Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Arthritis Res Ther ; 26(1): 1, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167328

RESUMEN

BACKGROUND: The biological mechanisms underlying the differential response to abatacept in patients with rheumatoid arthritis (RA) are unknown. Here, we aimed to identify cellular, transcriptomic, and proteomic features that predict resistance to abatacept in patients with RA. METHODS: Blood samples were collected from 22 RA patients treated with abatacept at baseline and after 3 months of treatment. Response to treatment was defined by the European League Against Rheumatism (EULAR) response criteria at 3 months, and seven patients were classified as responders and the others as non-responders. We quantified gene expression levels by RNA sequencing, 67 plasma protein levels, and the expression of surface molecules (CD3, 19, and 56) by flow cytometry. In addition, three gene expression data sets, comprising a total of 27 responders and 50 non-responders, were used to replicate the results. RESULTS: Among the clinical characteristics, the number of monocytes was significantly higher in the non-responders before treatment. Cell type enrichment analysis showed that differentially expressed genes (DEGs) between responders and non-responders were enriched in monocytes. Gene set enrichment analysis, together with single-cell analysis and deconvolution analysis, identified that Toll-like receptor 5 (TLR5) and interleukin-17 receptor A (IL17RA) pathway in monocytes was upregulated in non-responders. Hepatocyte growth factor (HGF) correlated with this signature showed higher concentrations in non-responders before treatment. The DEGs in the replication set were also enriched for the genes expressed in monocytes, not for the TLR5 and IL17RA pathway but for the oxidative phosphorylation (OXPHOS) pathway. CONCLUSIONS: Monocyte-derived transcriptomic features before treatment underlie the differences in abatacept efficacy in patients with RA. The pathway activated in monocytes was the TLR5 and IL17RA-HGF signature in the current study, while it was the OXPHOS pathway in the replication set. Elevated levels of HGF before treatment may serve as a potential biomarker for predicting poor responses to abatacept. These findings provide insights into the biological mechanisms of abatacept resistance, contributing valuable evidence for stratifying patients with RA.


Asunto(s)
Antirreumáticos , Artritis Reumatoide , Humanos , Abatacept/uso terapéutico , Monocitos , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/uso terapéutico , Antirreumáticos/uso terapéutico , Transcriptoma , Proteómica , Resultado del Tratamiento , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/genética
2.
Microbiome ; 12(1): 4, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172943

RESUMEN

BACKGROUND: The overgrowth of Desulfovibrio, an inflammation promoting flagellated bacteria, has been found in ulcerative colitis (UC) patients. However, the molecular mechanism in promoting colitis remains unestablished. METHODS: The relative abundance Desulfovibrio vulgaris (D. vulgaris) in stool samples of UC patients was detected. Mice were treated with dextran sulfate sodium to induce colitis with or without administration of D. vulgaris or D. vulgaris flagellin (DVF), and the severity of colitis and the leucine-rich repeat containing 19 (LRRC19) signaling were assessed. The interaction between DVF and LRRC19 was identified by surface plasmon resonance and intestinal organoid culture. Lrrc19-/- and Tlr5-/- mice were used to investigate the indispensable role of LRRC19. Finally, the blockade of DVF-LRRC19 interaction was selected through virtual screening and the efficacy in colitis was assessed. RESULTS: D. vulgaris was enriched in fecal samples of UC patients and was correlated with the disease severity. D. vulgaris or DVF treatment significantly exacerbated colitis in germ-free mice and conventional mice. Mechanistically, DVF could interact with LRRC19 (rather than TLR5) in colitis mice and organoids, and then induce the production of pro-inflammatory cytokines. Lrrc19 knockdown blunted the severity of colitis. Furthermore, typhaneoside, a blockade of binding interfaces, blocked DVF-LRRC19 interaction and dramatically ameliorated DVF-induced colitis. CONCLUSIONS: D. vulgaris could promote colitis through DVF-LRRC19 interaction. Targeting DVF-LRRC19 interaction might be a new therapeutic strategy for UC therapy. Video Abstract.


Asunto(s)
Colitis Ulcerosa , Colitis , Desulfovibrio vulgaris , Humanos , Ratones , Animales , Receptor Toll-Like 5/metabolismo , Receptor Toll-Like 5/uso terapéutico , Desulfovibrio vulgaris/metabolismo , Colitis/inducido químicamente , Colitis/metabolismo , Colitis Ulcerosa/microbiología , Inflamación/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL , Colon/metabolismo , Receptores de Superficie Celular/metabolismo , Receptores de Superficie Celular/uso terapéutico
3.
J Microbiol Biotechnol ; 33(1): 35-42, 2023 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-36457188

RESUMEN

This study aimed to identify the therapeutic ability of a novel toll-like receptor (TLR) 5 agonist, KMRC011, on ulcerative colitis induced by Citrobacter rodentium and dextran sulfate sodium in a C57BL/6N mouse model. Ulcerative colitis was induced in the mice by the oral administration of 1% dextran sulfate sodium in sterile drinking water for seven days ad libitum, followed by C. rodentium infection on the seventh day by intra-gastric administration (DSS-CT group). KMRC011 was administered intramuscularly at both 24 h and 15 min before (Treatment 1 group), and at both 15 min and 24 h after (Treatment 2 group) the C. rodentium infection. The length of the large intestine and histopathological counts were significantly greater and mucosal thickness was significantly thinner in the Treatment 1 group compared to the DSS-CT and Treatment 2 groups. Il-6 and Il-10 mRNA expression levels were upregulated, while Ifn-γ and Tnf-α mRNA expression levels were significantly downregulated in the Treatment 1 group, compared to the DSS-CT group. NF-κB p65 expression level was elevated due to ulcerative colitis in the DSS-CT group, but was significantly downregulated in the Treatment 1 group. Overall, KMRC011 showed protective effects against murine colitis by inhibiting NF-κB signaling.


