Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 383
Filtrar
1.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38731899

RESUMEN

The chemotactic cytokine fractalkine (FKN, chemokine CX3CL1) has unique properties resulting from the combination of chemoattractants and adhesion molecules. The soluble form (sFKN) has chemotactic properties and strongly attracts T cells and monocytes. The membrane-bound form (mFKN) facilitates diapedesis and is responsible for cell-to-cell adhesion, especially by promoting the strong adhesion of leukocytes (monocytes) to activated endothelial cells with the subsequent formation of an extracellular matrix and angiogenesis. FKN signaling occurs via CX3CR1, which is the only known member of the CX3C chemokine receptor subfamily. Signaling within the FKN-CX3CR1 axis plays an important role in many processes related to inflammation and the immune response, which often occur simultaneously and overlap. FKN is strongly upregulated by hypoxia and/or inflammation-induced inflammatory cytokine release, and it may act locally as a key angiogenic factor in the highly hypoxic tumor microenvironment. The importance of the FKN/CX3CR1 signaling pathway in tumorigenesis and cancer metastasis results from its influence on cell adhesion, apoptosis, and cell migration. This review presents the role of the FKN signaling pathway in the context of angiogenesis in inflammation and cancer. The mechanisms determining the pro- or anti-tumor effects are presented, which are the cause of the seemingly contradictory results that create confusion regarding the therapeutic goals.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Carcinogénesis , Quimiocina CX3CL1 , Inflamación , Neovascularización Patológica , Transducción de Señal , Humanos , Quimiocina CX3CL1/metabolismo , Neovascularización Patológica/metabolismo , Inflamación/metabolismo , Inflamación/patología , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Animales , Carcinogénesis/metabolismo , Carcinogénesis/patología , Neoplasias/metabolismo , Neoplasias/patología , Neoplasias/etiología , Microambiente Tumoral , Angiogénesis
2.
Front Immunol ; 15: 1383607, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38715600

RESUMEN

Background: The crucial role of inflammation in aortic aneurysm (AA) is gaining prominence, while there is still a lack of key cytokines or targets for effective clinical translation. Methods: Mendelian randomization (MR) analysis was performed to identify the causal relationship between 91 circulating inflammatory proteins and AA and between 731 immune traits and AA. Bulk RNA sequencing data was utilized to demonstrate the expression profile of the paired ligand-receptor. Gene enrichment analysis, Immune infiltration, and correlation analysis were employed to deduce the potential role of CX3CR1. We used single-cell RNA sequencing data to pinpoint the localization of CX3CL1 and CX3CR1, which was further validated by multiplex immunofluorescence staining. Cellchat analysis was utilized to infer the CX3C signaling pathway. Trajectory analysis and the Cytosig database were exploited to determine the downstream effect of CX3CL1-CX3CR1. Results: We identified 4 candidates (FGF5, CX3CL1, IL20RA, and SCF) in multiple two-sample MR analyses. Subsequent analysis of the expression profile of the paired receptor revealed the significant upregulation of CX3CR1 in AA and its positive correlation with pro-inflammatory macrophages. Two sample MR between immune cell traits and AA demonstrated the potential causality between intermediate monocytes and AA. We finally deciphered in single-cell sequencing data that CX3CL1 sent by endothelial cells (ECs) acted on CX3CR1 of intermediated monocytes, leading to its recruitment and pro-inflammatory responses. Conclusion: Our study presented a genetic insight into the pathogenetic role of CX3CL1-CX3CR1 in AA, and further deciphered the CX3C signaling pathway between ECs and intermediate monocytes.


Asunto(s)
Aneurisma de la Aorta , Receptor 1 de Quimiocinas CX3C , Quimiocina CX3CL1 , Análisis de la Aleatorización Mendeliana , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Humanos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Aneurisma de la Aorta/genética , Aneurisma de la Aorta/metabolismo , Perfilación de la Expresión Génica , Transcriptoma , Transducción de Señal , Predisposición Genética a la Enfermedad
3.
J Am Heart Assoc ; 13(9): e034731, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38700011

RESUMEN

BACKGROUND: Cardiac damage induced by ischemic stroke, such as arrhythmia, cardiac dysfunction, and even cardiac arrest, is referred to as cerebral-cardiac syndrome (CCS). Cardiac macrophages are reported to be closely associated with stroke-induced cardiac damage. However, the role of macrophage subsets in CCS is still unclear due to their heterogeneity. Sympathetic nerves play a significant role in regulating macrophages in cardiovascular disease. However, the role of macrophage subsets and sympathetic nerves in CCS is still unclear. METHODS AND RESULTS: In this study, a middle cerebral artery occlusion mouse model was used to simulate ischemic stroke. ECG and echocardiography were used to assess cardiac function. We used Cx3cr1GFPCcr2RFP mice and NLRP3-deficient mice in combination with Smart-seq2 RNA sequencing to confirm the role of macrophage subsets in CCS. We demonstrated that ischemic stroke-induced cardiac damage is characterized by severe cardiac dysfunction and robust infiltration of monocyte-derived macrophages into the heart. Subsequently, we identified that cardiac monocyte-derived macrophages displayed a proinflammatory profile. We also observed that cardiac dysfunction was rescued in ischemic stroke mice by blocking macrophage infiltration using a CCR2 antagonist and NLRP3-deficient mice. In addition, a cardiac sympathetic nerve retrograde tracer and a sympathectomy method were used to explore the relationship between sympathetic nerves and cardiac macrophages. We found that cardiac sympathetic nerves are significantly activated after ischemic stroke, which contributes to the infiltration of monocyte-derived macrophages and subsequent cardiac dysfunction. CONCLUSIONS: Our findings suggest a potential pathogenesis of CCS involving the cardiac sympathetic nerve-monocyte-derived macrophage axis.


