Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Tijdschr Psychiatr ; 65(9): 555-562, 2023.
Artículo en Holandés | MEDLINE | ID: mdl-37947466

RESUMEN

BACKGROUND: Research suggests that cholinergic muscarinic 1 (M1) and/or muscarinic 4 (M4) receptors may be involved in the pathophysiology of psychotic disorders. Agonistic modulation of these receptors can offer new treatment options. AIM: To provide an overview of current research on the role of cholinergic M1 and M4 receptors in the development and treatment of psychoses, with special attention to the development of new drugs such as xanomeline and emraclidine. METHOD: To obtain an overview, we searched for English-language studies published in PubMed, Embase, and PsycInfo up until June 1, 2023. We examined the role and effects of M1 and/or M4 agonists in schizophrenia. Additionally, we consulted clinical trial registers. RESULTS: Our search strategy resulted in nine published articles on five clinical studies. These studies revealed that reduced presence of M1 receptors, primarily in the frontal cortex, and M4 receptors, primarily in the basal ganglia, are associated with psychoses. M1 and M4 receptors modulate dopaminergic activity in the ventral tegmentum and striatum through various pathways. Several M1 and/or M4 agonists, partial agonists, and positive allosteric modulators (PAMs) have been developed. Drugs exhibiting agonistic activity on M1 and/or M4 receptors, such as xanomeline-trospium (phase 2 and 3 studies) and emraclidine (phase 1b studies), have shown positive effects on cognitive and potentially negative symptoms in patients with schizophrenia. CONCLUSION: M1 and/or M4 receptor agonists show potential as new treatment strategies for individuals with psychotic disorders. Although initial studies with xanomeline-trospium and emraclidine have shown positive results, further research is needed to assess their long-term efficacy, safety, and tolerability before these new medications can be evaluated.


Asunto(s)
Trastornos Psicóticos , Receptor Muscarínico M1 , Humanos , Agonistas Muscarínicos/farmacología , Agonistas Muscarínicos/uso terapéutico , Trastornos Psicóticos/tratamiento farmacológico , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/metabolismo
2.
Expert Opin Investig Drugs ; 32(12): 1113-1121, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37994870

RESUMEN

INTRODUCTION: Successful phase 3 trials of KarXT in people with schizophrenia herald a new era of treating the disorder with drugs that do not target the dopamine D2 receptor. The active component of KarXT is xanomeline, a muscarinic (CHRM) M1 and M4 agonist, making muscarinic receptors a viable target for treating schizophrenia. AREAS COVERED: This review covers the process of taking drugs that activate the muscarinic M1 and M4 receptors from conceptualization to the clinic and details the mechanisms by which activating the CHRM1 and 4 can affect the broad spectrum of symptoms experienced by people with schizophrenia. EXPERT OPINION: Schizophrenia is a syndrome which means drugs that activate muscarinic M1 and M4 receptors, as was the case for antipsychotic drugs acting on the dopamine D2 receptor, will not give optimal outcomes in everyone within the syndrome. Thus, it would be ideal to identify people who are responsive to drugs activating the CHRM1 and 4. Given knowledge of the actions of these receptors, it is possible treatment non-response could be restricted to sub-groups within the syndrome who have deficits in cortical CHRM1 or those with one of the cognitive endophenotypes that may be identifiable by changes in the blood transcriptome.


Asunto(s)
Antipsicóticos , Esquizofrenia , Humanos , Esquizofrenia/tratamiento farmacológico , Agonistas Muscarínicos/farmacología , Agonistas Muscarínicos/uso terapéutico , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/genética , Receptor Muscarínico M4/uso terapéutico , Antipsicóticos/farmacología , Antipsicóticos/uso terapéutico , Receptores de Dopamina D2/uso terapéutico , Receptor Muscarínico M1
3.
Elife ; 122023 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-37248726

RESUMEN

Allosteric modulation of G protein-coupled receptors (GPCRs) is a major paradigm in drug discovery. Despite decades of research, a molecular-level understanding of the general principles that govern the myriad pharmacological effects exerted by GPCR allosteric modulators remains limited. The M4 muscarinic acetylcholine receptor (M4 mAChR) is a validated and clinically relevant allosteric drug target for several major psychiatric and cognitive disorders. In this study, we rigorously quantified the affinity, efficacy, and magnitude of modulation of two different positive allosteric modulators, LY2033298 (LY298) and VU0467154 (VU154), combined with the endogenous agonist acetylcholine (ACh) or the high-affinity agonist iperoxo (Ipx), at the human M4 mAChR. By determining the cryo-electron microscopy structures of the M4 mAChR, bound to a cognate Gi1 protein and in complex with ACh, Ipx, LY298-Ipx, and VU154-Ipx, and applying molecular dynamics simulations, we determine key molecular mechanisms underlying allosteric pharmacology. In addition to delineating the contribution of spatially distinct binding sites on observed pharmacology, our findings also revealed a vital role for orthosteric and allosteric ligand-receptor-transducer complex stability, mediated by conformational dynamics between these sites, in the ultimate determination of affinity, efficacy, cooperativity, probe dependence, and species variability. There results provide a holistic framework for further GPCR mechanistic studies and can aid in the discovery and design of future allosteric drugs.


