Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.334
Filtrar
1.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 40(4): 319-326, 2024 Apr.
Artículo en Chino | MEDLINE | ID: mdl-38710516

RESUMEN

Objective To investigate the impact of the cannabinoid receptor agonist arachidonyl-2'-chloroethylamide (ACEA) on cognitive function in mice with sepsis-associated encephalopathy (SAE). Methods C57BL/6 mice were randomly divided into artificial cerebrospinal fluid (ACSF) and lipopolysaccharide (LPS) groups. The SAE model was established by intraventricular injection of LPS. The severity of sepsis in mice was assessed by sepsis severity score (MSS) and body mass changes. Behavioral paradigms were used to evaluate motor ability (open field test) and cognitive function (contextual fear conditioning test, Y-maze test). To evaluate the effects of ACEA intervention on SAE, mice were randomly assigned to ACSF group, ACEA intervention combined with ACSF group, LPS group, and ACEA intervention combined with LPS group. The dosage of ACEA intervention was 1.5 mg/kg. Real-time quantitative PCR was used to measure the mRNA expression levels of interleukin 1ß (IL-1ß), IL-6, and tumor necrosis factor α (TNF-α) in mouse hippocampal tissues. Western blot analysis was used to assess the protein levels of IL-6 and TNF-α in the hippocampus. Nissl staining was performed to examine neuronal damage in the CA1 region of the mouse hippocampus. Behavioral paradigms were again employed to evaluate motor ability and cognitive function. Results Three days after intraventricular LPS injection, mice exhibited significant cognitive dysfunction, confirming SAE modeling. Compared to the control group, the LPS group showed significant increases in mRNA of inflammatory factors such as IL-6, TNF-α, and IL-1ß, together with significant increases in IL-6 and TNF-α protein levels in the hippocampus, a decrease in Nissl bodies in the CA1 region, and significant cognitive dysfunction. Compared to the LPS group, the ACEA intervention group showed a significant decrease in the mRNA of IL-6, TNF-α, and IL-1ß, a significant reduction in IL-6 and TNF-α protein levels, an increase in Nissl bodies, and improved cognitive function. Conclusion ACEA improves cognitive function in SAE mice by inhibiting the expression levels of inflammatory factors IL-6 and TNF-α.


Asunto(s)
Ácidos Araquidónicos , Ratones Endogámicos C57BL , Encefalopatía Asociada a la Sepsis , Animales , Encefalopatía Asociada a la Sepsis/tratamiento farmacológico , Encefalopatía Asociada a la Sepsis/metabolismo , Ratones , Masculino , Ácidos Araquidónicos/farmacología , Agonistas de Receptores de Cannabinoides/farmacología , Lipopolisacáridos/efectos adversos , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Hipocampo/patología , Factor de Necrosis Tumoral alfa/metabolismo , Factor de Necrosis Tumoral alfa/genética , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Interleucina-6/genética , Interleucina-6/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/agonistas , Cognición/efectos de los fármacos , Sepsis/tratamiento farmacológico , Sepsis/complicaciones , Sepsis/metabolismo
2.
J Pregnancy ; 2024: 6620156, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38745869

RESUMEN

Background: The cannabinoid receptor (CBR) plays a significant role in oogenesis, pregnancy, and childbirth. It might also play a significant role in preterm birth (PTB). The aim of the study was to investigate the association between the expression of the CBR in the placenta and the incidence of PTB. Methods: This prospective, observational, multicentre preliminary study was conducted on placental samples obtained from 109 women. The study included 95 patients hospitalized due to the high risk of PTB. They were divided into two groups: Group 1, where the expression of the CBR1 and CBR1a was analyzed, and Group 2, in which we examined CBR2 expression. The control group, that is, Group 3, consisted of 14 women who delivered at term, and their placentas were tested for the presence of all three receptor types (CBR1, CBR1a, and CBR2). Results: The study used reverse transcription and real-time PCR methods to assess the expression of CBRs in the placental tissues. The expression of the CBR2, CBR1, and CBR1a receptors was significantly lower in the placentas of women after PTB compared to those after term births, p = 0.038, 0.033, and 0.034, respectively. Conclusions: The presence of CBR mRNA in the human placental tissue was confirmed. The decreased expression of CBRs could serve as an indicator in predicting PTB.


