Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 785
Filtrar
1.
Biomed Pharmacother ; 173: 116345, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38442670

RESUMEN

Antagonists of the A2B adenosine receptor have recently emerged as targeted anticancer agents and immune checkpoint inhibitors within the realm of cancer immunotherapy. This study presents a comprehensive evaluation of novel Biginelli-assembled pyrimidine chemotypes, including mono-, bi-, and tricyclic derivatives, as A2BAR antagonists. We conducted a comprehensive examination of the adenosinergic profile (both binding and functional) of a large compound library consisting of 168 compounds. This approach unveiled original lead compounds and enabled the identification of novel structure-activity relationship (SAR) trends, which were supported by extensive computational studies, including quantum mechanical calculations and free energy perturbation (FEP) analysis. In total, 25 molecules showed attractive affinity (Ki < 100 nM) and outstanding selectivity for A2BAR. From these, five molecules corresponding to the new benzothiazole scaffold were below the Ki < 10 nM threshold, in addition to a novel dual A2A/A2B antagonist. The most potent compounds, and the dual antagonist, showed enantiospecific recognition in the A2BAR. Two A2BAR selective antagonists and the dual A2AAR/A2BAR antagonist reported in this study were assessed for their impact on colorectal cancer cell lines. The results revealed a significant and dose-dependent reduction in cell proliferation. Notably, the A2BAR antagonists exhibited remarkable specificity, as they did not impede the proliferation of non-tumoral cell lines. These findings support the efficacy and potential that A2BAR antagonists as valuable candidates for cancer therapy, but also that they can effectively complement strategies involving A2AAR antagonism in the context of immune checkpoint inhibition.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Antagonistas de Receptores Purinérgicos P1 , Receptor de Adenosina A2B/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Relación Estructura-Actividad , Antineoplásicos/farmacología , Neoplasias Colorrectales/tratamiento farmacológico
2.
Biomed Pharmacother ; 173: 116401, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38460363

RESUMEN

Adenosine regulates multiple physiological processes through the activation of four receptor subtypes, of which the A2B adenosine receptor (A2BAR) has the lowest affinity for adenosine. Being the adenosine receptor subtype most prominently expressed in epidermis, we recently described the antiproliferative and anti-inflammatory effect of the selective A2BAR agonist BAY60-6583 (BAY) in human keratinocytes stimulated with 12-O-tetradecanoylphorbol-13-acetate (TPA), so we sought to establish the effect of topical application of BAY in a model of murine epidermal hyperplasia. Topical application of BAY (1 or 10 µg/site) prevented the inflammatory reaction and skin lesions induced by TPA, minimizing hyperproliferation and acanthosis, as well as the expression of specific markers of proliferative keratinocytes. On the other hand, pre-treatment with the selective A2BAR antagonist, PSB-1115 (PSB, 5 or 50 µg/site) reversed these beneficial effects. Additionally, BAY application normalized the expression of epidermal barrier proteins, whose integrity is altered in inflammatory skin diseases, while treatment with the antagonist alone worsened it. Our results, besides confirming the anti-inflammatory and antiproliferative effects of the A2BAR agonist, further demonstrate a role of A2BAR activation to preserve the epidermal barrier. Therefore, the activation of A2BAR may constitute a possible new pharmacological target for the treatment of skin inflammatory diseases such as psoriasis.


Asunto(s)
Adenosina , Enfermedades de la Piel , Ratones , Animales , Humanos , Adenosina/farmacología , Adenosina/metabolismo , Receptor de Adenosina A2B/metabolismo , Hiperplasia/tratamiento farmacológico , Hiperplasia/patología , Modelos Animales de Enfermedad , Epidermis , Antiinflamatorios/farmacología , Enfermedades de la Piel/patología
3.
J Med Chem ; 67(6): 5075-5092, 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38483150

RESUMEN

Aberrantly elevated adenosine in the tumor microenvironment exerts its immunosuppressive functions through adenosine receptors A2AR and A2BR. Antagonism of A2AR and A2BR has the potential to suppress tumor growth. Herein, we report a systemic assessment of the effects of an indole modification at position 4, 5, 6, or 7 on both A2AR/A2BR activity and selectivity of novel 2-aminopyrimidine compounds. Substituting indole at the 4-/5-position produced potent A2AR/A2BR dual antagonism, whereas the 6-position of indole substitution gave highly selective A2BR antagonism. Molecular dynamics simulation showed that the 5-cyano compound 7ai had a lower binding free energy than the 6-cyano compound 7aj due to water-bridged hydrogen bond interactions with E169 or F168 in A2AR. Of note, dual A2AR/A2BR antagonism by compound 7ai can profoundly promote the activation and cytotoxic function of T cells. This work provided a strategy for obtaining novel dual A2AR/A2BR or A2BR antagonists by fine-tuning structural modification.


