaling molecules through GSTP1.


Asunto(s)
Gutatión-S-Transferasa pi , Uranio , Adulto , Humanos , Gutatión-S-Transferasa pi/genética , Radiación Ionizante , Rayos gamma/efectos adversos , Apoptosis
7.
Radiat Res ; 201(5): 479-486, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38407403

RESUMEN

High-LET-type cell survival curves have been observed in cells that were allowed to incorporate 125I-UdR into their DNA. Incorporation of tritiated thymidine into the DNA of cells has also been shown to result in an increase in relative biological effectiveness in cell survival experiments, but the increase is smaller than observed after incorporation of 125I-UdR. These findings are explained in the literature by the overall complexity of the induced DNA damage resulting from energies of the ejected electron(s) during the decay of 3H and 125I. Chromosomal aberrations (CA) are defined as morphological or structural changes of one or more chromosomes, and can be induced by ionizing radiation. Whether the number of CA is associated with the linear energy transfer (LET) of the radiation and/or the actual complexity of the induced DNA double-strand breaks (DSB) remains elusive. In this study, we investigated whether DNA lesions induced at different cell cycle stages and by different radiation types [Auger-electrons (125I), ß- particles (3H), or γ radiation (137Cs)] have an impact on the number of CA induced after induction of the same number of DSB as determined by the γ-H2AX foci assay. Cells were synchronized and pulse-labeled in S phase with low activities of 125I-UdR or tritiated thymidine. For decay accumulation, cells were cryopreserved either after pulse-labeling in S phase or after progression to G2/M or G1 phase. Experiments with γ irradiation (137Cs) were performed with synchronized and cryopreserved cells in S, G2/M or G1 phase. After thawing, a CA assay was performed. All experiments were performed after a similar number of DSB were induced. CA induction after 125I-UdR was incorporated was 2.9-fold and 1.7-fold greater compared to exposure to γ radiation and radiation from incorporated tritiated thymidine, respectively, when measured in G2/M cells. In addition, measurement of CA in G2/M cells after incorporation of 125I-UdR was 2.5-fold greater when compared to cells in G1 phase. In contrast, no differences were observed between the three radiation qualities with respect to exposure after cryopreservation in S or G1 phase. The data indicate that the 3D organization of replicated DNA in G2/M cells seems to be more sensitive to induction of more complex DNA lesions compared to the DNA architecture in S or G1 cells. Whether this is due to the DNA organization itself or differences in DNA repair capability remains unclear.


Asunto(s)
Partículas beta , Radioisótopos de Cesio , Aberraciones Cromosómicas , Rayos gamma , Radioisótopos de Yodo , Tritio , Aberraciones Cromosómicas/efectos de la radiación , Rayos gamma/efectos adversos , Animales , Transferencia Lineal de Energía , Cricetulus , Electrones , Humanos , Ciclo Celular/efectos de la radiación , Roturas del ADN de Doble Cadena/efectos de la radiación , Cricetinae , Células CHO
8.
Life Sci Space Res (Amst) ; 40: 97-105, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38245354

RESUMEN

Health effects of space radiation are a serious concern for astronauts on long-duration missions. The lens of the eye is one of the most radiosensitive tissues in the body and, therefore, ocular health risks for astronauts is a significant concern. Studies in humans and animals indicate that ionizing radiation exposure to the eye produces characteristic lens changes, termed "radiation cataract," that can affect visual function. Animal models of radiation cataractogenesis have previously utilized inbred mouse or rat strains. These studies were essential for determining morphological changes and dose-response relationships between radiation exposure and cataract. However, the relevance of these studies to human radiosensitivity is limited by the narrow phenotypic range of genetically homogeneous animal models. To model radiation cataract in genetically diverse populations, longitudinal cataract phenotyping was nested within a lifetime carcinogenesis study in male and female heterogeneous stock (HS/Npt) mice exposed to 0.4 Gy HZE ions (n = 609) or 3.0 Gy γ-rays (n = 602) and in unirradiated controls (n = 603). Cataractous change was quantified in each eye for up to 2 years using Merriam-Focht grading criteria by dilated slit lamp examination. Virtual Optomotry™ measurement of visual acuity and contrast sensitivity was utilized to assess visual function in a subgroup of mice. Prevalence and severity of posterior lens opacifications were 2.6-fold higher in HZE ion and 2.3-fold higher in γ-ray irradiated mice compared to unirradiated controls. Male mice were at greater risk for spontaneous and radiation associated cataracts. Risk for cataractogenesis was associated with family structure, demonstrating that HS/Npt mice are well-suited to evaluate genetic determinants of ocular radiosensitivity. Last, mice were extensively evaluated for cataract and tumor formation, which revealed an overlap between individual susceptibility to both cancer and cataract.