Asunto(s)
Placenta , Nacimiento Prematuro , Receptor Cannabinoide CB1 , Receptor Cannabinoide CB2 , Humanos , Femenino , Embarazo , Placenta/metabolismo , Nacimiento Prematuro/metabolismo , Estudios Prospectivos , Adulto , Receptor Cannabinoide CB2/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Estudios de Casos y Controles , ARN Mensajero/metabolismo , Receptores de Cannabinoides/metabolismo , Receptores de Cannabinoides/genética
3.
ACS Chem Neurosci ; 15(8): 1669-1683, 2024 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-38575140

RESUMEN

The cannabinoid receptor 1 (CB1) is famous as the target of Δ9-tetrahydrocannabinol (THC), which is the active ingredient of marijuana. Suppression of CB1 is frequently suggested as a drug target or gene therapy for many conditions (e.g., obesity, Parkinson's disease). However, brain networks affected by CB1 remain elusive, and unanticipated psychological effects in a clinical trial had dire consequences. To better understand the whole brain effects of CB1 suppression we performed in vivo imaging on mice under complete knockout of the gene for CB1 (cnr1-/-) and also under the CB1 inverse agonist rimonabant. We examined white matter structural changes and brain function (network activity and directional uniformity) in cnr1-/- mice. In cnr1-/- mice, white matter (in both sexes) and functional directional uniformity (in male mice) were altered across the brain but network activity was largely unaltered. Conversely, under rimonabant, functional directional uniformity was not altered but network activity was altered in cortical regions, primarily in networks known to be altered by THC (e.g., neocortex, hippocampal formation). However, rimonabant did not alter many brain regions found in both our cnr1-/- results and previous behavioral studies of cnr1-/- mice (e.g., thalamus, infralimbic area). This suggests that chronic loss of cnr1 is substantially different from short-term suppression, subtly rewiring the brain but largely maintaining the network activity. Our results help explain why pathological mutations in CB1 (e.g., chronic pain) do not always provide insight into the side effects of CB1 suppression (e.g., clinical depression), and thus urge more preclinical studies for any drugs that suppress CB1.


Asunto(s)
Agonismo Inverso de Drogas , Piperidinas , Femenino , Ratones , Masculino , Animales , Rimonabant/farmacología , Piperidinas/farmacología , Pirazoles/farmacología , Ratones Noqueados , Encéfalo , Receptores de Cannabinoides , Receptor Cannabinoide CB1/genética , Dronabinol/farmacología
4.
Molecules ; 29(8)2024 Apr 11.
Artículo en Inglés | MEDLINE | ID: mdl-38675558

RESUMEN

The cannabinoid-type I (CB1) receptor functions as a double-edged sword to decide cell fate: apoptosis/survival. Elevated CB1 receptor expression is shown to cause acute ceramide accumulation to meet the energy requirements of fast-growing cancers. However, the flip side of continual CB1 activation is the initiation of a second ceramide peak that leads to cell death. In this study, we used ovarian cancer cells, PA1, which expressed CB1, which increased threefold when treated with a natural compound, bis(palmitoleic acid) ester of a glycerol (C2). This novel compound is isolated from a marine snail, Conus inscriptus, using hexane and the structural details are available in the public domain PubChem database (ID: 14275348). The compound induced two acute ceramide pools to cause G0/G1 arrest and killed cells by apoptosis. The compound increased intracellular ceramides (C:16 to 7 times and C:18 to 10 times), both of which are apoptotic inducers in response to CB1 signaling and thus the compound is a potent CB1 agonist. The compound is not genotoxic because it did not induce micronuclei formation in non-cancerous Chinese hamster ovarian (CHO) cells. Since the compound induced the cannabinoid pathway, we tested if there was a psychotropic effect in zebrafish models, however, it was evident that there were no observable neurobehavioral changes in the treatment groups. With the available data, we propose that this marine compound is safe to be used in non-cancerous cells as well as zebrafish. Thus, this anticancer compound is non-toxic and triggers the CB1 pathway without causing psychotropic effects.


