Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 502
Filtrar
1.
J Autoimmun ; 144: 103177, 2024 04.
Artículo en Inglés | MEDLINE | ID: mdl-38368767

RESUMEN

Psoriasis (PS) and atopic dermatitis (AD) are common skin inflammatory diseases characterized by hyper-responsive keratinocytes. Although, some cytokines have been suggested to be specific for each disease, other cytokines might be central to both diseases. Here, we show that Tumor necrosis factor superfamily member 14 (TNFSF14), known as LIGHT, is required for experimental PS, similar to its requirement in experimental AD. Mice devoid of LIGHT, or deletion of either of its receptors, lymphotoxin ß receptor (LTßR) and herpesvirus entry mediator (HVEM), in keratinocytes, were protected from developing imiquimod-induced psoriatic features, including epidermal thickening and hyperplasia, and expression of PS-related genes. Correspondingly, in single cell RNA-seq analysis of PS patient biopsies, LTßR transcripts were found strongly expressed with HVEM in keratinocytes, and LIGHT was upregulated in T cells. Similar transcript expression profiles were also seen in AD biopsies, and LTßR deletion in keratinocytes also protected mice from allergen-induced AD features. Moreover, in vitro, LIGHT upregulated a broad spectrum of genes in human keratinocytes that are clinical features of both PS and AD skin lesions. Our data suggest that agents blocking LIGHT activity might be useful for therapeutic intervention in PS as well as in AD.


Asunto(s)
Dermatitis Atópica , Psoriasis , Humanos , Ratones , Animales , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Dermatitis Atópica/genética , Dermatitis Atópica/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo , Queratinocitos/metabolismo , Citocinas/metabolismo , Psoriasis/genética , Psoriasis/metabolismo , Inflamación/metabolismo
2.
Aging (Albany NY) ; 16(1): 129-152, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38175686

RESUMEN

Lymphotoxin beta receptor (LTBR) is a positive T cell proliferation regulator gene. It is closely associated with the tumor immune microenvironment. However, its role in cancer and immunotherapy is unclear. Firstly, the expression level and prognostic value of LTBR were analyzed. Secondly, the expression of LTBR in clinical stages, immune subtypes, and molecular subtypes was analyzed. The correlation between LTBR and immune regulatory genes, immune checkpoint genes, and RNA modification genes was then analyzed. Correlations between LTBR and immune cells, scores, cancer-related functional status, tumor stemness index, mismatch repair (MMR) genes, and DNA methyltransferase were also analyzed. In addition, we analyzed the role of LTBR in DNA methylation, mutational status, tumor mutation burden (TMB), and microsatellite instability (MSI). Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) were used to explore the role of LTBR in pan-cancer. Finally, the drugs associated with LTBR were analyzed. The expression of LTBR was confirmed using quantitative real-time PCR and Western blot. LTBR is significantly overexpressed in most cancers and is associated with low patient survival. In addition, LTBR expression was strongly correlated with immune cells, score, cancer-related functional status, tumor stemness index, MMR genes, DNA methyltransferase, DNA methylation, mutational status, TMB, and MSI. Enrichment analysis revealed that LTBR was associated with apoptosis, necroptosis, and immune-related pathways. Finally, multiple drugs targeting LTBR were identified. LTBR is overexpressed in several tumors and is associated with a poor prognosis. It is related to immune-related genes and immune cell infiltration.


Asunto(s)
Receptor beta de Linfotoxina , Neoplasias , Humanos , Pronóstico , Metilasas de Modificación del ADN , Inestabilidad de Microsatélites , Neoplasias/genética , ADN , Microambiente Tumoral/genética
3.
Eur J Cancer ; 187: 147-160, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37167762