Asunto(s)
Catarata , Cristalino , Traumatismos por Radiación , Ratones , Ratas , Masculino , Femenino , Humanos , Animales , Catarata/etiología , Catarata/epidemiología , Catarata/patología , Traumatismos por Radiación/epidemiología , Cristalino/patología , Cristalino/efectos de la radiación , Rayos gamma/efectos adversos , Iones , Relación Dosis-Respuesta en la Radiación
9.
Radiat Environ Biophys ; 63(1): 17-26, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38212569

RESUMEN

The aim of the present study was to assess the risk of primary central nervous system (CNS) tumour incidence in a cohort of 22,377 Mayak Production Association workers chronically exposed to ionising radiation. There were 96 primary CNS tumours, including 42 cases of glioma and 44 cases of meningioma, registered during the whole follow-up period (1948-2018). The study demonstrated that the risk of primary CNS tumour incidence was associated with sex, attained age, calendar period, tall body height, age at the beginning of exposure, and facility type. There was no association found between risk of CNS tumour incidence and body mass index, smoking (males) and alcohol consumption status. The study did not find an effect of the total external gamma radiation dose absorbed in the brain on risk of CNS tumour incidence irrespective of whether an adjustment for the total external neutron dose absorbed in the brain was included or not. Excess relative risk per 1 Gy of external gamma brain dose was 0.05 (95% confidence interval (CI) -0.30; 0.70) for all CNS tumours, -0.18 (95% CI -; 0.44) for gliomas, and 0.38 (95% CI -0.32; 2.08) for meningiomas without adjustment for total neutron brain dose. There was no effect modification by sex, attained age, age at hire or facility.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Glioma , Exposición Profesional , Masculino , Humanos , Incidencia , Radiación Ionizante , Neoplasias del Sistema Nervioso Central/epidemiología , Neoplasias del Sistema Nervioso Central/etiología , Riesgo , Rayos gamma/efectos adversos , Exposición Profesional/efectos adversos , Federación de Rusia/epidemiología
10.
J Radiat Res ; 65(2): 194-204, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38264835

RESUMEN

Enterogenic infection is a common complication for patients with radiation injury and requires efficient therapeutics in the clinic. Herein, we evaluated the promising drug candidate T7E21RHD5, which is a peptide derived from intestinal Paneth cell-secreted human defensin 5. Oral administration of this peptide alleviated the diarrhea symptoms of mice that received total abdominal irradiation (TAI, γ-ray, 12 Gy) and improved survival. Pathologic analysis revealed that T7E21RHD5 elicited an obvious mitigation of ionizing radiation (IR)-induced epithelial damage and ameliorated the reduction in the levels of claudin, zonula occluden 1 and occludin, three tight junction proteins in the ileum. Additionally, T7E21RHD5 regulated the gut microbiota in TAI mice by remodeling ß diversity, manifested as a reversal of the inverted proportion of Bacteroidota to Firmicutes caused by IR. T7E21RHD5 treatment also decreased the abundance of pathogenic Escherichia-Shigella but significantly increased the levels of Alloprevotella and Prevotellaceae_NK3B31, two short-chain fatty acid-producing bacterial genera in the gut. Accordingly, the translocation of enterobacteria and lipopolysaccharide to the blood, as well as the infectious inflammatory responses in the intestine after TAI, was all suppressed by T7E21RHD5 administration. Hence, this versatile antimicrobial peptide possesses promising application prospects in the treatment of IR-induced enterogenic infection.