Asunto(s)
Apoptosis , Ceramidas , Caracol Conus , Ácidos Grasos , Receptor Cannabinoide CB1 , Animales , Femenino , Humanos , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Ceramidas/metabolismo , Ceramidas/química , Ácidos Grasos/farmacología , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Transducción de Señal/efectos de los fármacos , Caracol Conus/química
5.
Biochim Biophys Acta Mol Basis Dis ; 1870(5): 167179, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38653357

RESUMEN

Muscle degeneration is a common feature in cancer cachexia that cannot be reversed. Recent advances show that the endocannabinoid system, and more particularly cannabinoid receptor 1 (CB1), regulates muscle processes, including metabolism, anabolism and regenerative capacity. However, it is unclear whether muscle endocannabinoids, their receptors and enzymes are responsive to cachexia and exercise. Therefore, this study investigated whether cachexia and exercise affected muscle endocannabinoid signaling, and whether CB1 expression correlated with markers of muscle anabolism, catabolism and metabolism. Male BALB/c mice were injected with PBS (CON) or C26 colon carcinoma cells (C26) and had access to wheel running (VWR) or remained sedentary (n = 5-6/group). Mice were sacrificed 18 days upon PBS/tumor cell injection. Cachexic mice exhibited a lower muscle CB1 expression (-43 %; p < 0.001) and lower levels of the endocannabinoid anandamide (AEA; -22 %; p = 0.044), as well as a lower expression of the AEA-synthesizing enzyme NAPE-PLD (-37 %; p < 0.001), whereas the expression of the AEA degrading enzyme FAAH was higher (+160 %; p < 0.001). The 2-AG-degrading enzyme MAGL, was lower in cachexic muscle (-34 %; p = 0.007), but 2-AG and its synthetizing enzyme DAGLß were not different between CON and C26. VWR increased muscle CB1 (+25 %; p = 0.005) and increased MAGL expression (+30 %; p = 0.035). CB1 expression correlated with muscle mass, markers of metabolism (e.g. p-AMPK, PGC1α) and of catabolism (e.g. p-FOXO, LC3b, Atg5). Our findings depict an emerging role of the endocannabinoid system in muscle physiology. Future studies should elaborate how this translates into potential therapies to combat cancer cachexia, and other degenerative conditions.


Asunto(s)
Caquexia , Endocannabinoides , Ratones Endogámicos BALB C , Músculo Esquelético , Receptor Cannabinoide CB1 , Animales , Endocannabinoides/metabolismo , Masculino , Ratones , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Caquexia/metabolismo , Caquexia/patología , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB1/genética , Línea Celular Tumoral , Alcamidas Poliinsaturadas/metabolismo , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Condicionamiento Físico Animal , Ácidos Araquidónicos/metabolismo
6.
Glia ; 72(6): 1096-1116, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38482984

RESUMEN

The medial prefrontal cortex (mPFC) is involved in cognitive functions such as working memory. Astrocytic cannabinoid type 1 receptor (CB1R) induces cytosolic calcium (Ca2+) concentration changes with an impact on neuronal function. mPFC astrocytes also express adenosine A1 and A2A receptors (A1R, A2AR), being unknown the crosstalk between CB1R and adenosine receptors in these cells. We show here that a further level of regulation of astrocyte Ca2+ signaling occurs through CB1R-A2AR or CB1R-A1R heteromers that ultimately impact mPFC synaptic plasticity. CB1R-mediated Ca2+ transients increased and decreased when A1R and A2AR were activated, respectively, unveiling adenosine receptors as modulators of astrocytic CB1R. CB1R activation leads to an enhancement of long-term potentiation (LTP) in the mPFC, under the control of A1R but not of A2AR. Notably, in IP3R2KO mice, that do not show astrocytic Ca2+ level elevations, CB1R activation decreases LTP, which is not modified by A1R or A2AR. The present work suggests that CB1R has a homeostatic role on mPFC LTP, under the control of A1R, probably due to physical crosstalk between these receptors in astrocytes that ultimately alters CB1R Ca2+ signaling.


Asunto(s)
Astrocitos , Cannabinoides , Ratones , Animales , Receptores de Cannabinoides , Receptor de Adenosina A2A , Plasticidad Neuronal , Receptor Cannabinoide CB1/genética
7.
EMBO Mol Med ; 16(4): 755-783, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38514794

