RESUMEN
Whey, the main by-product of the dairy industry, is frequently disposed of in the environment without any treatment due to the high cost of this process. Alternatively, whey can be used as a medium to culture lactic acid bacteria and produce value-added products such as bacteriocins. In this work, we attempted to improve bacteriocin production by Lactobacillus plantarum ST16Pa in a whey powder formulation supplemented with additional sources of carbon, nitrogen, and vitamin B12 at different levels and varying the agitation intensity according to a Plackett-Burman experimental design. Only the addition of tryptone positively influenced the production of this bacteriocin. The results allowed us to identify a supplemented whey formulation, comprising 150 g/L of whey total solids plus 10 g/L of tryptone and soybean extract, whose fermentation by Lb. plantarum ST16Pa in shake flasks under agitation at 150 rpm led to a cell-free supernatant with an antimicrobial activity against Listeria innocua 6a CLIST 2865 (inhibition zone of 13.23 mm) close to that previously obtained in de Man, Rogosa and Sharpe medium by other authors. These results are significant considering that the same strain cultured in cheese whey did not previously display any antimicrobial activity.
Asunto(s)
Bacteriocinas/biosíntesis , Lactobacillus plantarum/metabolismo , Suero Lácteo/metabolismo , Animales , Bacteriocinas/aislamiento & purificación , Bacteriocinas/farmacología , Reactores Biológicos/normas , Queso/microbiología , Quimotripsina/metabolismo , Fermentación , Ácido Láctico/análisis , Lactobacillus plantarum/efectos de los fármacos , Lactobacillus plantarum/crecimiento & desarrollo , Lactosa/análisis , Listeria/metabolismo , Polvos , Pronasa/metabolismo , Tripsina/metabolismo , Suero Lácteo/química , Proteína de Suero de Leche/metabolismoRESUMEN
To provide new insight into the dark fermentation process, a multi-lateral study was performed to study the microbiology of 20 different lab-scale bioreactors operated in four different countries (Brazil, Chile, Mexico, and Uruguay). Samples (29) were collected from bioreactors with different configurations, operation conditions, and performances. The microbial communities were analyzed using 16S rRNA genes 454 pyrosequencing. The results showed notably uneven communities with a high predominance of a particular genus. The phylum Firmicutes predominated in most of the samples, but the phyla Thermotogae or Proteobacteria dominated in a few samples. Genera from three physiological groups were detected: high-yield hydrogen producers (Clostridium, Kosmotoga, Enterobacter), fermenters with low-hydrogen yield (mostly from Veillonelaceae), and competitors (Lactobacillus). Inocula, reactor configurations, and substrates influence the microbial communities. This is the first joint effort that evaluates hydrogen-producing reactors and operational conditions from different countries and contributes to understand the dark fermentation process.
Asunto(s)
Reactores Biológicos/normas , Fermentación , Hidrógeno/metabolismo , Consorcios Microbianos/genética , ARN Ribosómico 16S/genética , Anaerobiosis , Clostridium/clasificación , Clostridium/genética , Clostridium/metabolismo , Enterobacter/clasificación , Enterobacter/genética , Enterobacter/metabolismo , Firmicutes/clasificación , Firmicutes/genética , Firmicutes/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Lactobacillus/clasificación , Lactobacillus/genética , Lactobacillus/metabolismo , América Latina , Proteobacteria/clasificación , Proteobacteria/genética , Proteobacteria/metabolismo , Thermotoga maritima/clasificación , Thermotoga maritima/genética , Thermotoga maritima/metabolismo , Veillonellaceae/clasificación , Veillonellaceae/genética , Veillonellaceae/metabolismoRESUMEN