Asunto(s)
Modelos Animales de Enfermedad , Accidente Cerebrovascular Isquémico , Macrófagos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Animales , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Accidente Cerebrovascular Isquémico/fisiopatología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Receptores CCR2/genética , Receptores CCR2/metabolismo , Masculino , Ratones Noqueados , Ratones , Infarto de la Arteria Cerebral Media/fisiopatología , Infarto de la Arteria Cerebral Media/patología , Sistema Nervioso Simpático/fisiopatología , Miocardio/patología , Miocardio/metabolismo , Cardiopatías/etiología , Cardiopatías/fisiopatología , Cardiopatías/patología , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/deficiencia
4.
Int J Mol Sci ; 25(8)2024 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-38674036

RESUMEN

CX3CL1, also named fractalkine or neurotactin, is the only known member of the CX3C chemokine family that can chemoattract several immune cells. CX3CL1 exists in both membrane-anchored and soluble forms, with each mediating distinct biological activities. CX3CL1 signals are transmitted through its unique receptor, CX3CR1, primarily expressed in the microglia of the central nervous system (CNS). In the CNS, CX3CL1 acts as a regulator of microglia activation in response to brain disorders or inflammation. Recently, there has been a growing interest in the role of CX3CL1 in regulating cell adhesion, chemotaxis, and host immune response in viral infection. Here, we provide a comprehensive review of the changes and function of CX3CL1 in various viral infections, such as human immunodeficiency virus (HIV), SARS-CoV-2, influenza virus, and cytomegalovirus (CMV) infection, to highlight the emerging roles of CX3CL1 in viral infection and associated diseases.


Asunto(s)
Quimiocina CX3CL1 , Virosis , Quimiocina CX3CL1/metabolismo , Humanos , Virosis/metabolismo , Virosis/inmunología , Virosis/virología , Animales , COVID-19/virología , COVID-19/metabolismo , COVID-19/inmunología , SARS-CoV-2/patogenicidad , SARS-CoV-2/fisiología , Microglía/metabolismo , Microglía/virología , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética
5.
Brain Res Bull ; 211: 110939, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38574865

RESUMEN

PURPOSE: To evaluate the potential efficacy of Triptolide (TP) on cerebral ischemia/reperfusion injury (CIRI) and to uncover the underlying mechanism through which TP regulates CIRI. METHODS: We constructed a middle cerebral artery occlusion/reperfusion (MCAO/R) mouse model to simulate CIRI, and established a lipopolysaccharide (LPS)-stimulated BV-2 cell model to mimic the inflammatory state during CIRI. The neurological deficits score (NS) of mice were measured for assessment of neurologic functions. Both the severity of cerebral infarction and the apoptosis level in mouse brain tissues or cells were respectively evaluated using corresponding techniques. The expression levels of Ionized calcium binding adapter molecule 1 (IBA-1), Inductible Nitric Oxide Synthase (iNOS), Arginase 1 (Arg-1), Tumor necrosis factor-α (TNF-α), Interleukin 1ß (IL-1ß), Cysteine histoproteinase S (CTSS), Fractalkine, chemokine C-X3-C motif receptor 1 (CX3CR1), BCL-2-associated X protein (BAX), and antiapoptotic proteins (Bcl-2) were detected using immunofluorescence, qRT-PCR as well as Western blot, respectively. RESULTS: Relative to the Sham group, treatment with TP attenuated the increased NS, infarct area and apoptosis levels observed in MCAO/R mice. Upregulated expression levels of IBA-1, iNOS, Arg-1, TNF-α and IL-1ß were found in MCAO/R mice, while TP suppressed iNOS, TNF-α and IL-1ß expression, and enhanced Arg-1 expression in both MCAO/R mice and LPS-stimulated BV-2 cells. Besides, TP inhibited the CTSS/Fractalkine/CX3CR1 pathway activation in both MCAO/R mice and LPS-induced BV-2 cells, while overexpression of CTSS reversed such effect. Co-culturing HT-22 cells with TP+LPS-treated BV-2 cells led to enhanced cell viability and decreased apoptosis levels. However, overexpression of CTSS further aggravated HT-22 cell injury. CONCLUSION: TP inhibits not only microglia polarization towards the M1 phenotype by suppressing the CTSS/Fractalkine/CX3CR1 pathway activation, but also HT-22 apoptosis by crosstalk with BV-2 cells, thereby ameliorating CIRI. These findings reveal a novel mechanism of TP in improving CIRI, and offer potential implications for addressing the preventive and therapeutic strategies of CIRI.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Quimiocina CX3CL1 , Diterpenos , Compuestos Epoxi , Infarto de la Arteria Cerebral Media , Fenantrenos , Daño por Reperfusión , Transducción de Señal , Animales , Diterpenos/farmacología , Daño por Reperfusión/metabolismo , Daño por Reperfusión/tratamiento farmacológico , Fenantrenos/farmacología , Ratones , Transducción de Señal/efectos de los fármacos , Compuestos Epoxi/farmacología , Masculino , Quimiocina CX3CL1/metabolismo , Infarto de la Arteria Cerebral Media/tratamiento farmacológico , Infarto de la Arteria Cerebral Media/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Ratones Endogámicos C57BL , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/metabolismo , Apoptosis/efectos de los fármacos , Microglía/efectos de los fármacos , Microglía/metabolismo , Fármacos Neuroprotectores/farmacología , Modelos Animales de Enfermedad
6.
Microbiol Spectr ; 12(5): e0272023, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38572984