Asunto(s)
Pirimidinas , Receptor de Adenosina A2A , Receptor de Adenosina A2B , Receptor de Adenosina A2A/metabolismo , Receptor de Adenosina A2B/metabolismo , Adenosina/metabolismo , Indoles
4.
Arch Biochem Biophys ; 754: 109945, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38395121

RESUMEN

Myocardial ischemia-reperfusion injury (MIRI) poses a significant threat to patients with coronary heart disease. Adenosine A2A receptors have been known as a protective role in MIRI by regulating autophagy, so we assumed that activation of adenosine A2B receptor (A2BAR) might exert a similar effect during MIRI and underlying mechanism be related to proteostasis maintenance as well. In situ hearts were subjected to 30 min of ischemia and 120 min of reperfusion (IR), while invitro cardiomyocytes from neonatal rats experienced 6 h of oxygen-glucose deprivation followed by 12 h of reoxygenation (OGDR). Initially, we observed that post-ischemia-reperfusion induced autophagy flux blockade and ERS both in vivo and in vitro, evident through the increased expression of p62, LC3II, and BIP, which indicated the deteriorated proteostasis. We used a selective A2BAR agonist, Bay 60-6583, to explore the positive effects of A2BAR on cardiomyocytes and found that A2BAR activation rescued damaged cardiac function and morphological changes in the IR group and improved frail cell viability in the OGDR group. The A2BAR agonist also alleviated the blockage of autophagic flux, coupled with augmented ERS in the IR/OGDR group, which was reassured by using an autophagy inhibitor chloroquine (CQ) and ERS inhibitor (4-PBA) in vitro. Additionally, considering cAMP/PKA as a well-known downstream effector of A2BAR, we utilized H89, a selective PKA inhibitor. We observed that the positive efficacy of Bay 60-6583 was inhibited by H89. Collectively, our findings demonstrate that the A2BAR/cAMP/PKA signaling pathway exerts a protective role in MIRI by mitigating impaired autophagic flux and excessive ERS.


Asunto(s)
Aminopiridinas , Isoquinolinas , Daño por Reperfusión Miocárdica , Sulfonamidas , Humanos , Ratas , Animales , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/metabolismo , Receptor de Adenosina A2B/metabolismo , Miocitos Cardíacos/metabolismo , Autofagia , Isquemia/metabolismo , Estrés del Retículo Endoplásmico , Apoptosis
5.
Sci China Life Sci ; 67(5): 986-995, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38319473

RESUMEN

The adenosine subfamily G protein-coupled receptors A2AR and A2BR have been identified as promising cancer immunotherapy candidates. One of the A2AR/A2BR dual antagonists, AB928, has progressed to a phase II clinical trial to treat rectal cancer. However, the precise mechanism underlying its dual-antagonistic properties remains elusive. Herein, we report crystal structures of the A2AR complexed with AB928 and a selective A2AR antagonist 2-118. The structures revealed a common binding mode on A2AR, wherein the ligands established extensive interactions with residues from the orthosteric and secondary pockets. In contrast, the cAMP assay and A2AR and A2BR molecular dynamics simulations indicated that the ligands adopted distinct binding modes on A2BR. Detailed analysis of their chemical structures suggested that AB928 readily adapted to the A2BR pocket, while 2-118 did not due to intrinsic differences. This disparity potentially accounted for the difference in inhibitory efficacy between A2BR and A2AR. This study serves as a valuable structural template for the future development of selective or dual inhibitors targeting A2AR/A2BR for cancer therapy.


Asunto(s)
Antagonistas del Receptor de Adenosina A2 , Simulación de Dinámica Molecular , Receptor de Adenosina A2A , Humanos , Antagonistas del Receptor de Adenosina A2/química , Receptor de Adenosina A2A/química , Receptor de Adenosina A2A/metabolismo , Sitios de Unión , Ligandos , Cristalografía por Rayos X , Unión Proteica , Receptor de Adenosina A2B/metabolismo , Receptor de Adenosina A2B/química
6.
Purinergic Signal ; 20(2): 163-179, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37402944

