Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Chem Commun (Camb) ; 60(42): 5474-5485, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712400

RESUMEN

Toll-like receptor 7/8 (TLR-7/8) agonists serve as a promising class of pattern recognition receptors that effectively evoke the innate immune response, making them promising immunomodulatory agents for tumor immunotherapy. However, the uncontrollable administration of TLR-7/8 agonists frequently leads to the occurrence of severe immune-related adverse events (irAEs). Thus, it is imperative to strategically design tumor-microenvironment-associated biomarkers or exogenous stimuli responsive TLR-7/8 agonists in order to accurately evaluate and activate innate immune responses. No comprehensive elucidation has been documented thus far regarding TLR-7/8 immune agonists that are specifically engineered to enhance immune activation. In this feature article, we provide an overview of the advancements in TLR-7/8 agonists, aiming to enhance the comprehension of their mechanisms and promote the clinical progression through nanomedicine strategies. The current challenges and future directions of cancer immunotherapy are also discussed, with the hope that this work will inspire researchers to explore innovative applications for triggering immune responses through TLR-7/8 agonists.


Asunto(s)
Receptor Toll-Like 7 , Receptor Toll-Like 8 , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Humanos , Inmunoterapia , Neoplasias/tratamiento farmacológico , Neoplasias/inmunología , Inmunidad Innata/efectos de los fármacos , Animales
2.
Neuromolecular Med ; 26(1): 16, 2024 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-38668900

RESUMEN

Toll-like receptor (TLR) 7 plays an important role in recognizing virus-derived nucleic acids. TLR7 signaling in astrocytes and microglia is critical for activating immune responses against neurotrophic viruses. Neurons express TLR7, similar to glial cells; however, the role of neuronal TLR7 has not yet been fully elucidated. This study sought to determine whether resiquimod, the TLR7/8 agonist, induces the expression of inflammatory chemokines in SH-SY5Y human neuroblastoma cells. Immunofluorescence microscopy revealed that TLR7 was constitutively expressed in SH-SY5Y cells. Stimulation with resiquimod induced C-C motif chemokine ligand 2 (CCL2) expression, accompanied by the activation of nuclear factor-kappa B (NF-κB) in SH-SY5Y cells. Resiquimod increased mRNA levels of C-X-C motif chemokine ligand 8 (CXCL8) and CXCL10, while the increase was slight at the protein level. Knockdown of NF-κB p65 eliminated resiquimod-induced CCL2 production. This study provides novel evidence that resiquimod has promising therapeutic potential against central nervous system viral infections through its immunostimulatory effects on neurons.


Asunto(s)
Quimiocina CCL2 , Quimiocina CXCL10 , Imidazoles , Interleucina-8 , Receptor Toll-Like 7 , Factor de Transcripción ReIA , Humanos , Línea Celular Tumoral , Quimiocina CCL2/genética , Quimiocina CCL2/biosíntesis , Quimiocina CXCL10/genética , Quimiocina CXCL10/biosíntesis , Imidazoles/farmacología , Interleucina-8/genética , Interleucina-8/biosíntesis , Neuroblastoma , Neuronas/efectos de los fármacos , Neuronas/metabolismo , FN-kappa B/metabolismo , ARN Mensajero/genética , ARN Interferente Pequeño/genética , Transducción de Señal/efectos de los fármacos , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/genética , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/genética , Factor de Transcripción ReIA/metabolismo , Factor de Transcripción ReIA/genética
3.
Adv Healthc Mater ; 13(11): e2303910, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38180445

RESUMEN

Self-assembling protein nanoparticles are a promising class of materials for targeted drug delivery. Here, the use of a computationally designed, two-component, icosahedral protein nanoparticle is reported to encapsulate multiple macromolecular cargoes via simple and controlled self-assembly in vitro. Single-stranded RNA molecules between 200 and 2500 nucleotides in length are encapsulated and protected from enzymatic degradation for up to a month with length-dependent decay rates. Immunogenicity studies of nanoparticles packaging synthetic polymers carrying a small-molecule TLR7/8 agonist show that co-delivery of antigen and adjuvant results in a more than 20-fold increase in humoral immune responses while minimizing systemic cytokine secretion associated with free adjuvant. Coupled with the precise control over nanoparticle structure offered by computational design, robust and versatile encapsulation via in vitro assembly opens the door to a new generation of cargo-loaded protein nanoparticles that can combine the therapeutic effects of multiple drug classes.