Asunto(s)
Receptor Muscarínico M4 , Receptores Muscarínicos , Humanos , Acetilcolina/metabolismo , Regulación Alostérica , Sitio Alostérico , Microscopía por Crioelectrón , Ligandos , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/metabolismo
4.
ACS Chem Neurosci ; 14(3): 435-457, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36655909

RESUMEN

Degeneration of the cholinergic basal forebrain is implicated in the development of cognitive deficits and sleep/wake architecture disturbances in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Indirect-acting muscarinic cholinergic receptor agonists, such as acetylcholinesterase inhibitors (AChEIs), remain the only FDA-approved treatments for the cognitive impairments observed in AD that target the cholinergic system. Novel direct-acting muscarinic cholinergic receptor agonists also improve cognitive performance in young and aged preclinical species and are currently under clinical development for AD. However, little is known about the effects of direct-acting muscarinic cholinergic receptor agonists on disruptions of sleep/wake architecture and arousal observed in nonpathologically aged rodents, nonhuman primates, and clinical populations. The purpose of the present study was to provide the first assessment of the effects of the direct-acting M1/M4-preferring muscarinic cholinergic receptor agonist xanomeline on sleep/wake architecture and arousal in young and nonpathologically aged mice, in comparison with the AChEI donepezil, when dosed in either the active or inactive phase of the circadian cycle. Xanomeline produced a robust reversal of both wake fragmentation and disruptions in arousal when dosed in the active phase of nonpathologically aged mice. In contrast, donepezil had no effect on either age-related wake fragmentation or arousal deficits when dosed during the active phase. When dosed in the inactive phase, both xanomeline and donepezil produced increases in wake and arousal and decreases in nonrapid eye movement sleep quality and quantity in nonpathologically aged mice. Collectively, these novel findings suggest that direct-acting muscarinic cholinergic agonists such as xanomeline may provide enhanced wakefulness and arousal in nonpathological aging, MCI, and AD patient populations.


Asunto(s)
Nivel de Alerta , Agonistas Muscarínicos , Trastornos Neurocognitivos , Receptor Muscarínico M1 , Receptor Muscarínico M4 , Sueño , Animales , Ratones , Acetilcolinesterasa/metabolismo , Nivel de Alerta/efectos de los fármacos , Nivel de Alerta/fisiología , Colinérgicos/farmacología , Colinérgicos/uso terapéutico , Donepezilo/farmacología , Donepezilo/uso terapéutico , Agonistas Muscarínicos/farmacología , Agonistas Muscarínicos/uso terapéutico , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/metabolismo , Tiadiazoles/farmacología , Tiadiazoles/uso terapéutico , Vigilia/efectos de los fármacos , Vigilia/fisiología , Sueño/efectos de los fármacos , Sueño/fisiología , Disfunción Cognitiva/tratamiento farmacológico , Disfunción Cognitiva/metabolismo , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Trastornos Neurocognitivos/tratamiento farmacológico , Trastornos Neurocognitivos/metabolismo
5.
ACS Chem Neurosci ; 13(8): 1206-1218, 2022 04 20.
Artículo en Inglés | MEDLINE | ID: mdl-35380782

RESUMEN

Many Food and Drug Administration (FDA)-approved drugs are structural analogues of the endogenous (natural) ligands of G protein-coupled receptors (GPCRs). However, it is becoming appreciated that chemically distinct ligands can bind to GPCRs in conformations that lead to different cellular signaling events, a phenomenon termed biased agonism. Despite this, the rigorous experimentation and analysis required to identify biased agonism are often not undertaken in most clinical candidates and go unrealized. Recently, xanomeline, a muscarinic acetylcholine receptor (mAChR) agonist, has entered phase III clinical trials for the treatment of schizophrenia. If successful, xanomeline will be the first novel FDA-approved antipsychotic drug in almost 50 years. Intriguingly, xanomeline's potential for biased agonism at the mAChRs and, in particular, the M4 mAChR, the most promising receptor target for schizophrenia, has not been assessed. Here, we quantify the biased agonism profile of xanomeline and three other mAChR agonists in Chinese hamster ovary cells recombinantly expressing the M4 mAChR. Agonist activity was examined across nine distinct signaling readouts, including the activation of five different G protein subtypes, ERK1/2 phosphorylation, ß-arrestin recruitment, calcium mobilization, and cAMP regulation. Relative to acetylcholine (ACh), xanomeline was biased away from ERK1/2 phosphorylation and calcium mobilization compared to Gαi2 protein activation. These findings likely have important implications for our understanding of the therapeutic action of xanomeline and call for further investigation into the in vivo consequences of biased agonism in drugs targeting the M4 mAChR for the treatment of schizophrenia.