RESUMEN

Sustained pressure overload and fibrosis of the right ventricle (RV) are the leading causes of mortality in pulmonary arterial hypertension (PAH). Although the role of adenosine in PAH has been attributed to the control of pulmonary vascular tone, cardiac reserve, and inflammatory processes, the involvement of the nucleoside in RV remodelling remains poorly understood. Conflicting results exist on targeting the low-affinity adenosine A2B receptor (A2BAR) for the treatment of PAH mostly because it displays dual roles in acute vs. chronic lung diseases. Herein, we investigated the role of the A2BAR in the viability/proliferation and collagen production by cardiac fibroblasts (CFs) isolated from RVs of rats with monocrotaline (MCT)-induced PAH. CFs from MCT-treated rats display higher cell viability/proliferation capacity and overexpress A2BAR compared to the cells from healthy littermates. The enzymatically stable adenosine analogue, 5'-N-ethylcarboxamidoadenosine (NECA, 1-30 µM), concentration-dependently increased growth, and type I collagen production by CFs originated from control and PAH rats, but its effects were more prominent in cells from rats with PAH. Blockage of the A2BAR with PSB603 (100 nM), but not of the A2AAR with SCH442416 (100 nM), attenuated the proliferative effect of NECA in CFs from PAH rats. The A2AAR agonist, CGS21680 (3 and 10 nM), was virtually devoid of effect. Overall, data suggest that adenosine signalling via A2BAR may contribute to RV overgrowth secondary to PAH. Therefore, blockage of the A2AAR may be a valuable therapeutic alternative to mitigate cardiac remodelling and prevent right heart failure in PAH patients.


Asunto(s)
Hipertensión Pulmonar , Hipertensión Arterial Pulmonar , Animales , Humanos , Ratas , Adenosina-5'-(N-etilcarboxamida) , Modelos Animales de Enfermedad , Fibroblastos/metabolismo , Hipertensión Pulmonar/tratamiento farmacológico , Hipertensión Pulmonar/metabolismo , Receptor de Adenosina A2B/metabolismo
7.
Biol Pharm Bull ; 47(1): 60-71, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37926527

RESUMEN

Residual cancer cells after radiation therapy may acquire malignant phenotypes such as enhanced motility and migration ability, and therefore it is important to identify targets for preventing radiation-induced malignancy in order to increase the effectiveness of radiotherapy. G-Protein-coupled receptors (GPCRs) such as adenosine A2B receptor and cannabinoid receptors (CB1, CB2, and GPR55) may be involved, as they are known to have roles in proliferation, invasion, migration and tumor growth. In this study, we investigated the involvement of A2B and cannabinoid receptors in γ-radiation-induced enhancement of cell migration and actin remodeling, as well as the involvement of cannabinoid receptors in cell migration enhancement via activation of A2B receptor in human lung cancer A549 cells. Antagonists or knockdown of A2B, CB1, CB2, or GPR55 receptor suppressed γ-radiation-induced cell migration and actin remodeling. Furthermore, BAY60-6583 (an A2B receptor-specific agonist) enhanced cell migration and actin remodeling in A549 cells, and this enhancement was suppressed by antagonists or knockdown of CB2 or GPR55, though not CB1 receptor. Our results indicate that A2B receptors and cannabinoid CB1, CB2, and GPR55 receptors all contribute to γ-radiation-induced acquisition of malignant phenotypes, and in particular that interactions of A2B receptor and cannabinoid CB2 and GPR55 receptors play a role in promoting cell migration and actin remodeling. A2B receptor-cannabinoid receptor pathways may be promising targets for blocking the appearance of malignant phenotypes during radiotherapy of lung cancer.


Asunto(s)
Cannabinoides , Neoplasias Pulmonares , Humanos , Células A549 , Actinas , Cannabinoides/farmacología , Cannabinoides/metabolismo , Neoplasias Pulmonares/radioterapia , Receptor de Adenosina A2B , Receptores de Cannabinoides
8.
Respir Res ; 24(1): 214, 2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37644529

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronically progressive fibrotic pulmonary disease characterized by an uncertain etiology, a poor prognosis, and a paucity of efficacious treatment options. Dexmedetomidine (Dex), an anesthetic-sparing alpha-2 adrenoceptor (α2AR) agonist, plays a crucial role in organ injury and fibrosis. However, the underlying mechanisms of IPF remain unknown. METHODS: In our study, the role of Dex in murine pulmonary fibrosis models was determined by Dex injection intraperitoneally in vivo. Fibroblast activation and myofibroblast differentiation were assessed after Dex treatment in vitro. The activation of MAPK pathway and the expression of Adenosine A2B receptor (ADORA2B) were examined in lung myofibroblasts. Moreover, the role of ADORA2B in Dex suppressing myofibroblast differentiation and pulmonary fibrosis was determined using the ADORA2B agonist BAY60-6583. RESULTS: The results revealed that Dex could inhibit Bleo-induced pulmonary fibrosis in mice. In vitro studies revealed that Dex suppressed TGF-ß-mediated MAPK pathway activation and myofibroblast differentiation. Furthermore, Dex inhibits myofibroblast differentiation and pulmonary fibrosis via downregulating ADORA2B expression. CONCLUSIONS: Our findings suggest Dex as a potential therapeutic agent for pulmonary fibrosis. Dex may alleviate lung fibrosis and myofibroblast differentiation through the ADORA2B-mediated MAPK signaling pathway.