Asunto(s)
Nanopartículas , Nanopartículas/química , Animales , Ratones , Proteínas/química , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/química , Receptor Toll-Like 7/metabolismo , Receptor Toll-Like 7/agonistas
4.
J Hepatol ; 78(3): 513-523, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-38133554

RESUMEN

BACKGROUND & AIMS: Selgantolimod (GS-9688) is a Toll-like receptor 8 (TLR8) agonist that suppresses HBV in vitro. In a phase II study, we evaluated the safety and efficacy of weekly selgantolimod treatment in virally suppressed individuals with chronic HBV taking oral antiviral treatment. METHODS: Forty-eight patients were randomized into two cohorts (hepatitis B e antigen [HBeAg]-positive and -negative [n = 24 each]) to receive oral selgantolimod 3 mg, 1.5 mg, or placebo (2:2:1) once weekly for 24 weeks while maintaining oral antivirals. The primary efficacy endpoint was the percentage of patients with a ≥1 log10 IU/ml decline in hepatitis B surface antigen (HBsAg) from baseline to week 24. Post-treatment, patients continued on oral antivirals for 24 weeks. RESULTS: The primary endpoint was reached by one participant, who was HBeAg-negative and received selgantolimod 1.5 mg. In contrast with placebo-treated patients (n = 9), only selgantolimod-treated patients (n = 39 total) had HBsAg declines greater than 0.1 log10 IU/ml at weeks 24 (18%, 7/39) and 48 (26%, 10/39), HBsAg loss (5%, 2/39 through 48 weeks), or HBeAg loss (16%, 3/19 through 48 weeks). The most common adverse events in selgantolimod-treated groups were nausea (46%), upper respiratory tract infection (23%), and vomiting (23%). Gastrointestinal disorders were mostly mild and transient. Selgantolimod induced transient dose-dependent increases in serum cytokines, including IL-12p40, IFN-γ, and IL-1RA, as well as rapid redistribution of some circulating immune cell subsets. CONCLUSION: Oral selgantolimod up to 3 mg once weekly for 24 weeks was generally safe and well tolerated and led to serologic changes associated with progression to durable cure in two individuals by week 48. GOV IDENTIFIER: NCT03491553. IMPACT AND IMPLICATIONS: The only robust criterion for stopping treatment in chronic hepatitis B is loss of hepatitis B surface antigen (known as functional cure), which is rare during nucleos(t)ide analogue therapy. It is likely that novel antiviral and immunomodulatory therapies will be needed to achieve finite functional cure. Selgantolimod is an oral Toll-like receptor 8 agonist that has shown antiviral activity in vitro as well as safety in a phase I clinical trial with weekly dosing. In this phase II study, selgantolimod therapy was associated with transient increases in serum cytokines, rapid redistribution of circulating immune cell subsets, modest reductions in HBsAg and HBeAg levels, and occasional loss of HBsAg (5%) and HBeAg (16%) among participants with chronic hepatitis B on nucleos(t)ide analogue therapy with viral suppression. Our results support continued development of selgantolimod as a component of a future hepatitis B cure regimen.


Asunto(s)
Antivirales , Hepatitis B Crónica , Receptor Toll-Like 8 , Humanos , Antivirales/uso terapéutico , Citocinas , Antígenos e de la Hepatitis B , Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica/tratamiento farmacológico , Receptor Toll-Like 8/agonistas , Resultado del Tratamiento
5.
Viral Immunol ; 36(9): 564-578, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37751284

RESUMEN

The innate immune system recognizes conserved features of viral and microbial pathogens through pattern recognition receptors (PRRs). Toll-like receptors (TLRs) are one type of PRR used by the innate immune system to mediate the secretion of proinflammatory cytokines and promote innate and adaptive immune responses. TLR family members TLR7 and TLR8 (referred to as TLR7/8 from herein) are endosomal transmembrane receptors that recognize purine-rich single-stranded RNA (ssRNA) and bacterial DNA, eliciting an immunologic reaction to pathogens. TLR7/8 were discovered to mediate the secretion of proinflammatory cytokines by activating immune cells. In addition, accumulating evidence has indicated that TLR7/8 may be closely related to numerous immune-mediated disorders, specifically several types of cancer, autoimmune disease, and viral disease. TLR7/8 agonists and antagonists, which are used as drugs or adjuvants, have been identified in preclinical studies and clinical trials as promising immune stimulators for the immunotherapy of these immune-mediated disorders. These results provided reasoning to further explore immunotherapy for the treatment of immune-mediated disorders. Nevertheless, numerous needs remain unmet, and the therapeutic effects of TLR7/8 agonists and antagonists are poor and exert strong immune-related toxicities. The present review aimed to provide an overview of the TLR family members, particularly TLR7/8, and address the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders. The aim of the work is to discuss the underlying molecular mechanisms and clinical implications of TLR7/8 in immune-mediated disorders.