RESUMEN

Despite over a decade of clinical trials combining inhibition of emerging checkpoints with a PD-1/L1 inhibitor backbone, meaningful survival benefits have not been shown in PD-1/L1 inhibitor resistant or refractory solid tumours, particularly tumours dominated by a myelosuppressive microenvironment. Achieving durable anti-tumour immunity will therefore likely require combination of adaptive and innate immune stimulation, myeloid repolarisation, enhanced APC activation and antigen processing/presentation, lifting of the CD47/SIRPα (Cluster of Differentiation 47/signal regulatory protein alpha) 'do not eat me' signal, provision of an apoptotic 'pro-eat me' or 'find me' signal, and blockade of immune checkpoints. The importance of effectively targeting mLILRB2 and SIRPAyeloid cells to achieve improved response rates has recently been emphasised, given myeloid cells are abundant in the tumour microenvironment of most solid tumours. TNFSF14, or LIGHT, is a tumour necrosis superfamily ligand with a broad range of adaptive and innate immune activities, including (1) myeloid cell activation through Lymphotoxin Beta Receptor (LTßR), (2) T/NK (T cell and natural killer cell) induced anti-tumour immune activity through Herpes virus entry mediator (HVEM), (3) potentiation of proinflammatory cytokine/chemokine secretion through LTßR on tumour stromal cells, (4) direct induction of tumour cell apoptosis in vitro, and (5) the reorganisation of lymphatic tissue architecture, including within the tumour microenvironment (TME), by promoting high endothelial venule (HEV) formation and induction of tertiary lymphoid structures. LTBR (Lymphotoxin beta receptor) and HVEM rank highly amongst a range of costimulatory receptors in solid tumours, which raises interest in considering how LIGHT-mediated costimulation may be distinct from a growing list of immunotherapy targets which have failed to provide survival benefit as monotherapy or in combination with PD-1 inhibitors, particularly in the checkpoint acquired resistant setting.


Asunto(s)
Receptor beta de Linfotoxina , Neoplasias , Humanos , Receptor de Muerte Celular Programada 1 , Células Mieloides , Citocinas , Neoplasias/tratamiento farmacológico , Inmunoterapia , Microambiente Tumoral
4.
Elife ; 122023 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-36912771

RESUMEN

Acute lymphoblastic and myeloblastic leukemias (ALL and AML) have been known to modify the bone marrow microenvironment and disrupt non-malignant hematopoiesis. However, the molecular mechanisms driving these alterations remain poorly defined. Using mouse models of ALL and AML, here we show that leukemic cells turn off lymphopoiesis and erythropoiesis shortly after colonizing the bone marrow. ALL and AML cells express lymphotoxin α1ß2 and activate lymphotoxin beta receptor (LTßR) signaling in mesenchymal stem cells (MSCs), which turns off IL7 production and prevents non-malignant lymphopoiesis. We show that the DNA damage response pathway and CXCR4 signaling promote lymphotoxin α1ß2 expression in leukemic cells. Genetic or pharmacological disruption of LTßR signaling in MSCs restores lymphopoiesis but not erythropoiesis, reduces leukemic cell growth, and significantly extends the survival of transplant recipients. Similarly, CXCR4 blocking also prevents leukemia-induced IL7 downregulation and inhibits leukemia growth. These studies demonstrate that acute leukemias exploit physiological mechanisms governing hematopoietic output as a strategy for gaining competitive advantage.


Asunto(s)
Leucemia Mieloide Aguda , Células Madre Mesenquimatosas , Animales , Ratones , Leucemia Mieloide Aguda/patología , Receptor beta de Linfotoxina/metabolismo , Interleucina-7/metabolismo , Linfopoyesis , Heterotrímero de Linfotoxina alfa1 y beta2/metabolismo , Células Madre Mesenquimatosas/metabolismo , Microambiente Tumoral
5.
EMBO Rep ; 24(3): e54228, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36633157

RESUMEN

Estrogen is a disease-modifying factor in multiple sclerosis (MS) and its animal model experimental autoimmune encephalomyelitis (EAE) via estrogen receptor alpha (ERα). However, the mechanisms by which ERα signaling contributes to changes in disease pathogenesis have not been completely elucidated. Here, we demonstrate that ERα deletion in dendritic cells (DCs) of mice induces severe neurodegeneration in the central nervous system in a mouse EAE model and resistance to interferon beta (IFNß), a first-line MS treatment. Estrogen synthesized by extragonadal sources is crucial for controlling disease phenotypes. Mechanistically, activated ERα directly interacts with TRAF3, a TLR4 downstream signaling molecule, to degrade TRAF3 via ubiquitination, resulting in reduced IRF3 nuclear translocation and transcription of membrane lymphotoxin (mLT) and IFNß components. Diminished ERα signaling in DCs generates neurotoxic effector CD4+ T cells via mLT-lymphotoxin beta receptor (LTßR) signaling. Lymphotoxin beta receptor antagonist abolished EAE disease symptoms in the DC-specific ERα-deficient mice. These findings indicate that estrogen derived from extragonadal sources, such as lymph nodes, controls TRAF3-mediated cytokine production in DCs to modulate the EAE disease phenotype.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Receptor alfa de Estrógeno , Ratones , Animales , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Factor 3 Asociado a Receptor de TNF/genética , Factor 3 Asociado a Receptor de TNF/metabolismo , Estrógenos/farmacología , Fenotipo , Células Dendríticas/metabolismo , Ratones Endogámicos C57BL
6.
J Allergy Clin Immunol ; 151(4): 976-990.e5, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36473503