Asunto(s)
Defensinas , Péptidos , Humanos , Ratones , Animales , Rayos gamma/efectos adversos
11.
Radiat Res ; 201(5): 371-383, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38253059

RESUMEN

A complex cascade of systemic and tissue-specific responses induced by exposure to ionizing radiation can lead to functional impairment over time in the surviving population. Current methods for management of survivors of unintentional radiation exposure episodes rely on monitoring individuals over time for the development of adverse clinical symptoms due to the lack of predictive biomarkers for tissue injury. In this study, we report on changes in metabolomic and lipidomic profiles in multiple tissues of nonhuman primates (NHPs) that received either 4.0 Gy or 5.8 Gy total-body irradiation (TBI) of 60Co gamma rays, and 4.0 or 5.8 Gy partial-body irradiation (PBI) from LINAC-derived photons and were treated with a promising radiation countermeasure, gamma-tocotrienol (GT3). These include small molecule alterations that correlate with radiation effects in the jejunum, lung, kidney, and spleen of animals that either survived or succumbed to radiation toxicities over a 30-day period. Radiation-induced metabolic changes in tissues were observed in animals exposed to both doses and types of radiation, but were partially alleviated in GT3-treated and irradiated animals, with lung and spleen being most responsive. The majority of the pathways protected by GT3 treatment in these tissues were related to glucose metabolism, inflammation, and aldarate metabolism, suggesting GT3 may exert radioprotective effects in part by sparing these pathways from radiation-induced dysregulation. Taken together, the results of our study demonstrate that the prophylactic administration of GT3 results in metabolic and lipidomic shifts that likely provide an overall advantage against radiation injury. This investigation is among the first to highlight the use of a molecular phenotyping approach in a highly translatable NHP model of partial- and total-body irradiation to determine the underlying physiological mechanisms involved in the radioprotective efficacy of GT3.


Asunto(s)
Macaca mulatta , Metabolómica , Irradiación Corporal Total , Animales , Irradiación Corporal Total/efectos adversos , Masculino , Metaboloma/efectos de la radiación , Vitamina E/metabolismo , Vitamina E/análogos & derivados , Protectores contra Radiación/farmacología , Rayos gamma/efectos adversos , Cromanos
12.
Int J Radiat Biol ; 100(3): 343-352, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37934053

RESUMEN

INTRODUCTION: Thyroid function depends on iodine uptake by the body as well as on exposure to various harmful environmental hazards (stress, ionizing radiation). AIM: The aim of the work was to assess the effect of exposure to low and intermediate doses of external γ-radiation on the thyroid structure and function in young female rats at remote periods after radiation. MATERIALS AND METHODS: Forty female rats were used to study remote effects of external γ-radiation exposure during 20 d (at daily doses of 0.1, 0.25 and 0.5 Gy) on the functional activity (levels of thyroid hormones, iodine metabolism) and the morphological structure of the rat thyroid) after 12 months following the radiation exposure. RESULTS: An increase in thyroid mass and a decrease in total thyroid protein concentration along with a reduction of blood T3 and T4 was shown only in rat groups exposed to 0.25 and 0.5 Gy. Both the concentration of total iodine and its protein-bound fraction (1.2-1.4 fold, p < .01) and the protein-bound to total iodine ratio were decreased in the thyroids of all irradiated animals. The 0.1-Gy group showed elevated thyroperoxidase (TPO) activity along with increased catalase activity, which may indicate the activation of iodine oxidation by thyrocytes. Only the 0.5-Gy group demonstrated reduced urinary excretion of iodine (2.1 fold, p < .01).The reduction of thyroid function at radiation doses of 0.25 and 0.5 Gy was characterized by a microfollicular structure and the development of atrophic changes in the parenchyma, desquamation of thyroid epithelium and an increase in epithelium proliferation. The diameter of the thyrocyte nuclei was increased in rats exposed to 0.25 and 0.5 Gy, which indicates functional tension of thyrocytes. CONCLUSION: Our research shows that after a year, the exposure to external γ-radiation of 0.1, 0.25 and 0.5-Gy caused changes in the structure and function of the rat thyroid which are manifested by the development of hypothyroiditis (0.5 Gy), 'subclinical' hypothyroiditis (0.25 Gy) and functional tension of thyrocytes. The mechanisms of thyroid dysfunction - impaired- uptake of iodine and its organification against the background of activation of free radical processes - suggest disturbances in the function of the sodium/iodide symporter (NIS), TPO and thyroglobulin synthesis. In contrast to the intermediate doses, the effects of the 0.1-Gy dose were mostly found at the remote periods compared to the earlier periods (180 days).