RESUMEN

Cereblon/CRBN is a substrate-recognition component of the Cullin4A-DDB1-Roc1 E3 ubiquitin ligase complex. Destabilizing mutations in the human CRBN gene cause a form of autosomal recessive non-syndromic intellectual disability (ARNSID) that is modelled by knocking-out the mouse Crbn gene. A reduction in excitatory neurotransmission has been proposed as an underlying mechanism of the disease. However, the precise factors eliciting this impairment remain mostly unknown. Here we report that CRBN molecules selectively located on glutamatergic neurons are necessary for proper memory function. Combining various in vivo approaches, we show that the cannabinoid CB1 receptor (CB1R), a key suppressor of synaptic transmission, is overactivated in CRBN deficiency-linked ARNSID mouse models, and that the memory deficits observed in these animals can be rescued by acute CB1R-selective pharmacological antagonism. Molecular studies demonstrated that CRBN interacts physically with CB1R and impairs the CB1R-Gi/o-cAMP-PKA pathway in a ubiquitin ligase-independent manner. Taken together, these findings unveil that CB1R overactivation is a driving mechanism of CRBN deficiency-linked ARNSID and anticipate that the antagonism of CB1R could constitute a new therapy for this orphan disease.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales , Trastornos de la Memoria , Ubiquitina-Proteína Ligasas , Animales , Ratones , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Mutación , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/genética , Ubiquitina-Proteína Ligasas/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo
8.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38338960

RESUMEN

The lipid endocannabinoid system has recently emerged as a novel therapeutic target for several inflammatory and tissue-damaging diseases, including those affecting the cardiovascular system. The primary targets of cannabinoids are cannabinoid type 1 (CB1) and 2 (CB2) receptors. The CB2 receptor is expressed in the cardiomyocytes. While the pathological changes in the myocardium upregulate the CB2 receptor, genetic deletion of the receptor aggravates the changes. The CB2 receptor plays a crucial role in attenuating the advancement of myocardial infarction (MI)-associated pathological changes in the myocardium. Activation of CB2 receptors exerts cardioprotection in MI via numerous molecular pathways. For instance, delta-9-tetrahydrocannabinol attenuated the progression of MI via modulation of the CB2 receptor-dependent anti-inflammatory mechanisms, including suppression of pro-inflammatory cytokines like IL-6, TNF-α, and IL-1ß. Through similar mechanisms, natural and synthetic CB2 receptor ligands repair myocardial tissue damage. This review aims to offer an in-depth discussion on the ameliorative potential of CB2 receptors in myocardial injuries induced by a variety of pathogenic mechanisms. Further, the modulation of autophagy, TGF-ß/Smad3 signaling, MPTP opening, and ROS production are discussed. The molecular correlation of CB2 receptors with cardiac injury markers, such as troponin I, LDH1, and CK-MB, is explored. Special attention has been paid to novel insights into the potential therapeutic implications of CB2 receptor activation in MI.


Asunto(s)
Cannabinoides , Infarto del Miocardio , Receptor Cannabinoide CB1 , Humanos , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Cannabinoides/metabolismo , Endocannabinoides/metabolismo , Infarto del Miocardio/tratamiento farmacológico , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Receptor Cannabinoide CB2/genética , Receptor Cannabinoide CB2/metabolismo , Receptores de Cannabinoides/metabolismo , Dronabinol/farmacología
9.
Neurochem Res ; 49(5): 1278-1290, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38368587

RESUMEN

Social isolation is a state of lack of social connections, involving the modulation of different molecular signalling cascades and associated with high risk of mental health issues. To investigate if and how gene expression is modulated by social experience at the central level, we analyzed the effects of 5 weeks of social isolation in rats focusing on endocannabinoid system genes transcription in key brain regions involved in emotional control. We observed selective reduction in mRNA levels for fatty acid amide hydrolase (Faah) and cannabinoid receptor type 1 (Cnr1) genes in the amygdala complex and of Cnr1 in the prefrontal cortex of socially isolated rats when compared to controls, and these changes appear to be partially driven by trimethylation of Lysine 27 and acetylation of Lysine 9 at Histone 3. The alterations of Cnr1 transcriptional regulation result also directly correlated with those of oxytocin receptor gene. We here suggest that to counteract the effects of SI, it is of relevance to restore the endocannabinoid system homeostasis via the use of environmental triggers able to revert those epigenetic mechanisms accounting for the alterations observed.