Asunto(s)
Calcio , Tiadiazoles , Acetilcolina/metabolismo , Acetilcolina/farmacología , Animales , Células CHO , Cricetinae , Cricetulus , Humanos , Ligandos , Agonistas Muscarínicos/farmacología , Agonistas Muscarínicos/uso terapéutico , Piridinas , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M4/agonistas , Receptores Acoplados a Proteínas G , Receptores Muscarínicos , Tiadiazoles/química
6.
Eur J Pharmacol ; 882: 173274, 2020 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-32534071

RESUMEN

Opioids strongly inhibit GABAergic neurons in the rostromedial tegmental nucleus (RMTg) that expresses µ-opioid receptors to induce rewarding and psychomotor effects. M3 and M4 muscarinic receptors are co-localized with µ-opioid receptors at these GABAergic neurons. This study explored whether RMTg M3 and M4 muscarinic receptors are involved in regulating opioid-induced reward and locomotion via a conditioned place preference (CPP) paradigm. Selective muscarinic receptor agonists and antagonists were both singly and combinatorically injected into the RMTg to examine their effects on the acquisition of systemic morphine-induced CPP and locomotor activity. The M3 muscarinic receptor agonist, pilocarpine, inhibited the acquisition of morphine-induced CPP, whereas its antagonist, 1,1-dimethyl-4-diphenylacetoxypiperidinium iodide (4-DAMP, 1 µg/side), reversed the inhibitory effect of pilocarpine (30 µg/side). Additionally, 4-DAMP increased locomotor activity while pilocarpine (30 µg/side) partially decreased locomotor activity when combined with morphine. In contrast, the M4 muscarinic receptor agonist, LY2033298 (0.1 and 0.2 µg/side), and antagonist, tropicamide (20 and 40 µM/side), did not affect the acquisition of morphine-induced CPP or locomotor activity. Taken together, our findings suggest that RMTg M3 muscarinic receptors are involved in opioid-induced rewarding and psychomotor effects. Therefore, RMTg M3 muscarinic receptors may represent a promising target for the treatment of opioid addiction.


Asunto(s)
Condicionamiento Psicológico , Receptor Muscarínico M3/metabolismo , Recompensa , Tegmento Mesencefálico/metabolismo , Analgésicos Opioides , Animales , Locomoción/efectos de los fármacos , Masculino , Morfina , Agonistas Muscarínicos/farmacología , Antagonistas Muscarínicos/farmacología , Ratas Wistar , Receptor Muscarínico M3/agonistas , Receptor Muscarínico M3/antagonistas & inhibidores , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/antagonistas & inhibidores , Receptor Muscarínico M4/metabolismo
7.
Psychiatry Res ; 288: 112989, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32315882

RESUMEN

The finding that the drug KarXT, a formulation of xanomeline and tropsium which targets muscarinic receptors, has given a positive result in reducing the positive and negative symptoms of schizophrenia in a phase II trial suggests targeting muscarinic receptors is a new approach to treating the disorder. This review will detail the synergistic interplay between studies to understand the role of muscarinic receptors in the aetiology of schizophrenia and drug development and how this has supported the hypothesis that activating the muscarinic M1 and M4 receptors is critical to the efficacy of KarXT, in schizophrenia. The discovery of an intermediate phenotype within schizophrenia which is characterised by the presence of a marked loss of cortical muscarinic M1 receptors will be reviewed. Highlighted will be progress in understanding the biochemistry of that intermediate phenotype and evidence to suggest that those with the intermediate phenotype may resist treatment with agonist to the orthosteric site on the muscarinic M1 and M4 receptor. Finally, the possibility of using drugs targeting the allosteric binding sites on muscarinic receptors to treat schizophrenia will be discussed. This timely review will therefore highlight how research can influence hypothesis driven drug discovery that should produce new treatments for schizophrenia.


Asunto(s)
Desarrollo de Medicamentos/métodos , Agonistas Muscarínicos/uso terapéutico , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M4/agonistas , Esquizofrenia/tratamiento farmacológico , Animales , Humanos , Esquizofrenia/diagnóstico
8.
Brain Res ; 1737: 146814, 2020 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-32234514