RESUMEN

Gut microbiota has demonstrated an increasingly important role in the onset and development of colorectal cancer (CRC). Nonetheless, the association between gut microbiota and KRAS mutation in CRC remains enigmatic. We conducted 16S rRNA sequencing on stool samples from 94 CRC patients and employed the linear discriminant analysis effect size algorithm to identify distinct gut microbiota between KRAS mutant and KRAS wild-type CRC patients. Transcriptome sequencing data from nine CRC patients were transformed into a matrix of immune infiltrating cells, which was then utilized to explore KRAS mutation-associated biological functions, including Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways. Subsequently, we analyzed the correlations among these KRAS mutation-associated gut microbiota, host immunity, and KRAS mutation-associated biological functions. At last, we developed a predictive random forest (RF) machine learning model to predict the KRAS mutation status in CRC patients, based on the gut microbiota associated with KRAS mutation. We identified a total of 26 differential gut microbiota between both groups. Intriguingly, a significant positive correlation was observed between Bifidobacterium spp. and mast cells, as well as between Bifidobacterium longum and chemokine receptor CX3CR1. Additionally, we also observed a notable negative correlation between Bifidobacterium and GOMF:proteasome binding. The RF model constructed using the KRAS mutation-associated gut microbiota demonstrated qualified efficacy in predicting the KRAS phenotype in CRC. Our study ascertained the presence of 26 KRAS mutation-associated gut microbiota in CRC and speculated that Bifidobacterium may exert an essential role in preventing CRC progression, which appeared to correlate with the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:proteasome binding. Furthermore, the RF model constructed on the basis of KRAS mutation-associated gut microbiota exhibited substantial potential in predicting KRAS mutation status in CRC patients.IMPORTANCEGut microbiota has emerged as an essential player in the onset and development of colorectal cancer (CRC). However, the relationship between gut microbiota and KRAS mutation in CRC remains elusive. Our study not only identified a total of 26 gut microbiota associated with KRAS mutation in CRC but also unveiled their significant correlations with tumor-infiltrating immune cells, immune-related genes, and biological pathways (Gene Ontology items and Kyoto Encyclopedia of Genes and Genomes pathways). We speculated that Bifidobacterium may play a crucial role in impeding CRC progression, potentially linked to the upregulation of mast cells and CX3CR1 expression, as well as the downregulation of GOMF:Proteasome binding. Furthermore, based on the KRAS mutation-associated gut microbiota, the RF model exhibited promising potential in the prediction of KRAS mutation status for CRC patients. Overall, the findings of our study offered fresh insights into microbiological research and clinical prediction of KRAS mutation status for CRC patients.


Asunto(s)
Neoplasias Colorrectales , Microbioma Gastrointestinal , Aprendizaje Automático , Mutación , Proteínas Proto-Oncogénicas p21(ras) , Humanos , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/patología , Microbioma Gastrointestinal/genética , Proteínas Proto-Oncogénicas p21(ras)/genética , Masculino , Femenino , ARN Ribosómico 16S/genética , Persona de Mediana Edad , Anciano , Heces/microbiología , Bifidobacterium/genética , Bacterias/genética , Bacterias/clasificación , Bacterias/aislamiento & purificación , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo
7.
Infect Immun ; 92(5): e0000624, 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38629806

RESUMEN

Enterococci are common commensal bacteria that colonize the gastrointestinal tracts of most mammals, including humans. Importantly, these bacteria are one of the leading causes of nosocomial infections. This study examined the role of colonic macrophages in facilitating Enterococcus faecalis infections in mice. We determined that depletion of colonic phagocytes resulted in the reduction of E. faecalis dissemination to the gut-draining mesenteric lymph nodes. Furthermore, we established that trafficking of monocyte-derived CX3CR1-expressing macrophages contributed to E. faecalis dissemination in a manner that was not reliant on CCR7, the conventional receptor involved in lymphatic migration. Finally, we showed that E. faecalis mutants with impaired intracellular survival exhibited reduced dissemination, suggesting that E. faecalis can exploit host immune cell migration to disseminate systemically and cause disease. Our findings indicate that modulation of macrophage trafficking in the context of antibiotic therapy could serve as a novel approach for preventing or treating opportunistic infections by disseminating enteric pathobionts like E. faecalis.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Colon , Enterococcus faecalis , Macrófagos , Receptores CCR2 , Receptores de Quimiocina , Animales , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Macrófagos/microbiología , Macrófagos/inmunología , Ratones , Colon/microbiología , Colon/inmunología , Receptores CCR2/metabolismo , Receptores CCR2/genética , Receptores de Quimiocina/metabolismo , Receptores de Quimiocina/genética , Infecciones por Bacterias Grampositivas/inmunología , Infecciones por Bacterias Grampositivas/microbiología , Ratones Endogámicos C57BL , Ganglios Linfáticos/microbiología , Ganglios Linfáticos/inmunología , Receptores CCR7/metabolismo , Receptores CCR7/genética
8.
J Assoc Res Otolaryngol ; 25(2): 179-199, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38472515