RESUMEN

BACKGROUND: Dysregulation of airway smooth muscle cells (ASM) is central to the severity of asthma. Which molecules dominantly control ASM in asthma is unclear. High levels of the cytokine LIGHT (aka TNFSF14) have been linked to asthma severity and lower baseline predicted FEV1 percentage, implying that signals through its receptors might directly control ASM dysfunction. OBJECTIVE: Our study sought to determine whether signaling via lymphotoxin beta receptor (LTßR) or herpesvirus entry mediator from LIGHT dominantly drives ASM hyperreactivity induced by allergen. METHODS: Conditional knockout mice deficient for LTßR or herpesvirus entry mediator in smooth muscle cells were used to determine their role in ASM deregulation and airway hyperresponsiveness (AHR) in vivo. Human ASM were used to study signals induced by LTßR. RESULTS: LTßR was strongly expressed in ASM from normal and asthmatic subjects compared to several other receptors implicated in smooth muscle deregulation. Correspondingly, conditional deletion of LTßR only in smooth muscle cells in smMHCCreLTßRfl/fl mice minimized changes in their numbers and mass as well as AHR induced by house dust mite allergen in a model of severe asthma. Intratracheal LIGHT administration independently induced ASM hypertrophy and AHR in vivo dependent on direct LTßR signals to ASM. LIGHT promoted contractility, hypertrophy, and hyperplasia of human ASM in vitro. Distinguishing LTßR from the receptors for IL-13, TNF, and IL-17, which have also been implicated in smooth muscle dysregulation, LIGHT promoted NF-κB-inducing kinase-dependent noncanonical nuclear factor kappa-light-chain enhancer of activated B cells in ASM in vitro, leading to sustained accumulation of F-actin, phosphorylation of myosin light chain kinase, and contractile activity. CONCLUSIONS: LTßR signals directly and dominantly drive airway smooth muscle hyperresponsiveness relevant for pathogenesis of airway remodeling in severe asthma.


Asunto(s)
Asma , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Humanos , Ratones , Animales , Receptor beta de Linfotoxina/genética , Asma/patología , Músculo Liso , Miocitos del Músculo Liso/patología , Ratones Noqueados , Alérgenos , Pulmón/patología
7.
Clin Investig Arterioscler ; 35(1): 1-11, 2023.
Artículo en Inglés, Español | MEDLINE | ID: mdl-35738949

RESUMEN

OBJECTIVE: Vascular smooth muscle cells (VSMCs) undergo a phenotypic-switching process during the generation of unstable atheroma plaques. In this investigation, the potential implication of the tumor necrosis factor superfamily (TNFSF) ligands, in the gene expression signature associated with VSMC plasticity was studied. MATERIAL AND METHODS: Human aortic (ha)VSMCs were obtained commercially and treated with the cytokine TNFSF14, also called LIGHT, the lymphotoxin alpha (LTα), the heterotrimer LTα1ß2 or with vehicle for 72h. The effect of the different treatments on gene expression was analyzed by quantitative PCR and included the study of genes associated with myofibroblast-like cell function, osteochondrogenesis, pluripotency, lymphorganogenesis and macrophage-like cell function. RESULTS: HaVSMCs displayed a change in myofibroblast-like cell genes which consisted in reduced COL1A1 and TGFB1 mRNA levels when treated with LTα or LIGHT and with augmented MMP9 expression levels when treated with LTα. LTα and LIGHT treatments also diminished the expression of genes associated with osteochondrogenesis and pluripotency SOX9, CKIT, and KLF4. By contrary, all the above genes were no affected by the treatment with the trimer LTα1ß2. In addition, haVSMC treatment with LTα, LTα1ß2 and LIGHT altered lymphorganogenic cytokine gene expression which consisted of augmented CCL20 and CCL21 mRNA levels by LTα and a reduction in the gene expression of CCL21 and CXCL13 by LIGHT and LTα1ß2 respectively. Neither, LTα or LIGHT or LTα1ß2 treatments affected the expression of macrophage-like cell markers in haVSMC. CONCLUSIONS: Altogether, indicates that the TNFSF ligands through their interconnected network of signaling, are important in the preservation of VSMC identity against the acquisition of a genetic expression signature compatible with functional cellular plasticity.