Asunto(s)
Amidohidrolasas , Endocannabinoides , Lisina , Receptor Cannabinoide CB1 , Aislamiento Social , Animales , Ratas , Amidohidrolasas/genética , Endocannabinoides/metabolismo , Receptor Cannabinoide CB1/genética , Receptores de Cannabinoides/metabolismo
10.
Science ; 383(6686): 967-970, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38422134

RESUMEN

Endocannabinoid (eCB)-mediated suppression of inhibitory synapses has been hypothesized, but this has not yet been demonstrated to occur in vivo because of the difficulty in tracking eCB dynamics and synaptic plasticity during behavior. In mice navigating a linear track, we observed location-specific eCB signaling in hippocampal CA1 place cells, and this was detected both in the postsynaptic membrane and the presynaptic inhibitory axons. All-optical in vivo investigation of synaptic responses revealed that postsynaptic depolarization was followed by a suppression of inhibitory synaptic potentials. Furthermore, interneuron-specific cannabinoid receptor deletion altered place cell tuning. Therefore, rapid, postsynaptic, activity-dependent eCB signaling modulates inhibitory synapses on a timescale of seconds during behavior.


Asunto(s)
Región CA1 Hipocampal , Endocannabinoides , Potenciales Postsinápticos Inhibidores , Sinapsis , Transmisión Sináptica , Animales , Ratones , Endocannabinoides/fisiología , Plasticidad Neuronal/fisiología , Sinapsis/fisiología , Señalización del Calcio , Región CA1 Hipocampal/fisiología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/fisiología , Masculino , Femenino , Ratones Noqueados
12.
Neuron ; 112(3): 441-457.e6, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-37992714

RESUMEN

Social isolation is a risk factor for multiple mood disorders. Specifically, social isolation can remodel the brain, causing behavioral abnormalities, including sociability impairments. Here, we investigated social behavior impairment in mice following chronic social isolation stress (CSIS) and conducted a screening of susceptible brain regions using functional readouts. CSIS enhanced synaptic inhibition in the anterior cingulate cortex (ACC), particularly at inhibitory synapses of cholecystokinin (CCK)-expressing interneurons. This enhanced synaptic inhibition in the ACC was characterized by CSIS-induced loss of presynaptic cannabinoid type-1 receptors (CB1Rs), resulting in excessive axonal calcium influx. Activation of CCK-expressing interneurons or conditional knockdown of CB1R expression in CCK-expressing interneurons specifically reproduced social impairment. In contrast, optogenetic activation of CB1R or administration of CB1R agonists restored sociability in CSIS mice. These results suggest that the CB1R may be an effective therapeutic target for preventing CSIS-induced social impairments by restoring synaptic inhibition in the ACC.


Asunto(s)
Cannabinoides , Giro del Cíngulo , Animales , Masculino , Ratones , Cannabinoides/metabolismo , Cannabinoides/farmacología , Giro del Cíngulo/metabolismo , Interneuronas/fisiología , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo , Aislamiento Social , Sinapsis/fisiología
13.
Brain Behav ; 13(12): e3323, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37984468

RESUMEN

BACKGROUND: The reasons for developing depression are not fully understood. However, it is known that the serotonergic system plays a role in the etiology, but the endocannabinoid system receives attention. METHOD: In this study, 161 patients with a depressive disorder and 161 healthy participants were examined for the distribution of the CNR1 rs4940353, 5-HT2A rs6311, and 5-HT1A rs6295 by high-resolution melting genotyping. The concentration of arachidonoyl ethanolamide (AEA) and 2-arachidonoylglycerol (2-AG) in the blood was measured by liquid chromatography-tandem mass spectrometry. Additionally, depression and anxiety symptoms were evaluated based on self-questionnaires. Fifty-nine patients participated in a second appointment to measure the concentration of AEA, 2-AG, and symptoms of depression and anxiety. RESULTS: We observed higher AEA and decreased 2-AG concentrations in patients with depression compared to healthy participants. During the treatment, the concentrations of AEA and 2-AG did not change significantly. In patients higher symptoms of anxiety correlated with lower concentrations of 2-AG. Gender differences were found concerning increased 2-AG concentration in male patients and increased anxiety symptoms in female patients. Genotypic variations of 5-HT1A rs6295 and 5-HT2A rs6311 are associated with altered serotonergic activity and serotonin content in patients. CONCLUSION: In conclusion, it seems that the endocannabinoid system, especially the endocannabinoids 2-AG and AEA, and genetic variations of the 5-HT1A and 5-HT2A could play a role in patients with depression and may be involved in a depressive disorder.