RESUMEN

PURPOSE: Pneumococcal meningitis is a major cause of hearing loss and permanent neurological impairment despite widely available antimicrobial therapies to control infection. Methods to improve hearing outcomes for those who survive bacterial meningitis remains elusive. We used a mouse model of pneumococcal meningitis to evaluate the impact of mononuclear phagocytes on hearing outcomes and cochlear ossification by altering the expression of CX3CR1 and CCR2 in these infected mice. METHODS: We induced pneumococcal meningitis in approximately 500 C57Bl6 adult mice using live Streptococcus pneumoniae (serotype 3, 1 × 105 colony forming units (cfu) in 10 µl) injected directly into the cisterna magna of anesthetized mice and treated these mice with ceftriaxone daily until recovered. We evaluated hearing thresholds over time, characterized the cochlear inflammatory response, and quantified the amount of new bone formation during meningitis recovery. We used microcomputed tomography (microCT) scans to quantify cochlear volume loss caused by neo-ossification. We also performed perilymph sampling in live mice to assess the integrity of the blood-perilymph barrier during various time intervals after meningitis. We then evaluated the effect of CX3CR1 or CCR2 deletion in meningitis symptoms, hearing loss, macrophage/monocyte recruitment, neo-ossification, and blood labyrinth barrier function. RESULTS: Sixty percent of mice with pneumococcal meningitis developed hearing loss. Cochlear fibrosis could be detected within 4 days of infection, and neo-ossification by 14 days. Loss of spiral ganglion neurons was common, and inner ear anatomy was distorted by scarring caused by new soft tissue and bone deposited within the scalae. The blood-perilymph barrier was disrupted at 3 days post infection (DPI) and was restored by seven DPI. Both CCR2 and CX3CR1 monocytes and macrophages were present in the cochlea in large numbers after infection. Neither chemokine receptor was necessary for the induction of hearing loss, cochlear fibrosis, ossification, or disruption of the blood-perilymph barrier. CCR2 knockout (KO) mice suffered the most severe hearing loss. CX3CR1 KO mice demonstrated an intermediate phenotype with greater susceptibility to hearing loss compared to control mice. Elimination of CX3CR1 mononuclear phagocytes during the first 2 weeks after meningitis in CX3CR1-DTR transgenic mice did not protect mice from any of the systemic or hearing sequelae of pneumococcal meningitis. CONCLUSIONS: Pneumococcal meningitis can have devastating effects on cochlear structure and function, although not all mice experienced hearing loss or cochlear damage. Meningitis can result in rapid progression of hearing loss with fibrosis starting at four DPI and ossification within 2 weeks of infection detectable by light microscopy. The inflammatory response to bacterial meningitis is robust and can affect all three scalae. Our results suggest that CCR2 may assist in controlling infection and maintaining cochlear patency, as CCR2 knockout mice experienced more severe disease, more rapid hearing loss, and more advanced cochlear ossification after pneumococcal meningitis. CX3CR1 also may play an important role in the maintenance of cochlear patency.


Asunto(s)
Sordera , Pérdida Auditiva , Meningitis Bacterianas , Meningitis Neumocócica , Animales , Ratones , Cóclea/patología , Sordera/genética , Sordera/microbiología , Sordera/patología , Fibrosis , Pérdida Auditiva/etiología , Pérdida Auditiva/genética , Pérdida Auditiva/microbiología , Meningitis Bacterianas/complicaciones , Meningitis Bacterianas/patología , Meningitis Neumocócica/complicaciones , Meningitis Neumocócica/patología , Ratones Noqueados , Ratones Transgénicos , Osteogénesis , Receptores de Quimiocina , Microtomografía por Rayos X , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Receptores CCR2/genética , Receptores CCR2/metabolismo
9.
J Neuroinflammation ; 21(1): 69, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509618

RESUMEN

Microglial Na/H exchanger-1 (NHE1) protein, encoded by Slc9a1, plays a role in white matter demyelination of ischemic stroke brains. To explore underlying mechanisms, we conducted single cell RNA-seq transcriptome analysis in conditional Slc9a1 knockout (cKO) and wild-type (WT) mouse white matter tissues at 3 days post-stroke. Compared to WT, Nhe1 cKO brains expanded a microglial subgroup with elevated transcription of white matter myelination genes including Spp1, Lgals3, Gpnmb, and Fabp5. This subgroup also exhibited more acidic pHi and significantly upregulated CREB signaling detected by ingenuity pathway analysis and flow cytometry. Moreover, the Nhe1 cKO white matter tissues showed enrichment of a corresponding oligodendrocyte subgroup, with pro-phagocytosis and lactate shuffling gene expression, where activated CREB signaling is a likely upstream regulator. These findings demonstrate that attenuation of NHE1-mediated H+ extrusion acidifies microglia/macrophage and may underlie the stimulation of CREB1 signaling, giving rise to restorative microglia-oligodendrocyte interactions for remyelination.


Asunto(s)
Encéfalo , Microglía , Intercambiador 1 de Sodio-Hidrógeno , Animales , Ratones , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Macrófagos/metabolismo , Microglía/metabolismo , Oligodendroglía/metabolismo , Transducción de Señal/genética , Intercambiador 1 de Sodio-Hidrógeno/metabolismo
10.
Cytokine ; 178: 156579, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38471419