Asunto(s)
Receptor Toll-Like 7 , Receptor Toll-Like 8 , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/fisiología , Receptores Toll-Like , Citocinas , Adyuvantes Inmunológicos , Inmunoterapia , Inmunidad
6.
Immunol Lett ; 261: 13-16, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37451320

RESUMEN

Toll-like receptors (TLR)s are homo- or heterodimeric proteins, whose structure and function were widely described in the antigen presenting cells (APC), such as Dendritic cells (DC). Recently, the expression and the role of TLRs in fighting against pathogens, was described also in NK cells. Their activation and functional properties can be directly and indirectly modulated by agonists for TLRs. In particular CD56bright NK cells subset, that is the most abundant NK cell subset in tissues and tumor microenvironment (TME), was mostly activated in terms of pro-inflammatory cytokine production, proliferation and cytotoxicity, by agonists specific for endosomal TLR8. The interplay between DC and NK, that depends on both cell-to-cell contact and soluble factors such as cytokines, promote both DC maturation and NK cell activation. Based on this concept, a TLR based immunotherapy aimed to activate NK-DC axis, may modulate TME by inducing a pro-inflammatory phenotype, thus improving DC ability to present tumor-associated antigens to T cells, and NK cell cytotoxicity against tumor cells. In this mini-review, we report data of recent literature about TLRs on human NK cells and their application as adjuvant in cancer vaccines or in combined tumor immunotherapy.


Asunto(s)
Neoplasias , Receptor Toll-Like 8 , Humanos , Receptor Toll-Like 8/agonistas , Receptores Toll-Like/metabolismo , Células Asesinas Naturales , Inmunoterapia , Células Dendríticas , Receptor Toll-Like 7/metabolismo , Microambiente Tumoral
7.
Methods Mol Biol ; 2691: 225-234, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37355549

RESUMEN

A growing body of preclinical evidence has led to the hypothesis that human Toll-like receptor 8 (hTLR8) activation in the tumor microenvironment (TME) could have potent anticancer effects through its action on monocytes, myeloid dendritic cells (mDCs), and natural killer (NK) cells. This has motivated the initiation of several clinical trials for chemical hTLR8 agonists in a variety of cancers. Concurrently, a growing number of synthetic antisense oligonucleotides (ASOs) are being developed as cancer therapeutics. We have recently reported that 2'-O-methyl (2'OMe)-modified ASOs can potentiate sensing of hTLR8 chemical agonists in a sequence-dependent manner. This suggests that select gene-targeting ASOs with anticancer activity may synergize with low-dose hTLR8 agonists in the TME. Here, we provide a detailed protocol to rapidly screen and identify such synthetic bifunctional oligonucleotides with synergistic activity on hTLR8 sensing.


Asunto(s)
Oligonucleótidos Antisentido , Receptor Toll-Like 8 , Humanos , Oligonucleótidos Antisentido/genética , Receptor Toll-Like 8/genética , Receptor Toll-Like 8/agonistas , Oligonucleótidos/genética , Secuencia de Bases , Adyuvantes Inmunológicos , Marcación de Gen
8.
BMC Pregnancy Childbirth ; 23(1): 323, 2023 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-37149573

RESUMEN

BACKGROUND: Viral infections during pregnancy can have deleterious effects on mothers and their offspring. Monocytes participate in the maternal host defense against invading viruses; however, whether pregnancy alters monocyte responses is still under investigation. Herein, we undertook a comprehensive in vitro study of peripheral monocytes to characterize the differences in phenotype and interferon release driven by viral ligands between pregnant and non-pregnant women. METHODS: Peripheral blood was collected from third-trimester pregnant (n = 20) or non-pregnant (n = 20, controls) women. Peripheral blood mononuclear cells were isolated and exposed to R848 (TLR7/TLR8 agonist), Gardiquimod (TLR7 agonist), Poly(I:C) (HMW) VacciGrade™ (TLR3 agonist), Poly(I:C) (HMW) LyoVec™ (RIG-I/MDA-5 agonist), or ODN2216 (TLR9 agonist) for 24 h. Cells and supernatants were collected for monocyte phenotyping and immunoassays to detect specific interferons, respectively. RESULTS: The proportions of classical (CD14hiCD16-), intermediate (CD14hiCD16+), non-classical (CD14loCD16+), and CD14loCD16- monocytes were differentially affected between pregnant and non-pregnant women in response to TLR3 stimulation. The proportions of pregnancy-derived monocytes expressing adhesion molecules (Basigin and PSGL-1) or the chemokine receptors CCR5 and CCR2 were diminished in response to TLR7/TLR8 stimulation, while the proportions of CCR5- monocytes were increased. Such differences were found to be primarily driven by TLR8 signaling, rather than TLR7. Moreover, the proportions of monocytes expressing the chemokine receptor CXCR1 were increased during pregnancy in response to poly(I:C) stimulation through TLR3, but not RIG-I/MDA-5. By contrast, pregnancy-specific changes in the monocyte response to TLR9 stimulation were not observed. Notably, the soluble interferon response to viral stimulation by mononuclear cells was not diminished in pregnancy. CONCLUSIONS: Our data provide insight into the differential responsiveness of pregnancy-derived monocytes to ssRNA and dsRNA, mainly driven by TLR8 and membrane-bound TLR3, which may help to explain the increased susceptibility of pregnant women to adverse outcomes resulting from viral infection as observed during recent and historic pandemics.