Asunto(s)
Endocannabinoides , Alcamidas Poliinsaturadas , Femenino , Humanos , Masculino , Cromatografía Liquida , Endocannabinoides/análisis , Variación Genética , Receptor Cannabinoide CB1/genética
14.
Cannabis Cannabinoid Res ; 8(6): 1045-1059, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37862126

RESUMEN

Background: Increasing evidence suggests that the endocannabinoid system (ECS) in the brain controls anxiety and may be a therapeutic target for the treatment of anxiety disorders. For example, both pharmacological and genetic disruption of cannabinoid receptor subtype-1 (CB1R) signaling in the central nervous system is associated with increased anxiety-like behaviors in rodents, while activating the system is anxiolytic. Sex is also a critical factor that controls the behavioral expression of anxiety; however, roles for the ECS in the gut in these processes and possible differences between sexes are largely unknown. Objective: In this study, we aimed to determine if CB1Rs in the intestinal epithelium exert control over anxiety-like behaviors in a sex-dependent manner. Methods: We subjected male and female mice with conditional deletion of CB1Rs in the intestinal epithelium (intCB1-/-) and controls (intCB1+/+) to the elevated plus maze (EPM), light/dark box, and open field test. Corticosterone (CORT) levels in plasma were measured at baseline and immediately after EPM exposure. Results: When compared with intCB1+/+ male mice, intCB1-/- male mice exhibited reduced levels of anxiety-like behaviors in the EPM and light/dark box. In contrast to male mice, no differences were found between female intCB1+/+ and intCB1-/- mice. Circulating CORT was higher in female versus male mice for both genotype groups at baseline and after EPM exposure; however, there was no effect of genotype on CORT levels. Conclusions: Collectively, these results indicate that genetic deletion of CB1Rs in the intestinal epithelium is associated with an anxiolytic phenotype in a sex-dependent manner.


Asunto(s)
Trastornos de Ansiedad , Ansiedad , Receptor Cannabinoide CB1 , Animales , Femenino , Masculino , Ratones , Ansiedad/genética , Ansiedad/metabolismo , Trastornos de Ansiedad/genética , Trastornos de Ansiedad/metabolismo , Corticosterona , Receptores de Cannabinoides/genética , Receptores de Cannabinoides/metabolismo , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo
15.
Brain Res ; 1821: 148579, 2023 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-37739333

RESUMEN

OBJECTIVE: Tardive dyskinesia (TD) is a medically induced movement disorder that occurs as a result of long-term use of antipsychotic medications, commonly seen in patients with schizophrenia (SCZ). The study aimed to investigate the relationship between single nucleotide polymorphisms (SNPs) of the CNR1 gene, TD and cognitive impairments in a Chinese population with SCZ. METHODS: A total of 216 SCZ patients were recruited. The participants were divided into TD and without TD (WTD) groups using the Schooler-Kane International Diagnostic Criteria. The severity of TD was assessed using the Abnormal Involuntary Movement Scale (AIMS). Cognitive function was assessed using the Repeatable Battery for Assessment of Neuropsychological Status (RBANS) scale. Hardy-Weinberg equilibrium tests, chained disequilibrium analyses and haplotype analyses were performed using SHE-sis software. To explore the main effects of TD diagnosis, genotype and cognitive function, as well as interaction effects, analysis of covariance (ANCOVA) was employed. RESULTS: The prevalence of TD was approximately 27.3%. Significant differences were observed in the rs806368 CT genotype and rs806370 TC genotype within the hypercongenic pattern between the male TD and WTD groups (OR = 2.508, 95% CI: 1.055-5.961, p = 0.037; OR = 2.552, 95% CI: 1.073-6.069, p = 0.034). Among TD patients, those carrying the rs806368 CC genotype exhibited higher limb trunk scores (p < 0.05). Moreover, there was a statistically significant difference in visuospatial/construction between the TD and WTD groups (p = 0.04), and a borderline significant difference in visuospatial/construction when considering the interaction between TD diagnosis and genotype at the rs806368 locus (p = 0.05). CONCLUSION: CNR1 rs806368 and rs806370 polymorphisms may play a role in TD susceptibility. Additionally, CNR1 gene polymorphisms were associated with the severity of involuntary movements and cognitive impairments in TD patients.