RESUMEN

The aim of this study was to evaluate the effect of non-surgical periodontal treatment in the expression of chemokine receptors, in individuals with Periodontitis, associated or not with Diabetes. Pilot study, which included patients (n = 45) with Periodontitis, associated (n = 25) or not (n = 20) with Diabetes, submitted to the non-surgical periodontal treatment for one month. The expression of chemokine receptors CCR2, CCR5, and CX3CR1 at the mRNA level was evaluated in the peripheral mononuclear cells, as well as the expression of these receptors at the protein level was verified in monocyte subtypes (classical, intermediate, and non-classical monocytes). There was higher expression of CCR2 and CCR5 receptors at the initial visit in the group with Diabetes, with no differences for CX3CR1 (p = 0.002; p = 0.018, and p = 0.896, respectively), without differences after treatment. There was higher expression of CCR2 and CCR5 proteins in the group with Diabetes at the initial visit for classical, intermediate, and nonclassical monocytes, with no differences for CX3CR1 (CCR2: p = 0.004; p = 0.026; p = 0.024; CCR5: 0.045; p = 0.045; p = 0.013; CX3CR1: p = 0.424; p = 0.944; p = 0.392, respectively), without differences after the end of treatment. Concerning each group separately, there were reductions in the expression of CCR2 as well as CCR5 in classical, intermediate, and nonclassical monocytes, and reduction of CX3CR1 in classical monocytes after treatment in the group with Diabetes (p = 0.003; p = 0.006; p = 0.039; p = 0.007; p = 0.006; p = 0.004; p = 0.019, respectively), without differences in the group without Diabetes. The expression of the chemokine receptors CCR2 and CCR5, in patients with Periodontitis associated with Diabetes, is favorably modified after the end of the non-surgical periodontal treatment.


Asunto(s)
Diabetes Mellitus , Periodontitis , Humanos , Monocitos/metabolismo , Proyectos Piloto , Receptores CCR2/genética , Receptores CCR2/metabolismo , Receptores CCR5/genética , Receptores CCR5/metabolismo , Diabetes Mellitus/metabolismo , Periodontitis/terapia , Periodontitis/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo
11.
Matrix Biol ; 127: 23-37, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38331051

RESUMEN

BACKGROUND: The kidney contains distinct glomerular and tubulointerstitial compartments with diverse cell types and extracellular matrix components. The role of immune cells in glomerular environment is crucial for dampening inflammation and maintaining homeostasis. Macrophages are innate immune cells that are influenced by their tissue microenvironment. However, the multifunctional role of kidney macrophages remains unclear. METHODS: Flow and imaging cytometry were used to determine the relative expression of CD81 and CX3CR1 (C-X3-C motif chemokine receptor 1) in kidney macrophages. Monocyte replenishment was assessed in Cx3cr1CreER X R26-yfp-reporter and shielded chimeric mice. Bulk RNA-sequencing and mass spectrometry-based proteomics were performed on isolated kidney macrophages from wild type and Col4a5-/- (Alport) mice. RNAscope was used to visualize transcripts and macrophage purity in bulk RNA assessed by CIBERSORTx analyses. RESULTS: In wild type mice we identified three distinct kidney macrophage subsets using CD81 and CX3CR1 and these subsets showed dependence on monocyte replenishment. In addition to their immune function, bulk RNA-sequencing of macrophages showed enrichment of biological processes associated with extracellular matrix. Proteomics identified collagen IV and laminins in kidney macrophages from wild type mice whilst other extracellular matrix proteins including cathepsins, ANXA2 and LAMP2 were enriched in Col4a5-/- (Alport) mice. A subset of kidney macrophages co-expressed matrix and macrophage transcripts. CONCLUSIONS: We identified CD81 and CX3CR1 positive kidney macrophage subsets with distinct dependence for monocyte replenishment. Multiomic analysis demonstrated that these cells have diverse functions that underscore the importance of macrophages in kidney health and disease.


Asunto(s)
Enfermedades Renales , Macrófagos , Ratones , Animales , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Macrófagos/metabolismo , Riñón/metabolismo , Inflamación/metabolismo , Enfermedades Renales/metabolismo , ARN/metabolismo
12.
J Neuroinflammation ; 21(1): 42, 2024 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-38311721

RESUMEN

Diabetic retinopathy (DR) affects about 200 million people worldwide, causing leakage of blood components into retinal tissues, leading to activation of microglia, the resident phagocytes of the retina, promoting neuronal and vascular damage. The microglial receptor, CX3CR1, binds to fractalkine (FKN), an anti-inflammatory chemokine that is expressed on neuronal membranes (mFKN), and undergoes constitutive cleavage to release a soluble domain (sFKN). Deficiencies in CX3CR1 or FKN showed increased microglial activation, inflammation, vascular damage, and neuronal loss in experimental mouse models. To understand the mechanism that regulates microglia function, recombinant adeno-associated viral vectors (rAAV) expressing mFKN or sFKN were delivered to intact retinas prior to diabetes. High-resolution confocal imaging and mRNA-seq were used to analyze microglia morphology and markers of expression, neuronal and vascular health, and inflammatory mediators. We confirmed that prophylactic intra-vitreal administration of rAAV expressing sFKN (rAAV-sFKN), but not mFKN (rAAV-mFKN), in FKNKO retinas provided vasculo- and neuro-protection, reduced microgliosis, mitigated inflammation, improved overall optic nerve health by regulating microglia-mediated inflammation, and prevented fibrin(ogen) leakage at 4 weeks and 10 weeks of diabetes induction. Moreover, administration of sFKN improved visual acuity. Our results elucidated a novel intervention via sFKN gene therapy that provides an alternative pathway to implement translational and therapeutic approaches, preventing diabetes-associated blindness.