Asunto(s)
Receptor beta de Linfotoxina , Músculo Liso Vascular , Humanos , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Músculo Liso Vascular/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Linfotoxina-alfa/genética , Linfotoxina-alfa/metabolismo , Citocinas , ARN Mensajero/genética , Factor de Necrosis Tumoral alfa/metabolismo
8.
Proc Natl Acad Sci U S A ; 119(47): e2208274119, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36383602

RESUMEN

Lyme spirochetes have coevolved with ticks to optimize transmission to hosts using tick salivary molecules (TSMs) to counteract host defenses. TSMs modulate various molecular events at the tick-host interface. Lymphotoxin-beta receptor (LTßR) is a vital immune receptor and plays protective roles in host immunity against microbial infections. We found that Ltbr knockout mice were more susceptible to Lyme disease spirochetes, suggesting the involvement of LTßR signaling in tick-borne Borrelia infection. Further investigation showed that a 15-kDa TSM protein from Ixodes persulcatus (I. persulcatus salivary protein; IpSAP) functioned as an immunosuppressant to facilitate the transmission and infection of Lyme disease spirochetes. IpSAP directly interacts with LTßR to block its activation, thus inhibiting the downstream signaling and consequently suppressing immunity. IpSAP immunization provided mice with significant protection against I. persulcatus-mediated Borrelia garinii infection. Notably, the immunization showed considerable cross-protection against other Borrelia infections mediated by other ixodid ticks. One of the IpSAP homologs from other ixodid ticks showed similar effects on Lyme spirochete transmission. Together, our findings suggest that LTßR signaling plays an important role in blocking the transmission and pathogenesis of tick-borne Lyme disease spirochetes, and that IpSAP and its homologs are promising candidates for broad-spectrum vaccine development.


Asunto(s)
Grupo Borrelia Burgdorferi , Borrelia burgdorferi , Ixodes , Enfermedad de Lyme , Ratones , Animales , Borrelia burgdorferi/genética , Saliva , Ixodes/fisiología , Receptor beta de Linfotoxina
9.
Sci Immunol ; 7(75): eabo3170, 2022 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-36149943

RESUMEN

Gain-of-function (GOF) mutations in CXCR4 cause WHIM (warts, hypogammaglobulinemia, infections, and myelokathexis) syndrome, characterized by infections, leukocyte retention in bone marrow (BM), and blood leukopenias. B lymphopenia is evident at early progenitor stages, yet why do CXCR4 GOF mutations that cause B (and T) lymphopenia remain obscure? Using a CXCR4 R334X GOF mouse model of WHIM syndrome, we showed that lymphopoiesis is reduced because of a dysregulated mesenchymal stem cell (MSC) transcriptome characterized by a switch from an adipogenic to an osteolineage-prone program with limited lymphopoietic activity. We identify lymphotoxin beta receptor (LTßR) as a critical pathway promoting interleukin-7 (IL-7) down-regulation in MSCs. Blocking LTßR or CXCR4 signaling restored IL-7 production and B cell development in WHIM mice. LTßR blocking also increased production of IL-7 and B cell activating factor (BAFF) in secondary lymphoid organs (SLOs), increasing B and T cell numbers in the periphery. These studies revealed that LTßR signaling in BM MSCs and SLO stromal cells limits the lymphocyte compartment size.


Asunto(s)
Síndromes de Inmunodeficiencia , Linfopenia , Animales , Factor Activador de Células B , Síndromes de Inmunodeficiencia/complicaciones , Síndromes de Inmunodeficiencia/genética , Interleucina-7 , Receptor beta de Linfotoxina , Ratones , Enfermedades de Inmunodeficiencia Primaria , Nicho de Células Madre , Linfocitos T , Verrugas
10.
Proc Natl Acad Sci U S A ; 119(40): e2208436119, 2022 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-36161919

RESUMEN

Engineered regulatory T cell (Treg cell) therapy is a promising strategy to treat patients suffering from inflammatory diseases, autoimmunity, and transplant rejection. However, in many cases, disease-related antigens that can be targeted by Treg cells are not available. In this study, we introduce a class of synthetic biosensors, named artificial immune receptors (AIRs), for murine and human Treg cells. AIRs consist of three domains: (a) extracellular binding domain of a tumor necrosis factor (TNF)-receptor superfamily member, (b) intracellular costimulatory signaling domain of CD28, and (c) T cell receptor signaling domain of CD3-ζ chain. These AIR receptors equip Treg cells with an inflammation-sensing machinery and translate this environmental information into a CD3-ζ chain-dependent TCR-activation program. Different AIRs were generated, recognizing the inflammatory ligands of the TNF-receptor superfamily, including LIGHT, TNFα, and TNF-like ligand 1A (TL1A), leading to activation, differentiation, and proliferation of AIR-Treg cells. In a graft-versus-host disease model, Treg cells expressing lymphotoxin ß receptor-AIR, which can be activated by the ligand LIGHT, protect significantly better than control Treg cells. Expression and signaling of the corresponding human AIR in human Treg cells prove that this concept can be translated. Engineering Treg cells that target inflammatory ligands leading to TCR signaling and activation might be used as a Treg cell-based therapy approach for a broad range of inflammation-driven diseases.