Asunto(s)
Leucocitos Mononucleares , Monocitos , Embarazo , Humanos , Femenino , Receptores de Lipopolisacáridos , Receptor Toll-Like 9/agonistas , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 3 , Receptores de IgG , Interferones
9.
Nat Commun ; 14(1): 771, 2023 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-36774352

RESUMEN

Glioblastoma, the most common and aggressive primary brain tumor type, is considered an immunologically "cold" tumor with sparse infiltration by adaptive immune cells. Immunosuppressive tumor-associated myeloid cells are drivers of tumor progression. Therefore, targeting and reprogramming intratumoral myeloid cells is an appealing therapeutic strategy. Here, we investigate a ß-cyclodextrin nanoparticle (CDNP) formulation encapsulating the Toll-like receptor 7 and 8 (TLR7/8) agonist R848 (CDNP-R848) to reprogram myeloid cells in the glioma microenvironment. We show that intravenous monotherapy with CDNP-R848 induces regression of established syngeneic experimental glioma, resulting in increased survival rates compared with unloaded CDNP controls. Mechanistically, CDNP-R848 treatment reshapes the immunosuppressive tumor microenvironment and orchestrates tumor clearing by pro-inflammatory tumor-associated myeloid cells, independently of T cells and NK cells. Using serial magnetic resonance imaging, we identify a radiomic signature in response to CDNP-R848 treatment and ultrasmall superparamagnetic iron oxide (USPIO) imaging reveals that immunosuppressive macrophage recruitment is reduced by CDNP-R848. In conclusion, CDNP-R848 induces tumor regression in experimental glioma by targeting blood-borne macrophages without requiring adaptive immunity.


Asunto(s)
Glioma , Nanopartículas , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Humanos , Adyuvantes Inmunológicos , Glioma/tratamiento farmacológico , Macrófagos , Linfocitos T , Receptor Toll-Like 7/agonistas , Microambiente Tumoral , Receptor Toll-Like 8/agonistas
10.
Aliment Pharmacol Ther ; 57(4): 387-398, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36585909

RESUMEN

BACKGROUND: Natural killer (NK) cells exhibit a selective deficiency of IFN-γ production in chronic hepatitis B (CHB). Toll-like receptor 8 (TLR8) agonists could induce IFN-γ production in immune cells, although their effects on the deficiency in NK cells remain unclear. AIMS: To investigate TLR8 expression in NK cells and the effect of TLR8 agonists in patients with CHB METHODS: We enrolled 32 patients with CHB and 19 healthy controls to assess TLR8 expression and IFN-γ production in NK cells. The sorted NK cells and monocytes were co-cultured to compare the extent of IFN-γ and IL-10 production after TLR8 agonist ssRNA40 stimulation. The synergic effect of NK cells and monocytes was assessed by blocking IL-12 and IL-18. We recruited another 22 patients with CHB undergoing nucleotide analogue (NA) therapy to explore the impact of antiviral treatment on the ssRNA40-mediated response of NK cells. RESULTS: In patients with CHB, TLR8 expression in NK cells was up-regulated, accompanied by insufficient IFN-γ production. The enhanced IFN-γ secretion by ssRNA40 in NK cells depended on monocyte-derived IL-12 and IL-18. NK cells displayed an imbalanced response to ssRNA40 in patients with CHB with a weak increase in IFN-γ despite a higher IL-10 production. The response was improved in patients with CHB undergoing NA therapy. CONCLUSIONS: In patients with CHB, targeting TLR8 partially rescues the IFN-γ insufficiency in NK cells. However, NK cells show an inhibitory response to TLR8 agonist stimulation. TLR8 agonist combined with NA may enhance the antiviral effect of NK cells.


Asunto(s)
Hepatitis B Crónica , Monocitos , Humanos , Antivirales/farmacología , Antivirales/uso terapéutico , Antivirales/metabolismo , Interferón gamma/metabolismo , Interferón gamma/farmacología , Interleucina-10 , Interleucina-12/metabolismo , Interleucina-12/farmacología , Interleucina-12/uso terapéutico , Interleucina-18 , Células Asesinas Naturales/metabolismo , Monocitos/metabolismo , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/metabolismo , Receptor Toll-Like 8/uso terapéutico
11.
Front Immunol ; 13: 974016, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36426358