Asunto(s)
Yodo , Enfermedades de la Tiroides , Ratas , Femenino , Animales , Ratas Wistar , Rayos gamma/efectos adversos , Yodo/metabolismo
13.
Int J Radiat Biol ; 100(1): 37-45, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37523500

RESUMEN

PURPOSE: Our previous work indicated the greater magnitude of damage to the thoracic aorta at 6 months after starting 5 Gy irradiation in descending order of exposure to X-rays in 25 fractions > acute X-rays > acute γ-rays > X-rays in 100 fractions ≫ chronic γ-rays, in which the limitations of the study included a lack of data for fractionated γ-ray exposure. To better understand effects of dose protraction and radiation quality, the present study examined changes after exposure to γ-rays in 25 fractions, and compared its biological effectiveness with five other irradiation regimens. MATERIALS AND METHODS: Male C57BL/6J mice received 5 Gy of 137Cs γ-rays delivered in 25 fractions spread over six weeks. At 6 months after starting irradiation, mice were subjected to echocardiography, followed by tissue sampling. The descending thoracic aorta underwent scanning electron microscopy, immunofluorescence staining and histochemical staining. The integrative analysis of multiple aortic endpoints was conducted for inter-regimen comparisons. RESULTS: Exposure to γ-rays in 25 fractions induced vascular damage (evidenced by increases in endothelial detachment and vascular endothelial cell death, decreases in endothelial waviness, CD31, endothelial nitric oxide synthase and vascular endothelial cadherin), inflammation (evidenced by increases in tumor necrosis factor α, CD68 and F4/80) and fibrosis (evidenced by increases in transforming growth factor ß1, alanine blue stain and intima-media thickness). The integrative analysis revealed biological effectiveness in descending order of exposure to X-rays in 25 fractions > acute X-rays > γ-rays in 25 fractions > acute γ-rays > X-rays in 100 fractions ≫ chronic γ-rays. CONCLUSIONS: The results suggest that dose protraction effects on aortic damage depend on radiation quality, and are not a simple function of dose rate and the number of fractions.


Asunto(s)
Aorta , Grosor Intima-Media Carotídeo , Ratones , Masculino , Animales , Ratones Endogámicos C57BL , Dosis de Radiación , Rayos X , Rayos gamma/efectos adversos , Relación Dosis-Respuesta en la Radiación
14.
Naunyn Schmiedebergs Arch Pharmacol ; 397(1): 521-534, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-37480487

RESUMEN

The danger of ionizing radiation exposure to human health is a concern. Since its wide use in medicine and industry, the development of radioprotectors has been very significant. Adenosine exerts anti-inflammatory actions and promotes tissue protection and repair, by activating the P1 receptors (A1, A2A, A2B, and A3). Zebrafish (Danio rerio) is an appropriate tool in the fields of toxicology and pharmacology, including the evaluation of radiobiological outcomes and in the search for radioprotector agents. This study aims to evaluate the effect of adenosine in the toxicity induced by radiation in zebrafish. Embryos were treated with 1, 10, or 100 µM adenosine, 30 min before the exposure to 15 Gy of gamma radiation. Adenosine potentiated the effects of radiation in heart rate, body length, and pericardial edema. We evaluated oxidative stress, tissue remodeling and inflammatory. It was seen that 100 µM adenosine reversed the inflammation induced by radiation, and that A2A2 and A2B receptors are involved in these anti-inflammatory effects. Our results indicate that P1R activation could be a promising pharmacological strategy for radioprotection.


Asunto(s)
Adenosina , Pez Cebra , Humanos , Animales , Adenosina/farmacología , Rayos gamma/efectos adversos , Frecuencia Cardíaca , Antiinflamatorios
15.
Int J Radiat Biol ; 100(1): 108-121, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37812192

RESUMEN

The investigation of the microbial community change in the biofilm, growing on the walls of a containment tank of TRIGA nuclear reactor revealed a thriving community in an oligotrophic and heavy-metal-laden environment, periodically exposed to high pulses of ionizing radiation (IR). We observed a vertical IR resistance/tolerance stratification of microbial genera, with higher resistance and less diversity closer to the reactor core. One of the isolated Bacillus strains survived 15 kGy of combined gamma and proton radiation, which was surprising. It appears that there is a succession of genera that colonizes or re-colonizes new or IR-sterilized surfaces, led by Bacilli and/or Actinobacteria, upon which a photoautotrophic and diazotrophic community is established within a fortnight. The temporal progression of the biofilm community was evaluated also as a proxy for microbial response to radiological contamination events. This indicated there is a need for better dose-response models that could describe microbial response to contamination events. Overall, TRIGA nuclear reactor offers a unique insight into IR microbiology and provides useful means to study relevant microbial dose-thresholds during and after radiological contamination.