Asunto(s)
Antipsicóticos , Disfunción Cognitiva , Receptor Cannabinoide CB1 , Esquizofrenia , Discinesia Tardía , Humanos , Masculino , Disfunción Cognitiva/tratamiento farmacológico , Pueblos del Este de Asia , Polimorfismo de Nucleótido Simple , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/genética , Discinesia Tardía/genética , Discinesia Tardía/complicaciones , Discinesia Tardía/tratamiento farmacológico , Receptor Cannabinoide CB1/genética
16.
Front Endocrinol (Lausanne) ; 14: 1241097, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37693348

RESUMEN

Background: Aging is associated with a broad loss of function throughout the body, and gastrointestinal (GI) dysfunction can occur with aging. The endocannabinoid (eCB) system plays a pivotal role in various GI diseases, and alterations in the eCB system have been observed during brain and skin aging. Therefore, we investigated the putative role of the eCB system in aging-related changes in the intestine. Methods: The expression of cannabinoid receptor type 1 (CB1) was investigated in rat intestinal tissues using quantitative real-time PCR. Cellular senescence was induced by hydrogen peroxide (H2O2) and hydroxyurea (HU) in rat and human intestinal epithelial cells. Cellular permeability was evaluated by transepithelial electrical resistance (TEER) measurement. Results and Discussion: The expression of CB1 was decreased in the small intestine of aged rats compared to that of young rats. Senescent cells showed reduced TEER values and decreased expression of ZO-1, indicating increased intestinal permeability, which is tightly regulated by the CB1 signaling. In silico miRNA analysis suggested that ZO-1 was a direct target gene of miR-191-5p. Increased expression of miR-191-5p by HU was restored by CB1 agonist ACEA co-treatment. Moreover, NF-κB p65 activation was associated with CB1-related miR-191-5p signaling. In conclusion, aging-induced CB1 reduction leads to increased intestinal permeability and decreased ZO-1 expression via upregulation of miR-191-5p and NF-κB p65 activation. Taken together, these results suggest that CB1 signaling may be a useful strategy to reduce intestinal permeability in aging-related and other inflammatory conditions in the gut.


Asunto(s)
Peróxido de Hidrógeno , MicroARNs , Receptor Cannabinoide CB1 , Animales , Humanos , Ratas , Endocannabinoides , Hidroxiurea , MicroARNs/genética , FN-kappa B , Permeabilidad , Receptor Cannabinoide CB1/genética
17.
ACS Chem Neurosci ; 14(19): 3674-3685, 2023 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-37718490

RESUMEN

Patients with post-traumatic stress disorder (PTSD) usually manifest persistence of the traumatic memory for a long time after the event, also known as resistance to extinction learning. Numerous studies have shown that the endocannabinoid system, specifically the cannabinoid type-1 receptor (CB1R), plays an important role in traumatic memory. However, the effect of basolateral amygdala (BLA) CB1R in social fear memory formation and elimination is still unclear. Here, we built a mouse model of social avoidance induced by acute social defeat stress to investigate the role of BLA CB1R in social fear memory formation and anxiety- and depression-like behavior. Anterograde knockout of CB1R in BLA neurons facilitates social fear memory formation and manifests an anxiolytic effect but does not influence sociability and social novelty. Retrograde knockout of CB1R in BLA promotes social fear memory formation and shows an anxiogenic effect but does not affect sociability and social novelty. Moreover, intracerebral injection of the CB1R antagonist AM251 in BLA during the memory reconsolidation time window eliminates social fear memory. Our findings suggest the CB1R of BLA can be used as a novel molecular target in social fear memory formation and elimination and potential PTSD therapy with memory retrieval and AM251.


Asunto(s)
Complejo Nuclear Basolateral , Cannabinoides , Animales , Ratones , Humanos , Cannabinoides/farmacología , Receptor Cannabinoide CB1/genética , Miedo , Ansiedad , Extinción Psicológica
18.
Cell Rep ; 42(9): 113027, 2023 09 26.
Artículo en Inglés | MEDLINE | ID: mdl-37703881

RESUMEN

The endocannabinoid (eCB) system is a key modulator of glutamate release within limbic neurocircuitry and thus heavily modulates stress responsivity and adaptation. The ventral hippocampus (vHPC)-basolateral amygdala (BLA) circuit has been implicated in the expression of negative affective states following stress exposure and is modulated by retrograde eCB signaling. However, the mechanisms governing eCB release and the causal relationship between vHPC-BLA eCB signaling and stress-induced behavioral adaptations are not known. Here, we utilized in vivo optogenetic- and biosensor-based approaches to determine the temporal dynamics of activity-dependent and stress-induced eCB release at vHPC-BLA synapses. Furthermore, we demonstrate that genetic deletion of cannabinoid type-1 receptors selectively at vHPC-BLA synapses decreases active stress coping and exacerbates stress-induced avoidance and anhedonia phenotypes. These data establish the in vivo determinants of eCB release at limbic synapses and demonstrate that eCB signaling within vHPC-BLA circuitry serves to counteract adverse behavioral consequences of stress.