Asunto(s)
Receptor 1 de Quimiocinas CX3C , Quimiocina CX3CL1 , Diabetes Mellitus , Animales , Humanos , Ratones , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Diabetes Mellitus/metabolismo , Factores Inmunológicos , Inflamación/metabolismo , Microglía/metabolismo , Isoformas de Proteínas , Retina/metabolismo
13.
Eur J Immunol ; 54(1): e2350658, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37816219

RESUMEN

Expression levels of the chemokine receptor CX3CR1 serve as high-resolution marker delineating functionally distinct antigen-experienced T-cell states. The factors that influence CX3CR1 expression in T cells are, however, incompletely understood. Here, we show that in vitro priming of naïve CD8+ T cells failed to robustly induce CX3CR1, which highlights the shortcomings of in vitro priming settings in recapitulating in vivo T-cell differentiation. Nevertheless, in vivo generated memory CD8+ T cells maintained CX3CR1 expression during culture. This allowed us to investigate whether T-cell receptor ligation, cell death, and CX3CL1 binding influence CX3CR1 expression. T-cell receptor stimulation led to downregulation of CX3CR1. Without stimulation, CX3CR1+ CD8+ T cells had a selective survival disadvantage, which was enhanced by factors released from necrotic but not apoptotic cells. Exposure to CX3CL1 did not rescue their survival and resulted in a dose-dependent loss of CX3CR1 surface expression. At physiological concentrations of CX3CL1, CX3CR1 surface expression was only minimally reduced, which did not hamper the interpretability of T-cell differentiation states delineated by CX3CR1. Our data further support the broad utility of CX3CR1 surface levels as T-cell differentiation marker and identify factors that influence CX3CR1 expression and the maintenance of CX3CR1 expressing CD8+ T cells.


Asunto(s)
Linfocitos T CD8-positivos , Receptores de Quimiocina , Linfocitos T CD8-positivos/metabolismo , Receptores de Quimiocina/genética , Microambiente Celular , Receptores de Antígenos de Linfocitos T/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo
14.
Eur J Neurosci ; 59(2): 177-191, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38049944

RESUMEN

Microglia are essential contributors to synaptic transmission and stability and communicate with neurons via the fractalkine pathway. Transcranial direct current stimulation [(t)DCS], a form of non-invasive electrical brain stimulation, modulates cortical excitability and promotes neuroplasticity, which has been extensively demonstrated in the motor cortex and for motor learning. The role of microglia and their fractalkine receptor CX3CR1 in motor cortical neuroplasticity mediated by DCS or motor learning requires further elucidation. We demonstrate the effects of pharmacological microglial depletion and genetic Cx3cr1 deficiency on the induction of DCS-induced long-term potentiation (DCS-LTP) ex vivo. The relevance of microglia-neuron communication for DCS response and structural neuroplasticity underlying motor learning are assessed via 2-photon in vivo imaging. The behavioural consequences of impaired CX3CR1 signalling are investigated for both gross and fine motor learning. We show that DCS-mediated neuroplasticity in the motor cortex depends on the presence of microglia and is driven in part by CX3CR1 signalling ex vivo and provide the first evidence of microglia interacting with neurons during DCS in vivo. Furthermore, CX3CR1 signalling is required for motor learning and underlying structural neuroplasticity in concert with microglia interaction. Although we have recently demonstrated the microglial response to DCS in vivo, we now provide a link between microglial integrity and neuronal activity for the expression of DCS-dependent neuroplasticity. In addition, we extend the knowledge on the relevance of CX3CR1 signalling for motor learning and structural neuroplasticity. The underlying molecular mechanisms and the potential impact of DCS in rescuing CX3CR1 deficits remain to be addressed in the future.


Asunto(s)
Corteza Motora , Estimulación Transcraneal de Corriente Directa , Corteza Motora/metabolismo , Neuronas/metabolismo , Microglía/metabolismo , Plasticidad Neuronal/fisiología , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo
15.
Int Immunopharmacol ; 126: 111231, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38016349

RESUMEN

OBJECTIVE: This study investigated CX3CR1 expression in human peripheral blood T lymphocytes and their subsets, exploring changes in SLE patients and its diagnostic potential. METHODS: Peripheral blood samples from 31 healthy controls and 50 SLE patients were collected. RNA-Seq data from SLE patient PBMCs were used to analyze CX3CR1 expression in T cells. Flow cytometry determined CX3CR1-expressing T lymphocyte subset proportions in SLE patients and healthy controls. Subset composition and presence of GZMB, GPR56, and perforin in CX3CR1+ T lymphocytes were analyzed. T cell-clinical indicator correlations were assessed. ROC curves explored CX3CR1's diagnostic potential for SLE. RESULTS: CX3CR1+CD8+ T cells exhibited higher GPR56, perforin, and GZMB expression than other T cell subsets. The proportion of CX3CR1+ was higher in TEMRA and lower in Tn and TCM. PMA activation reduced CX3CR1+ T cell proportions. Both RNA-Seq and flow cytometry revealed elevated CX3CR1+ T cell proportions in SLE patients. Significantly lower perforin+ and GPR56+ proportions were observed in CX3CR1+CD8+ T cells in SLE patients. CX3CR1+ T cells correlated with clinical indicators. CONCLUSION: CX3CR1+ T cells display cytotoxic features, with heightened expression in CD8+ T cells, particularly in adult SLE patients. Increased CX3CR1 expression in SLE patient T cells suggests its potential as an adjunctive diagnostic marker for SLE.