Asunto(s)
Colitis Ulcerosa , Colitis , Ratones , Animales , Colitis Ulcerosa/inducido químicamente , FN-kappa B/metabolismo , Citrobacter rodentium/metabolismo , Receptor Toll-Like 5/metabolismo , Receptor Toll-Like 5/uso terapéutico , Sulfato de Dextran/efectos adversos , Colon/patología , Ratones Endogámicos C57BL , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , ARN Mensajero/metabolismo , Modelos Animales de Enfermedad
4.
Mil Med Res ; 8(1): 16, 2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33622404

RESUMEN

BACKGROUND: Toll-like receptor 5 (TLR5)-mediated pathways play critical roles in regulating the hepatic immune response and show hepatoprotective effects in mouse models of hepatic diseases. However, the role of TLR5 in experimental models of liver regeneration has not been reported. This study aimed to investigate the role of TLR5 in partial hepatectomy (PHx)-induced liver regeneration. METHODS: We performed 2/3 PHx in wild-type (WT) mice, TLR5 knockout mice, or TLR5 agonist CBLB502 treated mice, as a model of liver regeneration. Bacterial flagellin content was measured with ELISA, and hepatic TLR5 expression was determined with quantitative PCR analyses and flow cytometry. To study the effects of TLR5 on hepatocyte proliferation, we analyzed bromodeoxyuridine (BrdU) incorporation and proliferating cell nuclear antigen (PCNA) expression with immunohistochemistry (IHC) staining. The effects of TLR5 during the priming phase of liver regeneration were examined with quantitative PCR analyses of immediate early gene mRNA levels, and with Western blotting analysis of hepatic NF-κB and STAT3 activation. Cytokine and growth factor production after PHx were detected with real-time PCR and cytometric bead array (CBA) assays. Oil Red O staining and hepatic lipid concentrations were analyzed to examine the effect of TLR5 on hepatic lipid accumulation after PHx. RESULTS: The bacterial flagellin content in the serum and liver increased, and the hepatic TLR5 expression was significantly up-regulated in WT mice after PHx. TLR5-deficient mice exhibited diminished numbers of BrdU- and PCNA-positive cells, suppressed immediate early gene expression, and decreased cytokine and growth factor production. Moreover, PHx-induced hepatic NF-κB and STAT3 activation was inhibited in Tlr5-/- mice, as compared with WT mice. Consistently, the administration of CBLB502 significantly promoted PHx-mediated hepatocyte proliferation, which was correlated with enhanced production of proinflammatory cytokines and the recruitment of macrophages and neutrophils in the liver. Furthermore, Tlr5-/- mice displayed significantly lower hepatic lipid concentrations and smaller Oil Red O positive areas than those in control mice after PHx. CONCLUSION: We reveal that TLR5 activation contributes to the initial events of liver regeneration after PHx. Our findings demonstrate that TLR5 signaling positively regulates liver regeneration and suggest the potential of TLR5 agonist to promote liver regeneration.


Asunto(s)
Regeneración Hepática/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 5/uso terapéutico , Animales , Modelos Animales de Enfermedad , Regeneración Hepática/fisiología , Ratones , Ratones Endogámicos C57BL , Estadísticas no Paramétricas , Receptor Toll-Like 5/metabolismo
5.
J Exp Med ; 215(9): 2247-2264, 2018 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-30158114

RESUMEN

There is considerable interest in harnessing innate immunity to treat Alzheimer's disease (AD). Here, we explore whether a decoy receptor strategy using the ectodomain of select TLRs has therapeutic potential in AD. AAV-mediated expression of human TLR5 ectodomain (sTLR5) alone or fused to human IgG4 Fc (sTLR5Fc) results in robust attenuation of amyloid ß (Aß) accumulation in a mouse model of Alzheimer-type Aß pathology. sTLR5Fc binds to oligomeric and fibrillar Aß with high affinity, forms complexes with Aß, and blocks Aß toxicity. Oligomeric and fibrillar Aß modulates flagellin-mediated activation of human TLR5 but does not, by itself, activate TLR5 signaling. Genetic analysis shows that rare protein coding variants in human TLR5 may be associated with a reduced risk of AD. Further, transcriptome analysis shows altered TLR gene expression in human AD. Collectively, our data suggest that TLR5 decoy receptor-based biologics represent a novel and safe Aß-selective class of biotherapy in AD.


Asunto(s)
Enfermedad de Alzheimer , Fragmentos Fc de Inmunoglobulinas/uso terapéutico , Inmunoglobulina G/uso terapéutico , Proteínas Recombinantes de Fusión/uso terapéutico , Receptor Toll-Like 5/uso terapéutico , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/inmunología , Enfermedad de Alzheimer/patología , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/inmunología , Animales , Femenino , Humanos , Fragmentos Fc de Inmunoglobulinas/genética , Fragmentos Fc de Inmunoglobulinas/inmunología , Inmunoglobulina G/genética , Inmunoglobulina G/inmunología , Ratones , Ratones Transgénicos , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Receptor Toll-Like 5/genética , Receptor Toll-Like 5/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...