RESUMEN

Influenza vaccine effectiveness could be improved by combination with an adjuvant with the potential to enhance the host-vaccine response both quantitatively and qualitatively. The goal of this study was to explore a RIG-I agonist (SDI-nanogel) and a TLR7/8 agonist (Imidazoquinoline (IMDQ)-PEG-Chol) as adjuvants, when co-administered with a licensed quadrivalent inactivated influenza vaccine (QIV), and to determine the role of these adjuvants in directing helper T (Th) cell responses for their role in the immunoglobulin (Ig) class switching. Administration of QIV with the two adjuvants, individually or combined, resulted in enhanced HA-specific serum ELISA IgG titers, serum hemagglutination inhibition (HAI) titers and splenic T cell responses as examined by IFN-γ and IL-4 enzyme-linked immunosorbent spot (ELISPOT) assays, 4-weeks post-prime and post-boost vaccination in BALB/c mice. While QIV+SDI-nanogel largely induced antigen-specific IgG1 responses, QIV+IMDQ-PEG-Chol predominantly induced IgG2a antibody isotypes post-prime vaccination, suggesting efficient induction of Th2 (IL-4) and Th1 (IFN-γ) responses, respectively. Combination of the two adjuvants not only skewed the response completely towards IgG2a, but also resulted in induction of HAI titers that outperformed groups that received single adjuvant. Moreover, enhanced IgG2a titers correlate with antibody-mediated cellular cytotoxicity (ADCC) that targets both the highly conserved H1 hemagglutination (HA) stalk domain and N1 neuraminidase (NA). A booster vaccination with QIV+IMDQ-PEG-Chol resulted in a more balanced IgG1/IgG2a response in animals primed with QIV+IMDQ-PEG-Chol but increased only IgG2a titers in animals that received the combination adjuvant during prime vaccination, suggesting that class switching events in germinal centers during the prime vaccination contribute to the outcome of booster vaccination. Importantly, IMDQ-PEG-Chol, alone or in combination, always outperformed the oil-in-water control adjuvant Addavax. Vaccine-induced antibody and T cell responses correlated with protection against lethal influenza virus infection. This study details the benefit of adjuvants that target multiple innate immune receptors to shape the host vaccine response.


Asunto(s)
Adyuvantes Inmunológicos , Vacunas contra la Influenza , Gripe Humana , Animales , Humanos , Ratones , Adyuvantes Inmunológicos/farmacología , Anticuerpos Antivirales , Inmunoglobulina G , Gripe Humana/prevención & control , Interleucina-4 , Nanogeles , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas
12.
J Immunother Cancer ; 10(7)2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35851308

RESUMEN

BACKGROUND: Stereotactic body radiotherapy (SBRT) has been increasingly used as adjuvant therapy in pancreatic ductal adenocarcinoma (PDAC), and induces immunogenic cell death, which leads to the release of tumor antigen and damage-associated molecular patterns. However, this induction often fails to generate sufficient response to overcome pre-existing tumor microenvironment (TME) immunosuppression. Toll-like receptor (TLR) 7/8 ligands, such as R848, can amplify the effect of tumor vaccines, with recent evidence showing its antitumor effect in pancreatic cancer by modulating the immunosuppressive TME. Therefore, we hypothesized that the combination of R848 and SBRT would improve local and systemic antitumor immune responses by potentiating the antitumor effects of SBRT and reversing the immunosuppressive nature of the PDAC TME. METHODS: Using murine models of orthotopic PDAC, we assessed the combination of intravenous TLR7/8 agonist R848 and local SBRT on tumor growth and immune response in primary pancreatic tumors. Additionally, we employed a hepatic metastatic model to investigate if the combination of SBRT targeting only the primary pancreatic tumor and systemic R848 is effective in controlling established liver metastases. RESULTS: We demonstrated that intravenous administration of the TLR7/8 agonist R848, in combination with local SBRT, leads to superior tumor control compared with either treatment alone. The combination of R848 and SBRT results in significant immune activation of the pancreatic TME, including increased tumor antigen-specific CD8+ T cells, decreased regulatory T cells, and enhanced antigen-presenting cells maturation, as well as increased interferon gamma, granzyme B, and CCL5 along with decreased levels of interleukin 4 (IL-4), IL-6, and IL-10. Importantly, the combination of SBRT and systemic R848 also resulted in similar immunostimulatory changes in liver metastases, leading to improved metastatic control. CD8+ T cell depletion studies highlighted the necessity of these effector cells at both the local and hepatic metastatic sites. T cell receptor (TCR) clonotype analysis indicated that systemic R848 not only diversified the TCR repertoire but also conditioned the metastatic foci to facilitate entry of CD8+ T cells generated by SBRT therapy. CONCLUSIONS: These findings suggest that systemic administration of TLR7/8 agonists in combination with SBRT may be a promising avenue for metastatic PDAC treatment.


Asunto(s)
Carcinoma Ductal Pancreático , Imidazoles/farmacología , Neoplasias Hepáticas , Neoplasias Pancreáticas , Radiocirugia , Adyuvantes Inmunológicos/farmacología , Animales , Antígenos de Neoplasias , Linfocitos T CD8-positivos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/radioterapia , Modelos Animales de Enfermedad , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/radioterapia , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/radioterapia , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Microambiente Tumoral , Neoplasias Pancreáticas
13.
Small ; 18(20): e2107001, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35434938