Asunto(s)
Técnicas Biosensibles , Ingeniería Celular , Tratamiento Basado en Trasplante de Células y Tejidos , Inflamación , Linfocitos T Reguladores , Animales , Antígenos CD28/metabolismo , Humanos , Inflamación/terapia , Ligandos , Receptor beta de Linfotoxina/metabolismo , Ratones , Receptores de Antígenos de Linfocitos T/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Linfocitos T Reguladores/trasplante , Factor de Necrosis Tumoral alfa
11.
Comput Math Methods Med ; 2022: 9588740, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36118831

RESUMEN

Bronchopulmonary dysplasia (BPD) is a prevalent chronic pediatric lung disease. Aberrant proliferation and apoptosis of lung epithelial cells are important in the pathogenesis of BPD. Lymphotoxin beta receptor (LTBR) is expressed in lung epithelial cells. Blocking LTBR induces regeneration of lung tissue and reverts airway fibrosis in young and aged mice. This study is aimed at revealing the role of LTBR in BPD. A mouse model of BPD and two in vitro models of BPD using A549 cells and type II alveolar epithelial (ATII) cells were established by exposure to hyperoxia. We found that LTBR and CREB1 exhibited a significant upregulation in lungs of mouse model of BPD. LTBR and CREB1 expression were also increased by hyperoxia in A549 and ATII cells. According to results of cell counting kit-8 assay and flow cytometry analysis, silencing of LTBR rescued the suppressive effect of hyperoxia on cell viability and its promotive effect on cell apoptosis of A549 and ATII cells. Bioinformatics revealed CREB1 as a transcriptional factor for LTBR, and the luciferase reporter assay and ChIP assay subsequently confirmed it. The NF-κB pathway was regulated by LTBR. CREB1 induced LTBR expression at the transcriptional level to regulate NF-κB pathway and further modulate A549 and ATII cells viability and apoptosis. In conclusion, this study revealed the CREB1/LTBR/NF-κB pathway in BPD and supported the beneficial role of LTBR silence in BPD by promoting viability and decreasing apoptosis of lung epithelial cells.


Asunto(s)
Apoptosis , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Hiperoxia , Pulmón/citología , Receptor beta de Linfotoxina , Animales , Modelos Animales de Enfermedad , Células Epiteliales , Humanos , Ratones , FN-kappa B/genética
12.
FEBS Lett ; 596(20): 2659-2667, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35953458

RESUMEN

Follicular dendritic cells (FDCs) play a crucial role in generating high-affinity antibody-producing B cells during the germinal center (GC) reaction. Herein, we analysed the altered gene expression profile of a mouse FDC line, FL-Y, following lymphotoxin ß receptor stimulation, and observed increased Slam-family member 8 (Slamf8) mRNA expression. Forced Slamf8 expression and SLAMF8-Fc addition enhanced the ability of FL-Y cells to induce FDC-induced monocytic cell (FDMC) differentiation. FDMCs accelerated GC-phenotype proliferation in cultured B cells, suggesting that they are capable of promoting GC responses. Furthermore, a pulldown assay showed that SLAMF8-Fc could bind to SLAMF8-His. Overall, the homophilic interaction of SLAMF8 promotes FDMC differentiation and SLAMF8 might act as a novel regulator of GC responses by regulating FDMC differentiation.


Asunto(s)
Células Dendríticas Foliculares , Receptor beta de Linfotoxina , Ratones , Animales , Células Dendríticas Foliculares/metabolismo , Receptor beta de Linfotoxina/metabolismo , Centro Germinal/metabolismo , Linfocitos B/metabolismo , Diferenciación Celular/genética , ARN Mensajero/metabolismo , Células Dendríticas
13.
J Reprod Immunol ; 153: 103693, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35987137