Spontaneous cocoa bean fermentations carried out in a novel-design 40-kg-capacity stainless steel tank (SST) was studied in parallel to traditional Brazilian methods of fermentation in wooden boxes (40-kg-capacity wooden boxes (WB1) and 600-kg-capacity wooden boxes (WB2)) using a multiphasic approach that entailed culture-dependent and -independent microbiological analyses of fermenting cocoa bean pulp samples and target metabolite analyses of both cocoa pulp and cotyledons. Both microbiological approaches revealed that the dominant species of major physiological roles were the same for fermentations in SST, relative to boxes. These species consisted of Saccharomyces cerevisiae and Hanseniaspora sp. in the yeast group; Lactobacillus fermentum and L. plantarum in the lactic acid bacteria (LAB) group; Acetobacter tropicalis belonging to the acetic acid bacteria (AAB) group; and Bacillus subtilis in the Bacillaceae family. A greater diversity of bacteria and non-Saccharomyces yeasts was observed in box fermentations. Additionally, a potentially novel AAB belonging to the genus Asaia was isolated during fermentation in WB1. Cluster analysis of the rRNA genes-PCR-DGGE profiles revealed a more complex picture of the box samples, indicating that bacterial and yeast ecology were fermentation-specific processes (wooden boxes vs. SST). The profile of carbohydrate consumption and fermentation products in the pulp and beans showed similar trends during both fermentation processes. However, the yeast-AAB-mediated conversion of carbohydrates into ethanol, and subsequent conversion of ethanol into acetic acid, was achieved with greater efficiency in SST, while temperatures were generally higher during fermentation in wooden boxes. With further refinements, the SST model may be useful in designing novel bioreactors for the optimisation of cocoa fermentation with starter cultures.
Asunto(s)
Bacterias/metabolismo , Reactores Biológicos/normas , Cacao , Fermentación , Microbiología de Alimentos/instrumentación , Acero Inoxidable , Levaduras/metabolismo , Bacterias/genética , Bacterias/aislamiento & purificación , Biodiversidad , Brasil , Cacao/metabolismo , Cacao/microbiología , Metabolismo de los Hidratos de Carbono , Análisis por Conglomerados , Microbiología de Alimentos/normas , Genes de ARNr/genética , Levaduras/genéticaRESUMEN
The biodegradation of methane, a greenhouse gas, and the accumulation of poly-ß-hydroxybutyrate (PHB) were studied using a methanotrophic consortium and an isolated strain thereof. The specific rates for methane consumption were 100 and [Formula: see text] for the isolate and the consortium, respectively. Also the effect of including 10% (vv(-1)) of silicone oil in a two-phase partitioning bioreactor (TPPB) was assayed for the elimination of 1% methane in air stream. TPPB allowed a 33-45% increase of methane elimination under growing conditions. Nitrogen limitation was assayed in bioreactors to promote PHB production. Under this condition, the specific methane degradation rate remained unchanged for the consortium and decreased to [Formula: see text] for the isolated strain. The accumulated PHB in the reactor was 34% and 38% (ww(-1)) for the consortium and the isolate, respectively. The highest productivity was obtained in the TPPB and was 1.61 mg(PHB)g(x)(-1) h(-1). The CZ-2 isolate was identified as Methylobacterium organophilum, this is the first study that reports this species as being able to grow on methane and accumulate up to 57% (ww(-1)) of PHB under nitrogen limitation in microcosm experiments.