RESUMEN

Radiotherapy (RT) has been shown to cause immunogenic cell death (ICD) of cancer cells, which promote the release of tumor-associated antigens, and trigger the cancer-immunity cycle (CIC). However, ICD induced by RT usually does not occur in hypoxic tumor cells due to their resistance to radiation. Moreover, RT also induces programmed death ligand 1 (PD-L1) upregulation on tumor cells, which has an inhibitory effect on T lymphocytes. Therefore, therapy based on CIC must selectively target the restricted steps of antitumor immunity. Herein, the authors design a versatile three-in-one assembling nanoparticle that can simultaneously execute these obstacles. The amphiphilic peptide drug conjugate NIA-D1, containing the hydrophobic radio-sensitizer 2-(2-nitroimidazol-1-yl) acetic acid (NIA), a peptide substrate of matrix metalloproteinase-2, and a hydrophilic PD-L1 antagonist D PPA-1, is constructed and co-assembled with hydrophobic Toll-like receptor (TLR) 7/8 agonist R848 to form nanoparticle NIA-D1@R848. The NIA-D1@R848 nanoparticles combined with RT can trigger the apoptosis of tumor cells and initiate the CIC. In the presence of R848, it promotes the maturation of dendritic cells, which together with protein programmed cell death protein 1 (PD-1) and its ligand PD-L1  blockade to relieve T cell suppression, and amplify the antitumor immune cycle. In conclusion, a functionalized three-in-one nanoparticle NIA-D1@R848 is successfully constructed, which can induce strong systemic antitumor immune response.


Asunto(s)
Nanopartículas , Neoplasias , Receptor Toll-Like 8/agonistas , Adyuvantes Inmunológicos , Antígeno B7-H1/metabolismo , Línea Celular Tumoral , Humanos , Inmunidad , Inmunoterapia , Metaloproteinasa 2 de la Matriz , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Péptidos/uso terapéutico , Receptor Toll-Like 7
14.
Adv Healthc Mater ; 11(12): e2102781, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35285581

RESUMEN

In situ anti-tumor vaccination is an attractive type of cancer immunotherapy which relies on the effectiveness of dendritic cells (DCs) to engulf tumor antigens, become activated, and present antigens to T cells in lymphoid tissue. Here, a multifunctional nanocomplex based on calcium crosslinked polyaspartic acid conjugated to either a toll-like receptor (TLR)7/8 agonist or a photosensitizer is reported. Intratumoral administration of the nanocomplex followed by laser irradiation induces cell killing and hence generation of a pool of tumor-associated antigens, with concomitant promotion of DCs maturation and expansion of T cells in tumor-draining lymph nodes. Suppression of tumor growth is observed both at the primary site and at the distal site, thereby hinting at successful induction of an adaptive anti-tumor response. This strategy holds promise for therapeutic application in a pre-operative and post-operative setting to leverage to mutanome of the patient's own tumor to mount immunological memory to clear residual tumor cells and metastasis.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Adyuvantes Inmunológicos/uso terapéutico , Animales , Antígenos de Neoplasias , Calcio , Vacunas contra el Cáncer/administración & dosificación , Células Dendríticas , Sistemas de Liberación de Medicamentos , Inmunidad , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Nanopartículas , Neoplasias/tratamiento farmacológico , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Vacunación
15.
Iran J Immunol ; 19(1): 6, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-35293347

RESUMEN

BACKGROUND: Several PI3K/Akt/mTOR pathway inhibitors and TLR agonists induce tumor cell death. However, the mechanisms of these therapeutic approaches in acute myeloid leukemia (AML) cells are still unknown. OBJECTIVES: To investigate the effects of BEZ235, as a dual inhibitor of PI3K and mTOR pathways, and TLR7/8 agonist R848 on the expression and regulation of the immune inhibitory molecules in myeloid leukemia cells. METHODS: WEHI-3 leukemia cells were incubated with dual PI3K and mTOR inhibitor BEZ235 and TLR7/8 agonist R848 for 48 hrs. Firstly, cell viability was assessed by MTT method. The semi-quantitative relative mRNA expression of Galectin-9 (Gal-9), PD-L1, PVR, and STAT3 was assessed according to HPRT as a housekeeping gene. Finally, the protein expression of phosphorylated STAT3 was evaluated by western blotting analysis. RESULTS: WEHI-3 cells showed growth inhibition following treatment with BEZ235 and R848 whose combination exerted more proliferation arrest. The mRNA expression of Gal-9, PD-L1 and PVR immune checkpoint molecules significantly reduced in treated cells with BEZ235 and R848. Combined treatment indicated more reduction compared with the single treatment. Finally, the expression and phosphorylation of STAT3 were down-regulated after a single or dual treatment with BEZ235 and R848. CONCLUSION: Our results conclude that treatment with the combination of BEZ235 and R848 interferes with immune evasion mechanisms through STAT3-signaling pathway in WEHI-3 leukemia cells.