RESUMEN

Intrauterine adhesion (IUA) is a fibrotic disease, with complex and multifactorial process, causing menstrual disorders, pregnancy loss or infertility. LIGHT (also named TNFSF14), mainly expressed by immune cells, has been reported to be associated with tissue fibrosis. However, the features of immunocyte subsets, the expression and roles of LIGHT and its receptor HVEM (herpes virus entry mediator) and LTßR (lymphotoxin beta receptor) in IUA remain largely unknown. Compared with the control group, we observed increased ratios of CD45+ cells, neutrophils, T cells, macrophages and decreased natural killer cells proportion, and high LIGHT expression on CD4+ T cells and macrophages in IUA endometrium. Further analysis showed there was a positive correlation between upregulated profibrotic factors (e.g., ɑ-smooth muscle actin, transforming growth factor ß1) and HVEM in IUA endometrial tissue. More importantly, recombinant human LIGHT protein directly up-regulated the expression of HVEM, LTßR, profibrotic and proinflammatory factors expression in human endometrial stromal cells. These findings reveal abnormal changes of immune cell subsets proportion and the overexpression of LIGHT-HVEM/LTßR axis in IUA endometrium, should contribute to inflammation and fibrosis formation of IUA.


Asunto(s)
Receptor beta de Linfotoxina , Miembro 14 de Receptores del Factor de Necrosis Tumoral , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Enfermedades Uterinas , Actinas , Femenino , Fibrosis/genética , Humanos , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/fisiología , Embarazo , Miembro 14 de Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal , Factor de Crecimiento Transformador beta1 , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Enfermedades Uterinas/genética , Enfermedades Uterinas/patología
14.
PLoS One ; 17(8): e0270907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35925983

RESUMEN

Multiple myeloma (MM), a malignancy of plasma cells (PCs), has diverse genetic underpinnings and in rare cases these include amplification of the lymphotoxin b receptor (Ltbr) locus. LTßR has well defined roles in supporting lymphoid tissue development and function through actions in stromal and myeloid cells, but whether it is functional in PCs is unknown. Here we showed that Ltbr mRNA was upregulated in mouse PCs compared to follicular B cells, but deficiency in the receptor did not cause a reduction in PC responses to a T-dependent or T-independent immunogen. However, LTßR overexpression (OE) enhanced PC formation in vitro after LPS or anti-CD40 stimulation. In vivo, LTßR OE led to increased antigen-specific splenic and bone marrow (BM) plasma cells responses. LTßR OE PCs had increased expression of Nfkb2 and of the NF-kB target genes Bcl2 and Mcl1, factors involved in the formation of long-lived BM PCs. Our findings suggest a pathway by which Ltbr gene amplifications may contribute to MM development through increased NF-kB activity and induction of an anti-apoptotic transcriptional program.


Asunto(s)
FN-kappa B , Células Plasmáticas , Animales , Linfocitos B/metabolismo , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Células Plasmáticas/metabolismo , Bazo/metabolismo
15.
Cell Stem Cell ; 29(5): 856-868.e5, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35523143

RESUMEN

After birth, the intestine undergoes major changes to shift from an immature proliferative state to a functional intestinal barrier. By combining inducible lineage tracing and transcriptomics in mouse models, we identify a prodifferentiation PDGFRαHigh intestinal stromal lineage originating from postnatal LTßR+ perivascular stromal progenitors. The genetic blockage of this lineage increased the intestinal stem cell pool while decreasing epithelial and immune maturation at weaning age, leading to reduced postnatal growth and dysregulated repair responses. Ablating PDGFRα in the LTBR stromal lineage demonstrates that PDGFRα has a major impact on the lineage fate and function, inducing a transcriptomic switch from prostemness genes, such as Rspo3 and Grem1, to prodifferentiation factors, including BMPs, retinoic acid, and laminins, and on spatial organization within the crypt-villus and repair responses. Our results show that the PDGFRα-induced transcriptomic switch in intestinal stromal cells is required in the first weeks after birth to coordinate postnatal intestinal maturation and function.


Asunto(s)
Intestinos , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas , Animales , Diferenciación Celular/fisiología , Mecanismos de Defensa , Mucosa Intestinal , Receptor beta de Linfotoxina , Ratones , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Células Madre
16.
Sichuan Da Xue Xue Bao Yi Xue Ban ; 53(1): 35-42, 2022 Jan.
Artículo en Chino | MEDLINE | ID: mdl-35048597