Asunto(s)
Bacillus , Bacterias , Reactores Nucleares , Rayos gamma/efectos adversos , Biopelículas
16.
Gen Physiol Biophys ; 43(2): 103-120, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38099580

RESUMEN

I previously reported chromosomal damage in human peripheral blood lymphocytes (HPBLs) induced by: a) mobile telephony (MT) electromagnetic fields (EMFs)/electromagnetic radiation (EMR), b) a high caffeine dose, and c) the combination of the two stressors. HPBLs from the same subjects exposed to gamma radiation at doses 0.1, 0.3, or 0.5 Gy, displayed more aberrations than those exposed to MT EMFs or the high caffeine dose in a dose-dependent manner. When the cells exposed to these gamma radiation doses were pre-exposed to a single 15-min MT EMF exposure, the number of aberrations increased significantly more than the sum number of aberrations induced by the individual stressors in all subjects. Thus, MT EMF exposure at a power density ~136 times below the latest International Commission on Non- Ionizing Radiation Protection (ICNIRP) exposure limit, apart from the fact that it is genotoxic by itself, significantly enhanced the genotoxic action of gamma radiation. Since gamma radiation at similar doses is applied for diagnostic and therapeutic purposes, people should be aware of the increased risk during treatment periods. Comparison of the genotoxic action between MT EMF and gamma radiation shows that the ICNIRP limits are, at least, ~4.5×104 times less stringent than the limits for gamma radiation.


Asunto(s)
Cafeína , Teléfono Celular , Humanos , Rayos gamma/efectos adversos , Campos Electromagnéticos/efectos adversos , Daño del ADN
17.
Sci Rep ; 13(1): 21012, 2023 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-38030684

RESUMEN

To determine the effects of gamma radiation on the melanization process and phenoloxidase activity, Ephestia cautella larvae were exposed to dosages of 200, 400, 600, 800, and 1000 Gy. After irradiation, the number of non melanized larvae and the number exhibiting a slight melanization usually increased. The degree of melanization in treated larvae differed significantly from untreated larvae. The amount of melanin usually decreases as the dosage increases and as time passes after the treatment. The results of the phenoloxidase assay indicate that the enzyme activity responds differently to radiation. For instance, at doses of 200, 400, and 800 Gy, the enzyme activity remained consistent in both control and irradiated larvae. However, at doses of 600 and 1000 Gy, the enzyme activity increased to 14.92 and 13.37 O.D. units, respectively, compared to 8.81 O.D. units in the control. In order to determine if irradiated larvae have been previously exposed to ionizing radiation, a quick and easy test based on phenoloxidase activity or the melanization response is presented for use in quarantine treatment. Histological changes, specifically in the pigment granules of melanin, were studied using a light microscope. Upon inspection of the unirradiated larvae, it was observed that brown melanin pigment granules were deposited in the epicuticle and exocuticle layers of the cuticle. When gamma radiation dosages were administered to larvae, it was observed that the melanin pigment gradually diminished until it vanished at the highest dose (1000 Gy).


Asunto(s)
Mariposas Nocturnas , Prunus dulcis , Animales , Mariposas Nocturnas/efectos de la radiación , Larva/efectos de la radiación , Melaninas , Rayos gamma/efectos adversos , Monofenol Monooxigenasa , Pigmentación
18.
Nat Commun ; 14(1): 6506, 2023 10 16.
Artículo en Inglés | MEDLINE | ID: mdl-37845224

RESUMEN

Acute exposure to high-dose gamma radiation due to radiological disasters or cancer radiotherapy can result in radiation-induced lung injury (RILI), characterized by acute pneumonitis and subsequent lung fibrosis. A microfluidic organ-on-a-chip lined by human lung alveolar epithelium interfaced with pulmonary endothelium (Lung Alveolus Chip) is used to model acute RILI in vitro. Both lung epithelium and endothelium exhibit DNA damage, cellular hypertrophy, upregulation of inflammatory cytokines, and loss of barrier function within 6 h of radiation exposure, although greater damage is observed in the endothelium. The radiation dose sensitivity observed on-chip is more like the human lung than animal preclinical models. The Alveolus Chip is also used to evaluate the potential ability of two drugs - lovastatin and prednisolone - to suppress the effects of acute RILI. These data demonstrate that the Lung Alveolus Chip provides a human relevant alternative for studying the molecular basis of acute RILI and may be useful for evaluation of new radiation countermeasure therapeutics.