RESUMEN

Analgesic properties of orthosteric agonists of the muscarinic M4 receptor subtype have been documented in literature reports, with evidence from pharmacological and in vivo receptor knock out (KO) studies. Constitutive M4 receptor KO mice demonstrated an increased response in the formalin pain model, supporting this hypothesis. Two novel positive allosteric modulators (PAM) of the M4 receptor, Compounds 1 and 2, were characterized in rodent models of acute nociception. Results indicated decreased time spent on nociceptive behaviors in the mouse formalin model, and efficacy in the mouse tail flick assay. The analgesic-like effects of Compounds 1 and 2 were shown to be on target, as the compounds lacked any activity in constitutive M4 KO mice, while retaining activity in wild type control littermates. The analgesic-like effects of Compounds 1 and 2 were significantly diminished in KO mice that have selective deletion of the M4 receptor in neurons that co-express the dopaminergic D1 receptor subtype, suggesting a centrally-mediated effect on nociception. The opioid antagonist naloxone did not diminish the effect of Compound 1, indicating the effects of Compound 1 are not secondarily linked to opioid pathways. Compound 1 was evaluated in the rat, where it demonstrated analgesic-like effects in tail flick and a subpopulation of spinal nociceptive sensitive neurons, suggesting some involvement of spinal mechanisms of nociceptive modulation. These studies indicate that M4 PAMs may be a tractable target for pain management assuming an appropriate safety profile, and it appears likely that both spinal and supraspinal pathways may mediate the antinociceptive-like effects.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Nocicepción/efectos de los fármacos , Receptor Muscarínico M4/agonistas , Regulación Alostérica/fisiología , Analgésicos/farmacología , Analgésicos Opioides/farmacología , Animales , Colinérgicos/farmacología , Modelos Animales de Enfermedad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Antagonistas de Narcóticos/farmacología , Nocicepción/fisiología , Dolor/metabolismo , Dolor/fisiopatología , Ratas , Ratas Sprague-Dawley , Receptor Muscarínico M4/efectos de los fármacos , Receptor Muscarínico M4/metabolismo
9.
J Neurosci ; 40(18): 3591-3603, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32265261

RESUMEN

The septo-hippocampal cholinergic system is critical for hippocampal learning and memory. However, a quantitative description of the in vivo firing patterns and physiological function of medial septal (MS) cholinergic neurons is still missing. In this study, we combined optogenetics with multichannel in vivo recording and recorded MS cholinergic neuron firings in freely behaving male mice for 5.5-72 h. We found that their firing activities were highly correlated with hippocampal theta states. MS cholinergic neurons were highly active during theta-dominant epochs, such as active exploration and rapid eye movement sleep, but almost silent during non-theta epochs, such as slow-wave sleep (SWS). Interestingly, optogenetic activation of these MS cholinergic neurons during SWS suppressed CA1 ripple oscillations. This suppression could be rescued by muscarinic M2 or M4 receptor antagonists. These results suggest the following important physiological function of MS cholinergic neurons: maintaining high hippocampal acetylcholine level by persistent firing during theta epochs, consequently suppressing ripples and allowing theta oscillations to dominate.SIGNIFICANCE STATEMENT The major source of acetylcholine in the hippocampus comes from the medial septum. Early experiments found that lesions to the MS result in the disappearance of hippocampal theta oscillation, which leads to speculation that the septo-hippocampal cholinergic projection contributing to theta oscillation. In this article, by long-term recording of MS cholinergic neurons, we found that they show a theta state-related firing pattern. However, optogenetically activating these neurons shows little effect on theta rhythm in the hippocampus. Instead, we found that activating MS cholinergic neurons during slow-wave sleep could suppress hippocampal ripple oscillations. This suppression is mediated by muscarinic M2 and M4 receptors.


Asunto(s)
Potenciales de Acción/fisiología , Neuronas Colinérgicas/fisiología , Hipocampo/fisiología , Receptor Muscarínico M2/fisiología , Receptor Muscarínico M4/fisiología , Ritmo Teta/fisiología , Potenciales de Acción/efectos de los fármacos , Animales , Agonistas Colinérgicos/farmacología , Neuronas Colinérgicas/química , Neuronas Colinérgicas/efectos de los fármacos , Hipocampo/química , Hipocampo/efectos de los fármacos , Masculino , Ratones , Ratones Transgénicos , Antagonistas Muscarínicos/farmacología , Optogenética/métodos , Técnicas de Cultivo de Órganos , Receptor Muscarínico M2/agonistas , Receptor Muscarínico M2/antagonistas & inhibidores , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/antagonistas & inhibidores , Receptores Muscarínicos/fisiología , Ritmo Teta/efectos de los fármacos
10.
J Med Chem ; 63(5): 2411-2425, 2020 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-32101422

RESUMEN

The measurement of receptor occupancy (RO) using positron emission tomography (PET) has been instrumental in guiding discovery and development of CNS directed therapeutics. We and others have investigated muscarinic acetylcholine receptor 4 (M4) positive allosteric modulators (PAMs) for the treatment of symptoms associated with neuropsychiatric disorders. In this article, we describe the synthesis, in vitro, and in vivo characterization of a series of central pyridine-related M4 PAMs that can be conveniently radiolabeled with carbon-11 as PET tracers for the in vivo imaging of an allosteric binding site of the M4 receptor. We first demonstrated its feasibility by mapping the receptor distribution in mouse brain and confirming that a lead molecule 1 binds selectively to the receptor only in the presence of the orthosteric agonist carbachol. Through a competitive binding affinity assay and a number of physiochemical properties filters, several related compounds were identified as candidates for in vivo evaluation. These candidates were then radiolabeled with 11C and studied in vivo in rhesus monkeys. This research eventually led to the discovery of the clinical radiotracer candidate [11C]MK-6884.