RESUMEN

OBJECTIVE: To induce the development of tertiary lymphoid organs (TLO) in a mouse model of melanoma and to evaluate TLO's functions in antitumor immunity. METHODS: Lymphotoxin-beta receptor (LTßR) was overexpressed in NIH3T3 cells through the lentivirus system and the overexpression efficiency of LTßR in LTßR-NIH3T3 cells was examined. Western blot and qPCR were used to examine the non-canonical nuclear factor (NF)-κB signaling pathway in NIH3T3 cells overexpressing LTßR. B16-OVA melanoma mouse model was constructed to explore the induction of TLO and anti-tumor functions of TLO in LTßR-NIH3T3 cells. RESULTS: LTßR was overexpressed in NIH3T3 cells through the lentivirus system, and flow cytometry showed that the proportion of GFP + cells reached 99%. The overexpression of LTßR activated the non-canonical NF-κB signaling pathway in NIH3T3 cells. Findings from the mouse tumor model suggest that the injection of LTßR-NIH3T3 cells successfully induced the development of lymphoid tissue around the tumor and enhanced the tumor infiltration of T cells and MHCⅡ + macrophages, significantly inhibiting tumor growth and prolonging the survival of tumor-bearing mice. CONCLUSION: LTßR-NIH3T3 cells promoted anti-tumor immunity by inducing TLO development, which may provide new perspectives for tumor immunotherapy.


Asunto(s)
Receptor beta de Linfotoxina , FN-kappa B , Animales , Macrófagos/metabolismo , Ratones , FN-kappa B/genética , FN-kappa B/metabolismo , Células 3T3 NIH , Transducción de Señal
17.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35031565

RESUMEN

CD169+ macrophages reside in lymph node (LN) and spleen and play an important role in the immune defense against pathogens. As resident macrophages, they are responsive to environmental cues to shape their tissue-specific identity. We have previously shown that LN CD169+ macrophages require RANKL for formation of their niche and their differentiation. Here, we demonstrate that they are also dependent on direct lymphotoxin beta (LTß) receptor (R) signaling. In the absence or the reduced expression of either RANK or LTßR, their differentiation is perturbed, generating myeloid cells expressing SIGN-R1 in LNs. Conditions of combined haploinsufficiencies of RANK and LTßR revealed that both receptors contribute equally to LN CD169+ macrophage differentiation. In the spleen, the Cd169-directed ablation of either receptor results in a selective loss of marginal metallophilic macrophages (MMMs). Using a RANKL reporter mouse, we identify splenic marginal zone stromal cells as a source of RANKL and demonstrate that it participates in MMM differentiation. The loss of MMMs had no effect on the splenic B cell compartments but compromised viral capture and the expansion of virus-specific CD8+ T cells. Taken together, the data provide evidence that CD169+ macrophage differentiation in LN and spleen requires dual signals from LTßR and RANK with implications for the immune response.


Asunto(s)
Ganglios Linfáticos/inmunología , Receptor beta de Linfotoxina/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Receptor Activador del Factor Nuclear kappa-B/metabolismo , Lectina 1 Similar a Ig de Unión al Ácido Siálico/metabolismo , Transducción de Señal , Bazo/inmunología , Linfocitos B/inmunología , Ligando RANK/metabolismo , Células del Estroma/metabolismo
18.
Mucosal Immunol ; 15(2): 327-337, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34903876

RESUMEN

Fibroblasts mediate tissue remodeling in eosinophilic esophagitis (EoE), a chronic allergen-driven inflammatory pathology. Diverse fibroblast subtypes with homeostasis-regulating or inflammatory profiles have been recognized in various tissues, but which mediators induce these alternate differentiation states remain largely unknown. We recently identified that TNFSF14/LIGHT promotes an inflammatory esophageal fibroblast in vitro. Herein we used esophageal biopsies and primary fibroblasts to investigate the role of the LIGHT receptors, herpes virus entry mediator (HVEM) and lymphotoxin-beta receptor (LTßR), and their downstream activated pathways, in EoE. In addition to promoting inflammatory gene expression, LIGHT down-regulated homeostatic factors including WNTs, BMPs and type 3 semaphorins. In vivo, WNT2B+ fibroblasts were decreased while ICAM-1+ and IL-34+ fibroblasts were expanded in EoE, suggesting that a LIGHT-driven gene signature was imprinted in EoE versus normal esophageal fibroblasts. HVEM and LTßR overexpression and deficiency experiments demonstrated that HVEM regulates a limited subset of LIGHT targets, whereas LTßR controls all transcriptional effects. Pharmacologic blockade of the non-canonical NIK/p100/p52-mediated NF-κB pathway potently silenced LIGHT's transcriptional effects, with a lesser role found for p65 canonical NF-κB. Collectively, our results show that LIGHT promotes differentiation of esophageal fibroblasts toward an inflammatory phenotype and represses homeostatic gene expression via a LTßR-NIK-p52 NF-κB dominant pathway.