Asunto(s)
Complejo Nuclear Basolateral , Endocannabinoides , Endocannabinoides/metabolismo , Amígdala del Cerebelo/fisiología , Sinapsis/metabolismo , Complejo Nuclear Basolateral/metabolismo , Hipocampo/metabolismo , Receptores de Cannabinoides , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB1/metabolismo
19.
Eur J Neurosci ; 58(6): 3540-3554, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37611908

RESUMEN

Cannabis use leads to symptom exacerbation in schizophrenia patients, and endocannabinoid ligands have been studied as tentative schizophrenia therapeutics. Here, we aimed to characterise the connection between schizophrenia and the cannabinoid receptor 1 gene (CNR1) and explore possible mechanisms affecting its expression in schizophrenia. We performed a participant data systematic meta-analysis of CNR1 gene expression and additional endocannabinoid system genes in both brain (subcortical areas) and blood samples. We integrated eight brain sample datasets (overall 316 samples; 149 schizophrenia and 167 controls) and two blood sample datasets (overall 90 samples; 53 schizophrenia and 37 controls) while following the PRISMA meta-analysis guidelines. CNR1 was downregulated in subcortical regions and upregulated in blood samples of patients with schizophrenia. CNR2 and genes encoding endocannabinoids synthesis and degradation did not show differential expression in the brain or blood, except fatty acid amide hydrolase (FAAH), which showed a downregulation trend in blood. In addition, the brain expression levels of CNR1 and three GABA receptor genes, GABRA1, GABRA6 and GABRG2, were positively correlated (R = .57, .36, .54; p = 2.7 × 10-14 , 6.9 × 10-6 and 1.1 × 10-12 , respectively). Brain CNR1 downregulation and the positive correlation with three GABA receptor genes suggest an association with GABA neurotransmission and possible effects on negative schizophrenia symptoms. Further studies are required for clarifying the opposite CNR1 dysregulation in the brain and blood of schizophrenia patients and the potential of endocannabinoid ligands as schizophrenia therapeutics.


Asunto(s)
Receptor Cannabinoide CB1 , Esquizofrenia , Humanos , Encéfalo , Endocannabinoides , Ligandos , Receptor Cannabinoide CB1/genética , Receptores de Cannabinoides , Esquizofrenia/genética
20.
Cell Death Dis ; 14(8): 544, 2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37612317

RESUMEN

Statins are the most prescribed lipid-lowering agents worldwide. Their use is generally safe, although muscular toxicity occurs in about 1 in 10.000 patients. In this study, we explored the role of the endocannabinoid system (ECS) during muscle toxicity induced by simvastatin. In murine C2C12 myoblasts exposed to simvastatin, levels of the endocannabinoids AEA and 2-AG as well the expression of specific miRNAs (in particular miR-152) targeting the endocannabinoid CB1 gene were increased in a time-dependent manner. Rimonabant, a selective CB1 antagonist, exacerbated simvastatin-induced toxicity in myoblasts, while only a weak opposite effect was observed with ACEA and GAT211, selective orthosteric and allosteric agonists of CB1 receptor, respectively. In antagomiR152-transfected myoblasts, simvastatin toxicity was in part prevented together with the functional rescue of CB1. Further analyses revealed that simvastatin in C2C12 cells also suppresses PKC and ERK signaling pathways, which are instead activated downstream of CB1 receptor stimulation, thus adding more insight into the mechanism causing CB1 functional inactivation. Importantly, simvastatin induced similar alterations in skeletal muscles of C57BL/6 J mice and primary human myoblasts. In sum, we identified the dysregulated expression of the endocannabinoid CB1 receptor as well as the impairment of its downstream signaling pathways as a novel pathological mechanism involved in statin-induced myopathy.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , MicroARNs , Humanos , Animales , Ratones , Ratones Endogámicos C57BL , Simvastatina/farmacología , Endocannabinoides , Receptor Cannabinoide CB1/genética , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Músculo Esquelético
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...