Asunto(s)
Antineoplásicos , Lupus Eritematoso Sistémico , Adulto , Humanos , Perforina/genética , Perforina/metabolismo , Regulación hacia Arriba , Subgrupos de Linfocitos T , Linfocitos T CD8-positivos , Antineoplásicos/metabolismo , Citometría de Flujo , Receptor 1 de Quimiocinas CX3C/metabolismo
16.
J Cell Biochem ; 125(1): 127-145, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38112285

RESUMEN

Type 2 diabetes mellitus (T2DM) is one of the most common chronic diseases employing abnormal levels of insulin. Enhancing the insulin production is greatly aided by the regulatory mechanisms of the Fractalkine receptor (CX3CR1) system in islet ß-cell function. However, elements including a high-fat diet, obesity, and ageing negatively impact the expression of CX3CR1 in islets. CX3CL1/CX3CR1 receptor-ligand complex is now recognized as a novel therapeutic target. It suggests that T2DM-related ß-cell dysfunction may result from lower amount of these proteins. We analyzed the differential expression of CX3CR1 gene samples taken from persons with T2DM using data obtained from the Gene Expression Omnibus database. Homology modeling enabled us to generate the three-dimensional structure of CX3CR1 and a possible binding pocket. The optimized CX3CR1 structure was subjected to rigorous screening against a massive library of 693 million drug-like molecules from the ZINC15 database. This screening process led to the identification of three compounds with strong binding affinity at the identified binding pocket of CX3CR1. To further evaluate the potential of these compounds, molecular dynamics simulations were conducted over a 50 ns time scale to assess the stability of the protein-ligand complexes. These simulations revealed that ZINC000032506419 emerged as the most promising drug-like compound among the three potent molecules. The discovery of ZINC000032506419 holds exciting promise as a potential therapeutic agent for T2D and other related metabolic disorders. These findings pave the way for the development of effective medications to address the complexities of T2DM and its associated metabolic diseases.


Asunto(s)
Diabetes Mellitus Tipo 2 , Humanos , Quimiocina CX3CL1/genética , Quimiocina CX3CL1/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Descubrimiento de Drogas , Insulina , Ligandos
17.
Behav Brain Res ; 461: 114837, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38145872

RESUMEN

CX3CR1 knockout could induce motor dysfunction in several neurological disease models mainly through regulating microglia's function. While CX3CR1 was expressed on neurons in a few reports, whether neuronal CX3CR1 could affect the function of neurons and mediate motor dysfunction under physiological conditions is unknown. To elucidate the roles of neuronal CX3CR1 on motor dysfunction, CX3CR1 knockout mice were created. Rotarod test and Open field test found that the CX3CR1-/- mice's motor capacity was reduced. Immunofluorescence staining detected the expression of CX3CR1 in neurons both in vivo and in vitro. Immunohistochemistry and West blot found that knockout of CX3CR1 did not affect the neurons' number in both spinal cord and brain of mice. While inhibiting the function of CX3CR1 by AZD8797 could decrease the expression of 5-Hydroxytryptamine receptor(5-HTR2a), which involved in the regulation of motor function. Further investigation revealed that CX3CR1 regulated the expression of HTR2a through the NF-κB pathway. For the first time, we reported that neuronal CXCR1 mediates motor dysfunction. Our results suggest that modulating CXCR1 activity offers a novel therapeutic strategy for motor dysfunction.


Asunto(s)
FN-kappa B , Transducción de Señal , Animales , Ratones , Encéfalo/metabolismo , Receptor 1 de Quimiocinas CX3C/genética , Receptor 1 de Quimiocinas CX3C/metabolismo , Ratones Noqueados , FN-kappa B/metabolismo , Médula Espinal/metabolismo
18.
Front Immunol ; 14: 1179981, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38094300

RESUMEN

Dendritic cells (DCs) are readily generated from the culture of mouse bone marrow (BM) treated with either granulocyte macrophage-colony stimulating factor (GM-CSF) or FMS-like tyrosine kinase 3 ligand (FLT3L). CD11c+MHCII+ or CD11c+MHCIIhi cells are routinely isolated from those BM cultures and generally used as in vitro-generated DCs for a variety of experiments and therapies. Here, we examined CD11c+ cells in the BM culture with GM-CSF or FLT3L by staining with a monoclonal antibody 2A1 that is known to recognize mature or activated DCs. Most of the cells within the CD11c+MHCIIhi DC gate were 2A1+ in the BM culture with GM-CSF (GM-BM culture). In the BM culture with FLT3L (FL-BM culture), almost of all the CD11c+MHCIIhi cells were within the classical DC2 (cDC2) gate. The analysis of FL-BM culture revealed that a majority of cDC2-gated CD11c+MHCIIhi cells exhibited a 2A1-CD83-CD115+CX3CR1+ phenotype, and the others consisted of 2A1+CD83+CD115-CX3CR1- and 2A1-CD83-CD115-CX3CR1- cells. According to the antigen uptake and presentation, morphologies, and gene expression profiles, 2A1-CD83-CD115-CX3CR1- cells were immature cDC2s and 2A1+CD83+CD115-CX3CR1- cells were mature cDC2s. Unexpectedly, however, 2A1-CD83-CD115+CX3CR1+ cells, the most abundant cDC2-gated MHCIIhi cell subset in FL-BM culture, were non-DCs. Adoptive cell transfer experiments in the FL-BM culture confirmed that the cDC2-gated MHCIIhi non-DCs were precursors to cDC2s, i.e., MHCIIhi pre-cDC2s. MHCIIhi pre-cDC2s also expressed the higher level of DC-specific transcription factor Zbtb46 as similarly as immature cDC2s. Besides, MHCIIhi pre-cDC2s were generated only from pre-cDCs and common DC progenitor (CDP) cells but not from monocytes and common monocyte progenitor (cMoP) cells, verifying that MHCIIhi pre-cDC2s are close lineage to cDCs. All in all, our study identified and characterized a new cDC precursor, exhibiting a CD11c+MHCIIhiCD115+CX3CR1+ phenotype, in FL-BM culture.