Asunto(s)
Esófago , Inflamación , Transcriptoma , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral , Esófago/metabolismo , Fibroblastos/metabolismo , Homeostasis , Humanos , Inflamación/genética , Receptor beta de Linfotoxina/genética , Receptor beta de Linfotoxina/metabolismo , FN-kappa B/metabolismo , Transducción de Señal , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/genética , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
19.
Int Immunol ; 34(1): 45-52, 2022 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-34687536

RESUMEN

Medullary thymic epithelial cells (mTECs) help shape the thymic microenvironment for T-cell development by expressing a variety of peripheral tissue-restricted antigens (TRAs). The self-tolerance of T cells is established by negative selection of autoreactive T cells that bind to TRAs. To increase the diversity of TRAs, a fraction of mTECs terminally differentiates into distinct subsets resembling atypical types of epithelial cells in specific peripheral tissues. As such, thymic tuft cells that express peripheral tuft cell genes have recently emerged. Here, we show that the transcription factor SRY-box transcription factor 4 (Sox4) is highly expressed in mTECs and is essential for the development of thymic tuft cells. Mice lacking Sox4 specifically in TECs had a significantly reduced number of thymic tuft cells with no effect on the differentiation of other mTEC subsets, including autoimmune regulator (Aire)+ and Ccl21a+ mTECs. Furthermore, Sox4 expression was diminished in mice deficient in TEC-specific lymphotoxin ß receptor (LTßR), indicating a role for the LTßR-Sox4 axis in the differentiation of thymic tuft cells. Given that Sox4 promotes differentiation of peripheral tuft cells, our findings suggest that mTECs employ the same transcriptional program as peripheral epithelial cells. This mechanism may explain how mTECs diversify peripheral antigen expression to project an immunological self within the thymic medulla.


Asunto(s)
Receptor beta de Linfotoxina/genética , Factores de Transcripción SOXC/genética , Timo/inmunología , Animales , Diferenciación Celular/inmunología , Receptor beta de Linfotoxina/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Factores de Transcripción SOXC/inmunología , Transducción de Señal/genética , Timo/citología
20.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638990

RESUMEN

Obesity is one of the most prevalent metabolic diseases in the Western world and correlates directly with glucose intolerance and insulin resistance, often culminating in Type 2 Diabetes (T2D). Importantly, our team has recently shown that the TNF superfamily (TNFSF) member protein, TNFSF14, has been reported to protect against high fat diet induced obesity and pre-diabetes. We hypothesized that mimics of TNFSF14 may therefore be valuable as anti-diabetic agents. In this study, we use in silico approaches to identify key regions of TNFSF14 responsible for binding to the Herpes virus entry mediator and Lymphotoxin ß receptor. In vitro evaluation of a selection of optimised peptides identified six potentially therapeutic TNFSF14 peptides. We report that these peptides increased insulin and fatty acid oxidation signalling in skeletal muscle cells. We then selected one of these promising peptides to determine the efficacy to promote metabolic benefits in vivo. Importantly, the TNFSF14 peptide 7 reduced high fat diet-induced glucose intolerance, insulin resistance and hyperinsulinemia in a mouse model of obesity. In addition, we highlight that the TNFSF14 peptide 7 resulted in a marked reduction in liver steatosis and a concomitant increase in phospho-AMPK signalling. We conclude that TNFSF14-derived molecules positively regulate glucose homeostasis and lipid metabolism and may therefore open a completely novel therapeutic pathway for treating obesity and T2D.


Asunto(s)
Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/administración & dosificación , Obesidad/complicaciones , Obesidad/tratamiento farmacológico , Péptidos/administración & dosificación , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/administración & dosificación , Animales , Sitios de Unión , Glucemia/metabolismo , Simulación por Computador , Diabetes Mellitus Tipo 2/etiología , Diabetes Mellitus Tipo 2/metabolismo , Dieta Alta en Grasa/efectos adversos , Modelos Animales de Enfermedad , Intolerancia a la Glucosa/tratamiento farmacológico , Intolerancia a la Glucosa/metabolismo , Homeostasis/efectos de los fármacos , Hiperinsulinismo/tratamiento farmacológico , Hiperinsulinismo/metabolismo , Hipoglucemiantes/síntesis química , Resistencia a la Insulina , Receptor beta de Linfotoxina/química , Receptor beta de Linfotoxina/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo , Péptidos/síntesis química , Miembro 14 de Receptores del Factor de Necrosis Tumoral/química , Miembro 14 de Receptores del Factor de Necrosis Tumoral/metabolismo , Transducción de Señal/efectos de los fármacos , Resultado del Tratamiento , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/química , Miembro 14 de la Superfamilia de Ligandos de Factores de Necrosis Tumoral/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...