Asunto(s)
Imidazoles/uso terapéutico , Leucemia Mieloide Aguda , Inhibidores mTOR/uso terapéutico , Inhibidores de las Quinasa Fosfoinosítidos-3/uso terapéutico , Quinolinas/uso terapéutico , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Animales , Línea Celular Tumoral , Proliferación Celular , Evasión Inmune , Ratones
16.
Nano Lett ; 22(7): 2978-2987, 2022 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-35302770

RESUMEN

Toll-like receptor (TLR) agonists are potent immune-stimulators that hold great potential in vaccine adjuvants as well as cancer immunotherapy. However, TLR agonists in free form are prone to be eliminated quickly by the circulatory system and cause systemic inflammation side effects. It remains a challenge to achieve precise release of TLR7/8 agonist in the native form at the receptor site in the endosomal compartments while keeping stable encapsulation and inactive in nontarget environment. Here, we report a pH-/enzyme-responsive TLR7/8 agonist-conjugated nanovaccine (TNV), which responds intelligently to the acidic environment and cathepsin B in the endosome, precisely releases TLR7/8 agonist to activate its receptor signaling at the endosomal membrane, stimulates DCs maturation, and provokes specific cellular immunity. In vivo experiments demonstrate outstanding prophylactic and therapeutic efficacy of TNV in mouse melanoma and colon cancer. The endosome-targeted responsive nanoparticle strategy provides a potential delivery toolbox of adjuvants to advance the development of tumor nanovaccines.


Asunto(s)
Vacunas contra el Cáncer , Nanopartículas , Neoplasias , Adyuvantes Inmunológicos/farmacología , Adyuvantes Inmunológicos/uso terapéutico , Animales , Vacunas contra el Cáncer/uso terapéutico , Células Dendríticas , Endosomas , Concentración de Iones de Hidrógeno , Ratones , Ratones Endogámicos C57BL , Nanopartículas/uso terapéutico , Neoplasias/tratamiento farmacológico , Neoplasias/prevención & control , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Receptores Toll-Like , Vacunación
17.
ACS Nano ; 16(3): 4426-4443, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35103463

RESUMEN

The generation of specific humoral and cellular immune responses plays a pivotal role in the development of effective vaccines against tumors. Especially the presence of antigen-specific, cytotoxic T cells influences the outcome of therapeutic cancer vaccinations. Different strategies, ranging from delivering antigen-encoding mRNAs to peptides or full antigens, are accessible but often suffer from insufficient immunogenicity and require immune-boosting adjuvants as well as carrier platforms to ensure stability and adequate retention. Here, we introduce a pH-responsive nanogel platform as a two-component antitumor vaccine that is safe for intravenous application and elicits robust immune responses in vitro and in vivo. The underlying chemical design allows for straightforward covalent attachment of a model antigen (ovalbumin) and an immune adjuvant (imidazoquinoline-type TLR7/8 agonist) onto the same nanocarrier system. In addition to eliciting antigen-specific T and B cell responses that outperform mixtures of individual components, our two-component nanovaccine leads in prophylactic and therapeutic studies to an antigen-specific growth reduction of different tumors expressing ovalbumin intracellularly or on their surface. Regarding the versatile opportunities for functionalization, our nanogels are promising for the development of highly customized and potent nanovaccines.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Receptor Toll-Like 7 , Receptor Toll-Like 8 , Adyuvantes Inmunológicos , Animales , Antígenos , Inmunidad Celular , Ratones , Ratones Endogámicos C57BL , Nanogeles , Neoplasias/terapia , Ovalbúmina , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas
18.
Bioorg Med Chem Lett ; 59: 128548, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-35051578

RESUMEN

Toll-like receptors (TLRs) 7 and 8 are key targets in the development of immunomodulatory drugs for treating infectious disease, cancer, and autoimmune disorders. These receptors can adopt both agonist and antagonist binding conformations that switch the receptor signal on or off to the downstream production of cytokines. In this study, we examined the effect of simple isomeric substitutions to the C2-butyl group of two imidazoquinoline agonists and evaluated the activity of these analogs using both TLR7 and TLR8 reporter cells and cytokine induction assays. Results are presented showing the C2-isobutyl and C2-cyclopropylmethyl isomers are both mixed TLR7/8 competitive antagonists of the parent agonist [4-Amino-1-(4-(aminomethyl)benzyl)-2-butyl-7-methoxycarbonyl-1H-imidazo[4,5-c]quinoline], indicating the conformation of the dimeric receptor complex is highly sensitive to steric perturbations to the ligand binding pocket. This observation is consistent with prior work demonstrating TLR7 and TLR8 activity is directly correlated to C2-alkyl substitutions that project into a hydrophobic pocket at the dimer interface of the receptor. The close structural relationship of the agonist/antagonist pairs identified here highlights the importance of this pocket in tipping the balance between the agonist and antagonist binding states of the receptor which may have significant ramifications to the design of imidazoquinoline-based immunomodulatory agents.