Asunto(s)
Regulación Alostérica/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Piridinas/farmacología , Receptor Muscarínico M4/agonistas , Animales , Células CHO , Radioisótopos de Carbono/química , Radioisótopos de Carbono/farmacología , Cricetulus , Humanos , Macaca mulatta , Agonistas Muscarínicos/química , Enfermedades Neurodegenerativas/diagnóstico por imagen , Enfermedades Neurodegenerativas/tratamiento farmacológico , Enfermedades Neurodegenerativas/metabolismo , Tomografía de Emisión de Positrones , Piridinas/química , Receptor Muscarínico M4/metabolismo
11.
Mol Pharmacol ; 97(1): 35-45, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31704718

RESUMEN

Current operational models of agonism and allosterism quantify ligand actions at receptors where agonist concentration-response relationships are nonhyperbolic by introduction of a transducer slope that relates receptor occupancy to response. However, for some receptors nonhyperbolic concentration-response relationships arise from multiple endogenous agonist molecules binding to a receptor in a cooperative manner. Thus, we developed operational models of agonism in systems with cooperative agonist binding and evaluated the models by simulating data describing agonist effects. The models were validated by analyzing experimental data demonstrating the effects of agonists and allosteric modulators at receptors where agonist binding follows hyperbolic (M4 muscarinic acetylcholine receptors) or nonhyperbolic relationships (metabotropic glutamate receptor 5 and calcium-sensing receptor). For hyperbolic agonist concentration-response relationships, no differences in estimates of ligand affinity, efficacy, or cooperativity were observed when the slope was assigned to either a transducer slope or agonist binding slope. In contrast, for receptors with nonhyperbolic agonist concentration-response relationships, estimates of ligand affinity, efficacy, or cooperativity varied depending on the assignment of the slope. The extent of this variation depended on the magnitude of the slope value and agonist efficacy, and for allosteric modulators on the magnitude of cooperativity. The modified operational models described herein are well suited to analyzing agonist and modulator interactions at receptors that bind multiple orthosteric agonists in a cooperative manner. Accounting for cooperative agonist binding is essential to accurately quantify agonist and drug actions. SIGNIFICANCE STATEMENT: Some orthosteric agonists bind to multiple sites on a receptor, but current analytical methods to characterize such interactions are limited. Herein, we develop and validate operational models of agonism and allosterism for receptors with multiple orthosteric binding sites, and demonstrate that such models are essential to accurately quantify agonist and drug actions. These findings have important implications for the discovery and development of drugs targeting receptors such as the calcium-sensing receptor, which binds at least five calcium ions.


Asunto(s)
Sitios de Unión/efectos de los fármacos , Ionóforos de Calcio/farmacología , Agonismo de Drogas , Modelos Biológicos , Receptores Sensibles al Calcio/agonistas , Regulación Alostérica/efectos de los fármacos , Calcio/metabolismo , Simulación por Computador , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Células HEK293 , Humanos , Ligandos , Receptor del Glutamato Metabotropico 5/agonistas , Receptor del Glutamato Metabotropico 5/química , Receptor del Glutamato Metabotropico 5/metabolismo , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/química , Receptor Muscarínico M4/metabolismo , Receptores Sensibles al Calcio/química , Receptores Sensibles al Calcio/metabolismo
12.
Neuroscience ; 414: 60-76, 2019 08 21.
Artículo en Inglés | MEDLINE | ID: mdl-31299348

RESUMEN

Activation of the M1 muscarinic acetylcholine receptor (M1R) may be an effective therapeutic approach for Alzheimer's disease (AD), dementia with Lewy bodies, and schizophrenia. Previously, the M1R/M4R agonist xanomeline was shown to improve cognitive function and exert antipsychotic effects in patients with AD and schizophrenia. However, its clinical development was discontinued because of its cholinomimetic side effects. We compared in vivo pharmacological profiles of a novel M1R-selective positive allosteric modulator, TAK-071, and xanomeline in rodents. Xanomeline suppressed both methamphetamine- and MK-801-induced hyperlocomotion in mice, whereas TAK-071 suppressed only MK-801-induced hyperlocomotion. In a previous study, we showed that TAK-071 improved scopolamine-induced cognitive deficits in a rat novel object recognition task (NORT) with 33-fold margins versus cholinergic side effects (diarrhea). Xanomeline also improved scopolamine-induced cognitive impairments in a NORT; however, it had no margin versus cholinergic side effects (e.g., diarrhea, salivation, and hypoactivity) in rats. These side effects were observed even in M1R knockout mice. Evaluation of c-Fos expression as a marker of neural activation revealed that xanomeline increased the number of c-Fos-positive cells in several cortical areas, the hippocampal formation, amygdala, and nucleus accumbens. Other than in the orbital cortex and claustrum, TAK-071 induced similar c-Fos expression patterns. When donepezil was co-administered to increase the levels of acetylcholine, the number of TAK-071-induced c-Fos-positive cells in these brain regions was increased. TAK-071, through induction of similar neural activation as that seen with xanomeline, may produce procognitive and antipsychotic effects with improved cholinergic side effects.