Asunto(s)
Reactores Biológicos/microbiología , Hidroxibutiratos/metabolismo , Methylobacterium/metabolismo , Consorcios Microbianos , Poliésteres/metabolismo , Reactores Biológicos/normas , Metano , Methylobacterium/aislamiento & purificación , Nitrógeno/metabolismoRESUMEN
The use of anaerobic processes to treat low-strength wastewater has been increasing in recent years due to their favourable performance-costs balance. For optimal results, it is necessary to identify reactor configurations that are best suited for this kind of application. This paper reports on the comparative study carried out with two high-rate anaerobic reactor systems with the objective of evaluating their performances when used for the treatment of low-strength, complex wastewater. One of the systems is the commonly used up-flow anaerobic sludge blanket (UASB) reactor. The other is the up-flow staged sludge bed (USSB) system in which the reactor was divided longitudinally into 3, 5 and 7 compartments by the use of baffles. The reactors (9 l) were fed with a synthetic, soluble and colloidal waste (chemical oxygen demand (COD) < 1000 mg/l) and operated at 28 degrees C and 24 h hydraulic retention time. Intermediate flow hydraulics, between plug-flow and completely-mixed, in the UASB and 7 stages USSB reactors allowed efficient degradation of substrates with minimum effluent concentrations. Low number of compartments in the USSB reactors increased the levels of short-circuiting thus reducing substrate removal efficiencies. All reactors showed high COD removal efficiencies (93-98%) and thus can be regarded as suitable for the treatment of low strength, complex wastewater. Staged anaerobic reactors can be a good alternative for this kind of application provided they are fitted with a large enough (> or =7) number of compartments to fully take advantage of their strengths. Scale factors seem to have influenced importantly on the comparison between one and multi staged sludge-bed reactors and, therefore, observations made here could change at larger reactor volumes.
Asunto(s)
Reactores Biológicos/normas , Reología , Aguas del Alcantarillado/microbiología , Eliminación de Residuos Líquidos/instrumentación , Purificación del Agua/instrumentación , Anaerobiosis , Bacterias/metabolismo , Bacterias/ultraestructura , Ácidos Grasos Volátiles/análisis , Metano/metabolismo , Oxígeno/análisis , Solubilidad , Factores de TiempoRESUMEN
A Moving Bed Bioreactor (MBBR) was operated during 333 days. Two different effluents were fed in six different phases. Phases I and II were fed with effluent where Pinus radiata was used as raw material, while phases III to VI were fed with effluent where Eucalyptus globulus was used as raw material. The HRT was reduced from 85 to 4 h, and the BOD(5):N:P ratio (100:5:1, 100:3:1 and 100:1:1) was also simultaneously evaluated as an operation strategy. When MBBR was operated with Pinus radiata influent, the performance presents a high BOD(5) removal level (above 95%), although COD removal is below 60%. Most of the recalcitrant COD contained in the effluent has a molecular weight higher than 10,000 Da. When MBBR was operated with Eucalyptus globulus influent, the performance is around 97.9-97.6% and 68.6-65.1% for BOD(5) and COD, respectively (with HRT up to 17 h). In the Pinus radiata and Eucalyptus globus effluents, the color was mainly found in the molecular weight fraction up to 10,000 Daltons.
Asunto(s)
Reactores Biológicos/normas , Eucalyptus/química , Residuos Industriales , Papel , Pinus/química , Eliminación de Residuos Líquidos , Aerobiosis , Lignina/química , UltrafiltraciónRESUMEN
One of the research areas is the agricultural use of treated wastewaters, because it represents a unique opportunity to solve the problem of water supply for irrigation and at the same time the disposal of treated water. Anaerobic digestion appears as an interesting alternative, since anaerobically treated wastewaters can be used for irrigation purposes. These considerations are applied to the Chilean pisco industry (a traditional alcoholic drink, prepared by distillation of wine made mainly from Muscatel grapes), where high concentrated wastewaters are produced: vinasses originate as a residue from the distillation operation. Two laboratory reactors fed with wine vinasses, a UASB and an EGSB, were used in order to study the anaerobic treatability of the wastewater. Then, a pilot reactor was built (60 m3 UASB digester) and treated water was used to irrigate eucalyptus trees. Finally a 300 m3 reactor, including biogas treatment for its reuse, was developed. Results showed, both at laboratory and full scale, that anaerobic treatment is suitable for pisco's wastewaters, and also that the nutrient content of treated water can be beneficial for plant growth, reducing the need for fertilizers. Another kind of investigation was carried out in order to study the stability of anaerobic granules and how it can be recovered. UASB and EGSB were fed with low, medium and high load wastewaters, in order to evaluate possible fluctuations in the productive process. From these results, it was possible to propose and to apply recovery techniques to the digesters when they are destabilized.