Asunto(s)
Imidazoles/farmacología , Quinolinas/farmacología , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 8/agonistas , Receptor Toll-Like 8/antagonistas & inhibidores , Relación Dosis-Respuesta a Droga , Humanos , Imidazoles/síntesis química , Imidazoles/química , Estructura Molecular , Quinolinas/síntesis química , Quinolinas/química , Relación Estructura-Actividad
19.
J Immunother Cancer ; 10(1)2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35091452

RESUMEN

BACKGROUND: Toll-like receptors (TLRs) are pattern-recognition sensors mainly expressed in innate immune cells that directly recognize conserved pathogen structures (pathogen-associated molecular patterns-PAMPs). Natural killer (NK) cells have been described to express different endosomal TLRs triggered by RNA and DNA sequences derived from both viruses and bacteria. This study was addressed to establish which endosomal TLR could directly mediate NK activation and function after proper stimuli. It was also important to establish the most suitable TLR agonist to be used as adjuvant in tumor vaccines or in combined cancer immunotherapies. METHODS: We assessed endosomal TLR expression in total NK cells by using RT-qPCR and western blotting technique. In some experiments, we purified CD56brightCD16- and CD56dimCD16+ cells subsets by using NK Cell Isolation Kit Activation marker, cytokine production, CD107a expression and cytotoxicity assay were evaluated by flow cytometry. Cytokine release was quantified by ELISA. NK cells obtained from ovarian ascites underwent the same analyses. RESULTS: Although the four endosomal TLRs (TLR3, TLR7/8, and TLR9) were uniformly expressed on CD56brightCD16- and CD56dimCD16+ cell subsets, the TLR7/8 (R848), TLR3 (polyinosinic-polycytidylic acid, Poly I:C) and TLR9 (ODN2395) ligands promoted NK-cell function only in the presence of suboptimal doses of cytokines, including interleukin (IL)-2, IL-12, IL-15, and IL-18, produced in vivo by other environmental cells. We showed that R848 rather than TLR3 and TLR9 agonists primarily activated CD56brightCD16- NK cells by increasing their proliferation, cytokine production and cytotoxic activity. Moreover, we demonstrated that R848, which usually triggers TLR7 and TLR8 on dendritic cells, macrophages and neutrophils cells, activated CD56brightCD16- NK-cell subset only via TLR8. Indeed, specific TLR8 but not TLR7 agonists increased cytokine production and cytotoxic activity of CD56brightCD16- NK cells. Importantly, these activities were also observed in peritoneal NK cells from patients with metastatic ovarian carcinoma, prevalently belonging to the CD56brightCD16- subset. CONCLUSION: These data highlight the potential value of TLR8 in NK cells as a new target for immunotherapy in patients with cancer.


Asunto(s)
Antígeno CD56/análisis , Imidazoles/farmacología , Células Asesinas Naturales/efectos de los fármacos , Receptores de IgG/análisis , Receptor Toll-Like 8/agonistas , Línea Celular Tumoral , Citocinas/biosíntesis , Citotoxicidad Inmunológica/efectos de los fármacos , Femenino , Proteínas Ligadas a GPI/análisis , Humanos , Células Asesinas Naturales/clasificación , Células Asesinas Naturales/inmunología , Neoplasias Ováricas/inmunología , Receptor Toll-Like 8/fisiología
20.
Nat Commun ; 13(1): 549, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-35087093

RESUMEN

Adjuvants hold great potential in enhancing vaccine efficacy, making the understanding and improving of adjuvants critical goals in vaccinology. The TLR7/8 agonist, 3M-052, induces long-lived humoral immunity in non-human primates and is currently being evaluated in human clinical trials. However, the innate mechanisms of 3M-052 have not been fully characterized. Here, we perform flow cytometry, single cell RNA-seq and ATAC-seq to profile the kinetics, transcriptomics and epigenomics of innate immune cells in murine draining lymph nodes following 3M-052-Alum/Ovalbumin immunization. We find that 3M-052-Alum/OVA induces a robust antiviral and interferon gene program, similar to the yellow fever vaccine, which is known to confer long-lasting protection. Activation of myeloid cells in dLNs persists through day 28 and single cell analysis reveals putative TF-gene regulatory programs in distinct myeloid cells and heterogeneity of monocytes. This study provides a comprehensive characterization of the transcriptomics and epigenomics of innate populations in the dLNs after vaccination.


Asunto(s)
Adyuvantes Inmunológicos/química , Inmunidad Humoral/inmunología , Inmunidad Innata , Vacunas Atenuadas/inmunología , Inmunidad Adaptativa , Adyuvantes Inmunológicos/farmacología , Compuestos de Alumbre , Animales , Anticuerpos Antivirales/inmunología , Epigenómica , Femenino , Humanos , Inmunidad Innata/efectos de los fármacos , Inmunización , Glicoproteínas de Membrana/agonistas , Ratones , Ratones Endogámicos C57BL , Monocitos , Células Mieloides , Ovalbúmina , Receptor Toll-Like 7/agonistas , Receptor Toll-Like 8/agonistas , Vacunación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...