Asunto(s)
Actividad Motora/efectos de los fármacos , Agonistas Muscarínicos/farmacología , Piridinas/farmacología , Reconocimiento en Psicología/efectos de los fármacos , Tiadiazoles/farmacología , Regulación Alostérica , Animales , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/metabolismo , Cognición/efectos de los fármacos , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Hipocampo/efectos de los fármacos , Hipocampo/metabolismo , Ratones , Agonistas Muscarínicos/uso terapéutico , Proteínas Proto-Oncogénicas c-fos/metabolismo , Piridinas/uso terapéutico , Ratas , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M4/agonistas , Escopolamina , Tiadiazoles/uso terapéutico
13.
Sci Adv ; 5(4): eaaw1567, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-31001591

RESUMEN

Designer receptors exclusively activated by designer drugs (DREADDs) derived from muscarinic receptors not only are a powerful tool to test causality in basic neuroscience but also are potentially amenable to clinical translation. A major obstacle, however, is that the widely used agonist clozapine N-oxide undergoes conversion to clozapine, which penetrates the blood-brain barrier but has an unfavorable side effect profile. Perlapine has been reported to activate DREADDs at nanomolar concentrations but is not approved for use in humans by the Food and Drug Administration or the European Medicines Agency, limiting its translational potential. Here, we report that the atypical antipsychotic drug olanzapine, widely available in various formulations, is a potent agonist of the human M4 muscarinic receptor-based DREADD, facilitating clinical translation of chemogenetics to treat central nervous system diseases.


Asunto(s)
Drogas de Diseño/farmacología , Olanzapina/química , Olanzapina/farmacología , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/genética , Inhibidores Selectivos de la Recaptación de Serotonina/química , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Simulación por Computador , Drogas de Diseño/química , Ensayos Analíticos de Alto Rendimiento , Humanos , Transducción de Señal
14.
ACS Chem Neurosci ; 10(3): 1091-1098, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30335349

RESUMEN

Abnormal hippocampal activity has been linked to impaired cognitive performance in Alzheimer's disease and schizophrenia, leading to a hypothesis that normalization of this activity may be therapeutically beneficial. Our work suggests that one approach for hippocampal normalization may be through activation of the M4 muscarinic acetylcholine receptor. We used a brain penetrant M4 muscarinic acetylcholine receptor selective activator, PT-3763, to show dose-dependent attenuation of field potentials in Schaffer collateral (CA3-CA1) and recurrent associational connections (CA3-CA3) ex vivo in hippocampal slices. In vivo, systemic administration of PT-3763 led to attenuation of glutamate release in CA3 as measured by amperometry and to a dose-dependent decrease in population CA1 pyramidal activity as measured by fiber photometry. This decrease in population activity was also evident with a localized administration of the compound to the recorded site. Finally, PT-3763 reversed scopolamine-induced deficit in Morris water maze. Our results suggest that M4 muscarinic acetylcholine receptor activation may be a suitable therapeutic treatment in diseases associated with hyperactive hippocampal activity.


Asunto(s)
Enfermedad de Alzheimer , Hipocampo/fisiología , Agonistas Muscarínicos/farmacología , Receptor Muscarínico M4/agonistas , Receptor Muscarínico M4/fisiología , Esquizofrenia , Enfermedad de Alzheimer/tratamiento farmacológico , Animales , Relación Dosis-Respuesta a Droga , Hipocampo/efectos de los fármacos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Aprendizaje por Laberinto/fisiología , Ratones , Agonistas Muscarínicos/química , Agonistas Muscarínicos/uso terapéutico , Técnicas de Cultivo de Órganos , Ratas , Ratas Long-Evans , Ratas Sprague-Dawley , Esquizofrenia/tratamiento farmacológico
15.
Neuropharmacology ; 146: 74-83, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-30468798

RESUMEN

The opposing action of dopamine and acetylcholine has long been known to play an important role in basal ganglia physiology. However, the quantitative analysis of dopamine and acetylcholine signal interaction has been difficult to perform in the native context because the striatum comprises mainly two subtypes of medium-sized spiny neurons (MSNs) on which these neuromodulators exert different actions. We used biosensor imaging in live brain slices of dorsomedial striatum to monitor changes in intracellular cAMP at the level of individual MSNs. We observed that the muscarinic agonist oxotremorine decreases cAMP selectively in the MSN subpopulation that also expresses D1 dopamine receptors, an action mediated by the M4 muscarinic receptor. This receptor has a high efficacy on cAMP signaling and can shut down the positive cAMP response induced by dopamine, at acetylcholine concentrations which are consistent with physiological levels. This supports our prediction based on theoretical modeling that acetylcholine could exert a tonic inhibition on striatal cAMP signaling, thus supporting the possibility that a pause in acetylcholine release is required for phasic dopamine to transduce a cAMP signal in D1 MSNs. In vivo experiments with acetylcholinesterase inhibitors donepezil and tacrine, as well as with the positive allosteric modulators of M4 receptor VU0152100 and VU0010010 show that this effect is sufficient to reverse the increased locomotor activity of DAT-knockout mice. This suggests that M4 receptors could be a novel therapeutic target to treat hyperactivity disorders.