Asunto(s)
Lesión Pulmonar Aguda , Lesión Pulmonar , Traumatismos por Radiación , Animales , Humanos , Lesión Pulmonar/etiología , Pulmón/efectos de la radiación , Rayos gamma/efectos adversos , Dispositivos Laboratorio en un Chip
19.
Sci Rep ; 13(1): 16984, 2023 10 09.
Artículo en Inglés | MEDLINE | ID: mdl-37813895

RESUMEN

Museums preserve historical cultural artifacts and serve as an essential resource for current and future generations seeking first-hand knowledge about the diversity of life on Earth. However, significant changes in climate from temperature and humidity cause serious biotic degradation. Despite ongoing insect control treatments, insect pests are still a major problem for museums due to the lack of suitable and unsafe environments that are provided for the storage and display of the collection. The varied carpet beetle, Anthrenus verbasci (Coleoptera: Dermestidae) is one of the major stored product pests whose larvae cause serious damage to household items and museum specimens. Therefore, this research aims to study the effect of gamma radiation on the larval, pupal and adult stages. The effects of gamma radiation have been studied on 3rd instar larvae (100, 200, 300, 400 and 500 Gy). The results showed that mortality in the larval stage significantly increased with increasing gamma radiation dose, which was reflected in the eclosion of the adult stage. The exposure of one-day-old pupae to 200, 400, 600, 800 and 1000 Gy of gamma radiation showed that the higher the dose, the lower the percentage of adult emergence. Additionally, there was a significant increase in the percentage of mortality in A. verbasci adults with increasing radiation doses when the newly emerged adults were irradiated with 200, 400, 600, 800 and 1000 Gy. The LD50 and LD90 of gamma radiation doses on larvae, pupae and adults were calculated, and the malformations in all stages were photographed. The fecundity and fertility of A. verbasci adults that were exposed to radiation as one-day-old pupae decreased gradually with increasing doses of gamma radiation and reached 100% sterility when exposed to a dose of 150 Gy. Among all the treatments, the sterile dose (150 Gy) or lethal dose (1000 Gy) showed superior performance over other treatments and was adjudged as the best treatments, which prevented the subsequent development and complete mortality of the pest.


Asunto(s)
Escarabajos , Infertilidad , Animales , Rayos gamma/efectos adversos , Museos , Larva , Pupa
20.
Can J Physiol Pharmacol ; 101(12): 672-681, 2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-37767909

RESUMEN

Ionizing radiation (IR) activates several signaling pathways. This study shows the impact of acute low-dose IR on crucial cytokines involved in cell-mediated immunity. The immunomodulatory effects of 0.25 and 0.5 Gray (Gy) gamma rays and standard immunomodulatory drugs (cyclophosphamide) on blood counts and significant pro-inflammatory cytokines implicated in various inflammatory conditions were tested in 20 rats. Examined was the effect of acute low doses on critical cytokines, which could be utilized as an alternative to current immunosuppressive drugs. One day post-irradiation, serum levels of interferon-gamma (INF-γ), tumor necrosis factor-alpha, and interleukin-2/1-beta were measured. A 0.25 Gy exposure did not affect the detected cytokines or blood cell count compared to the nonirradiated group. On the other hand, 0.5 Gy raises the majority of the immunologically examined cytokines except for INF-γ. Except for INF-γ, cyclophosphamide reduces all of the cytokines examined. As a result, low-dose IR has a less negative influence on essential inflammatory cytokines, permitting its use. More research is needed to determine how low amounts could be used in different immunological disorders.


Asunto(s)
Citocinas , Radiación Ionizante , Ratas , Animales , Citocinas/metabolismo , Rayos gamma/efectos adversos , Interferón gamma , Ciclofosfamida/farmacología , Relación Dosis-Respuesta en la Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...