Asunto(s)
Médula Ósea , Antígenos de Histocompatibilidad Clase II , Ratones , Animales , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Factor Estimulante de Colonias de Granulocitos y Macrófagos/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Células de la Médula Ósea , Células Dendríticas , Diferenciación Celular , Proteínas Tirosina Quinasas Receptoras/metabolismo
19.
Am J Physiol Lung Cell Mol Physiol ; 325(6): L711-L725, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37814796

RESUMEN

Chronic obstructive pulmonary disease (COPD) is characterized by nonresolving inflammation fueled by breach in the endothelial barrier and leukocyte recruitment into the airspaces. Among the ligand-receptor axes that control leukocyte recruitment, the full-length fractalkine ligand (CX3CL1)-receptor (CX3CR1) ensures homeostatic endothelial-leukocyte interactions. Cigarette smoke (CS) exposure and respiratory pathogens increase expression of endothelial sheddases, such as a-disintegrin-and-metalloproteinase-domain 17 (ADAM17, TACE), inhibited by the anti-protease α-1 antitrypsin (AAT). In the systemic endothelium, TACE cleaves CX3CL1 to release soluble CX3CL1 (sCX3CL1). During CS exposure, it is not known whether AAT inhibits sCX3CL1 shedding and CX3CR1+ leukocyte transendothelial migration across lung microvasculature. We investigated the mechanism of sCX3CL1 shedding, its role in endothelial-monocyte interactions, and AAT effect on these interactions during acute inflammation. We used two, CS and lipopolysaccharide (LPS) models of acute inflammation in transgenic Cx3cr1gfp/gfp mice and primary human endothelial cells and monocytes to study sCX3CL1-mediated CX3CR1+ monocyte adhesion and migration. We measured sCX3CL1 levels in plasma and bronchoalveolar lavage (BALF) of individuals with COPD. Both sCX3CL1 shedding and CX3CR1+ monocytes transendothelial migration were triggered by LPS and CS exposure in mice, and were significantly attenuated by AAT. The inhibition of monocyte-endothelial adhesion and migration by AAT was TACE-dependent. Compared with healthy controls, sCX3CL1 levels were increased in plasma and BALF of individuals with COPD, and were associated with clinical parameters of emphysema. Our results indicate that inhibition of sCX3CL1 as well as AAT augmentation may be effective approaches to decrease excessive monocyte lung recruitment during acute and chronic inflammatory states.NEW & NOTEWORTHY Our novel findings that AAT and other inhibitors of TACE, the sheddase that controls full-length fractalkine (CX3CL1) endothelial expression, may provide fine-tuning of the CX3CL1-CX3CR1 axis specifically involved in endothelial-monocyte cross talk and leukocyte recruitment to the alveolar space, suggests that AAT and inhibitors of sCX3CL1 signaling may be harnessed to reduce lung inflammation.


Asunto(s)
Quimiocina CX3CL1 , Enfisema Pulmonar , Animales , Humanos , Ratones , alfa 1-Antitripsina/farmacología , Comunicación Celular , Receptor 1 de Quimiocinas CX3C/metabolismo , Células Endoteliales/metabolismo , Endotelio/metabolismo , Inflamación/metabolismo , Ligandos , Lipopolisacáridos/farmacología , Lipopolisacáridos/metabolismo , Pulmón/metabolismo , Monocitos , Enfisema Pulmonar/metabolismo
20.
Biomed Pharmacother ; 168: 115675, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37812887

RESUMEN

Clinically, neuropathic pain treatment remains a challenging issue because the major therapy, centred around pharmacological intervention, is not satisfactory enough to patient by reason of low effectiveness and more adverse reaction. Therefore, it is still necessary to find more effective and safe therapy to ameliorate neuropathic pain. The purpose of this study was to explore the antinociceptive effect of Echinacoside (ECH), an active compound of Cistanche deserticola Ma, on peripheral neuropathic pain induced by chronic constriction injury (CCI) in mice, and to demonstrate its potential mechanism in vivo and vitro. In the present study, results showed that intraperitoneal administration of ECH (50, 100, and 200 mg/kg) could alleviate mechanical allodynia, cold allodynia and thermal hyperalgesia via behavioural test. Moreover, the structure and function of injured sciatic nerve by CCI were taken a turn for the better to a certain extent after ECH treatment using histopathological and electrophysiological test. Furthermore, ECH repressed the expression of the P2X7R and FKN and reduced the expression and release of the IL-1ß, IL-6 and TNF-α. Besides, ECH could decrease Ca2+ influx and Cats efflux and inhibit phosphorylation of p38MAPK. To sum up, the present study illustrated that ECH could alleviate peripheral neuropathic pain by inhibiting microglia overactivation and inflammation through P2X7R/FKN/CX3CR1 signalling pathway in spinal cord. This study would provide a new perspective and strategy for the pharmacological treatment on neuropathic pain.


Asunto(s)
Neuralgia , Fármacos Neuroprotectores , Animales , Ratones , Analgésicos/farmacología , Analgésicos/uso terapéutico , Analgésicos/metabolismo , Receptor 1 de Quimiocinas CX3C/metabolismo , Hiperalgesia/metabolismo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Nervio Ciático/lesiones , Médula Espinal/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...