Asunto(s)
Acetilcolina/farmacología , Cuerpo Estriado/efectos de los fármacos , Cuerpo Estriado/metabolismo , AMP Cíclico/metabolismo , Dopamina/farmacología , Receptor Muscarínico M4/agonistas , Receptores de Dopamina D1/metabolismo , Animales , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Actividad Motora/efectos de los fármacos , Agonistas Muscarínicos , Neuritas/metabolismo , Neuronas/efectos de los fármacos , Oxotremorina/farmacología
16.
ChemMedChem ; 14(3): 303-309, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30589226

RESUMEN

Muscarinic acetylcholine receptors (mAChRs) have five distinct subunits (M1 -M5 ) and are involved in the action of the neurotransmitter acetylcholine in the central and peripheral nervous system. Attributed to the promising clinical efficacy of xanomeline, an M1 /M4 -preferring agonist, in patients of schizophrenia and Alzheimer's disease, M1 - or M4 -selective mAChR modulators have been developed that target the topographically distinct allosteric sites. Herein we report the synthesis and preliminary evaluation of 11 C-labeled positron emission tomography (PET) ligands based on a validated M4 R positive allosteric modulator VU0467485 (AZ13713945) to facilitate drug discovery. [11 C]VU0467485 and two other ligands were prepared in high radiochemical yields (>30 %, decay-corrected) with high radiochemical purity (>99 %) and high molar activity (>74 GBq µmol-1 ). In vitro autoradiography studies indicated that these three ligands possess moderate-to-high in vitro specific binding to M4 R. Nevertheless, further physiochemical property optimization is necessary to overcome the challenges associated with limited brain permeability.


Asunto(s)
Agonistas Muscarínicos/química , Piridazinas/química , Receptor Muscarínico M4/análisis , Animales , Encéfalo/diagnóstico por imagen , Radioisótopos de Carbono , Ligandos , Estructura Molecular , Agonistas Muscarínicos/síntesis química , Agonistas Muscarínicos/farmacología , Tomografía de Emisión de Positrones , Piridazinas/síntesis química , Piridazinas/farmacología , Ratas , Receptor Muscarínico M4/agonistas
17.
Psychopharmacology (Berl) ; 235(10): 2897-2913, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-30054675

RESUMEN

RATIONALE: Metabotropic glutamate receptors and muscarinic M4 receptors have been proposed as novel targets for various brain disorders, including schizophrenia. Both receptors are coupled to Go/i proteins and are expressed in brain circuits that are important in schizophrenia. Therefore, their mutual activation may be an effective treatment and allow minimizing the doses of ligands required for optimal activity. OBJECTIVES: In the present studies, subactive doses of mGlu4 and M4 activators (LSP4-2022 and VU152100, respectively) were administered to investigate the mutual interaction between mGlu4 and M4 receptors in animal models of schizophrenia. METHODS: The behavioral tests used were MK-801-induced hyperactivity, (±)-2.5-dimethoxy-4-iodoamphetamine hydrochloride (DOI)-induced head twitches, the modified forced swim test, and MK-801-induced disruptions of social interactions and novel object recognition. DOI-induced spontaneous excitatory postsynaptic currents (sEPSCs) in brain slices and positron emission tomography (PET) in were used to establish the ability of these compounds to modulate the glutamatergic and dopaminergic systems. Rotarod was used to assess putative adverse effects. RESULTS: The mutual administration of subactive doses of LSP4-2022 and VU152100 exerted similar antipsychotic-like efficacy in animals as observed for active doses of both compounds, indicating their additive actions. VU152100 inhibited the DOI-induced frequency (but not amplitude) of sEPSCs in the frontal cortex, confirming presynaptic regulation of glutamate release. Both compounds reversed amphetamine-induced decrease in D2 receptor levels in the striatum, as measured with [18F]fallypride. The compounds did not induce any motor impartments when measured in rotarod test. CONCLUSIONS: Based on our results, the simultaneous activation of M4 and mGlu4 receptors is beneficial in reversing MK-801- and amphetamine-induced schizophrenia-related changes in animals.


Asunto(s)
Antipsicóticos/uso terapéutico , Receptor Muscarínico M4/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Esquizofrenia/tratamiento farmacológico , Esquizofrenia/metabolismo , Anfetamina/toxicidad , Animales , Antipsicóticos/farmacología , Modelos Animales de Enfermedad , Maleato de Dizocilpina/toxicidad , Relación Dosis-Respuesta a Droga , Agonistas de Aminoácidos Excitadores/farmacología , Agonistas de Aminoácidos Excitadores/uso terapéutico , Masculino , Ratones , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Ácidos Fosfínicos/farmacología , Ácidos Fosfínicos/uso terapéutico , Receptor Muscarínico M4/agonistas , Receptores de Glutamato Metabotrópico/agonistas , Roedores , Esquizofrenia/inducido químicamente
18.
Chem Pharm Bull (Tokyo) ; 66(1): 37-44, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29311510

RESUMEN

Among the muscarinic acetylcholine receptor (mAChR) subtypes, the M4 receptor has been investigated as a promising drug target for the treatment of schizophrenia. These investigations have been based on findings from M4-deficient mice studies as well as on the results of a clinical trial that used xanomeline, an M1/M4 mAChRs-preferring agonist. Both orthosteric agonists and positive allosteric modulators of M4 mAChR have been reported as promising ligands that not only have antipsychotic effects, but can also improve cognitive impairment and motor dysfunction. However, challenges remain due to the high homology of the orthosteric binding site among all muscarinic receptors. In this review, we summarize our approach to the identification of M4 mAChR activators, orthosteric agonists, and positive allosteric modulators based on M4 mAChR structural information and structure-activity relationship studies. These findings indicate that selective M4 mAChR activators are promising potential therapeutic agents for several central nervous system conditions.


Asunto(s)
Enfermedades del Sistema Nervioso Central/tratamiento farmacológico , Descubrimiento de Drogas , Piridinas/farmacología , Receptor Muscarínico M4/agonistas , Tiadiazoles/farmacología , Animales , Enfermedades del Sistema Nervioso Central/metabolismo , Humanos , Estructura Molecular , Piridinas/química , Receptor Muscarínico M4/deficiencia , Receptor Muscarínico M4/metabolismo , Relación Estructura-Actividad , Tiadiazoles/química
19.
Neuropharmacology ; 136(Pt C): 449-458, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29374561

RESUMEN

The cholinergic signalling system has been an attractive pathway to seek targets for modulation of arousal, cognition, and attention which are compromised in neurodegenerative and neuropsychiatric diseases. The acetylcholine muscarinic receptor M1 and M4 subtypes which are highly expressed in the central nervous system, in cortex, hippocampus and striatum, key areas of cognitive and neuropsychiatric control, have received particular attention. Historical muscarinic drug development yielded first generation agonists with modest selectivity for these two receptor targets over M2 and M3 receptors, the major peripheral sub-types hypothesised to underlie the dose-limiting clinical side effects. More recent compound screening and medicinal chemistry optimization of orthosteric and allosteric agonists, and positive allosteric modulators binding to sites distinct from the highly homologous acetylcholine binding pocket have yielded a collection of highly selective tool compounds for preclinical validation studies. Several M1 selective ligands have progressed to early clinical development and in time will hopefully lead to useful therapeutics for treating symptoms of Alzheimer's disease and related disorders. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.


Asunto(s)
Agonistas Muscarínicos/farmacología , Enfermedades Neurodegenerativas/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M4/agonistas , Animales , Humanos , Agonistas Muscarínicos/uso terapéutico , Enfermedades Neurodegenerativas/metabolismo , Fármacos Neuroprotectores/uso terapéutico , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo
20.
Neuropharmacology ; 136(Pt C): 438-448, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28893562

RESUMEN

Current antipsychotic drugs provide symptomatic relief for positive symptoms of schizophrenia, but do not offer symptom management for negative and cognitive symptoms. In addition, many patients discontinue treatment due to adverse side effects. Therefore, there is a critical need to develop more effective and safe treatment options. Although the etiology of schizophrenia is unclear, considerable data from post-mortem, neuroimaging and neuropharmacology studies support a role of the muscarinic acetylcholine (mAChRs) in the pathophysiology of schizophrenia. Substantial evidence suggests that activation of mAChRs has the potential to treat all symptom domains of schizophrenia. Despite encouraging results in demonstrating efficacy, clinical trials of nonselective mAChR agonists were limited in their clinical utility due to dose-limiting peripheral side effects. Accordingly, efforts have been made to specifically target centrally located M1 and M4 mAChR subtypes devoid of adverse-effect liability. To circumvent this limitation, there have been tremendous advances in the discovery of ligands that bind at allosteric sites, binding sites distinct from the orthosteric site, which are structurally less conserved and thereby afford high levels of receptor subtype selectivity. The discovery of subtype-specific allosteric modulators has greatly advanced our understanding of the physiological role of various muscarinic receptor subtypes in schizophrenia and the potential utility of M1 and M4 mAChR subtypes as targets for the development of novel treatments for schizophrenia and related disorders. This article is part of the Special Issue entitled 'Neuropharmacology on Muscarinic Receptors'.


Asunto(s)
Antipsicóticos/farmacología , Agonistas Muscarínicos/farmacología , Receptor Muscarínico M1/agonistas , Receptor Muscarínico M4/agonistas , Esquizofrenia/tratamiento farmacológico , Regulación Alostérica , Animales , Antipsicóticos/uso terapéutico , Humanos , Agonistas Muscarínicos/uso terapéutico , Receptor Muscarínico M1/metabolismo , Receptor Muscarínico M4/metabolismo , Esquizofrenia/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...