Asunto(s)
Dexmedetomidina , Fibrosis Pulmonar Idiopática , Animales , Ratones , Dexmedetomidina/farmacología , Dexmedetomidina/uso terapéutico , Receptor de Adenosina A2B/genética , Sistema de Señalización de MAP Quinasas , Transducción de Señal , Fibrosis Pulmonar Idiopática/tratamiento farmacológico
9.
Int J Mol Sci ; 24(13)2023 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-37446007

RESUMEN

Some chemoattractants and leukocytes such as M1 and M2 macrophages are known to be involved in the development of glomerulosclerosis during diabetic nephropathy (DN). In the course of diabetes, an altered and defective cellular metabolism leads to the increase in adenosine levels, and thus to changes in the polarity (M1/M2) of macrophages. MRS1754, a selective antagonist of the A2B adenosine receptor (A2BAR), attenuated glomerulosclerosis and decreased macrophage-myofibroblast transition in DN rats. Therefore, we aimed to investigate the effect of MRS1754 on the glomerular expression/secretion of chemoattractants, the intraglomerular infiltration of leukocytes, and macrophage polarity in DN rats. Kidneys/glomeruli of non-diabetic, DN, and MRS1754-treated DN rats were processed for transcriptomic analysis, immunohistopathology, ELISA, and in vitro macrophage migration assays. The transcriptomic analysis identified an upregulation of transcripts and pathways related to the immune system in the glomeruli of DN rats, which was attenuated using MRS1754. The antagonism of the A2BAR decreased glomerular expression/secretion of chemoattractants (CCL2, CCL3, CCL6, and CCL21), the infiltration of macrophages, and their polarization to M2 in DN rats. The in vitro macrophages migration induced by conditioned-medium of DN glomeruli was significantly decreased using neutralizing antibodies against CCL2, CCL3, and CCL21. We concluded that the pharmacological blockade of the A2BAR decreases the transcriptional expression of genes/pathways related to the immune response, protein expression/secretion of chemoattractants, as well as the infiltration of macrophages and their polarization toward the M2 phenotype in the glomeruli of DN rats, suggesting a new mechanism implicated in the antifibrotic effect of MRS1754.


Asunto(s)
Acetamidas , Antagonistas del Receptor de Adenosina A2 , Polaridad Celular , Factores Quimiotácticos , Nefropatías Diabéticas , Glomérulos Renales , Macrófagos , Purinas , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/inmunología , Glomérulos Renales/efectos de los fármacos , Glomérulos Renales/metabolismo , Factores Quimiotácticos/antagonistas & inhibidores , Factores Quimiotácticos/genética , Factores Quimiotácticos/metabolismo , Polaridad Celular/efectos de los fármacos , Polaridad Celular/inmunología , Macrófagos/efectos de los fármacos , Macrófagos/inmunología , Antagonistas del Receptor de Adenosina A2/farmacología , Receptor de Adenosina A2B , Acetamidas/farmacología , Purinas/farmacología , Animales , Ratas , Movimiento Celular/efectos de los fármacos , Masculino , Ratas Sprague-Dawley , Transcripción Genética/efectos de los fármacos , Biosíntesis de Proteínas/efectos de los fármacos , Inmunidad/efectos de los fármacos , Inmunidad/genética
10.
Curr Opin Pharmacol ; 71: 102393, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37450948

RESUMEN

Increasing evidence demonstrated the relevance of adenosine system in the onset and development of cardiovascular diseases, such as hypertension, myocardial infarct, ischemia, hypertension, heart failure, and atherosclerosis. In this regard, intense research efforts are being focused on the characterization of the pathophysiological significance of adenosine, acting at its membrane receptors named A1, A2A, A2B, and A3 receptors, in cardiovascular diseases. The present review article provides an integrated and comprehensive overview about current clinical and pre-clinical evidence about the role of adenosine in the pathophysiology of cardiovascular diseases. Particular attention has been focused on current scientific evidence about the pharmacological ligands acting on adenosine pathway as useful tools to manage cardiovascular diseases.


Asunto(s)
Enfermedades Cardiovasculares , Hipertensión , Humanos , Adenosina/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Receptor de Adenosina A2A , Receptor de Adenosina A2B/metabolismo
11.
JCI Insight ; 8(11)2023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37288658

RESUMEN

Previous studies implicate extracellular adenosine signaling in attenuating myocardial ischemia and reperfusion injury (IRI). This extracellular adenosine signaling is terminated by its uptake into cells by equilibrative nucleoside transporters (ENTs). Thus, we hypothesized that targeting ENTs would function to increase cardiac adenosine signaling and concomitant cardioprotection against IRI. Mice were exposed to myocardial ischemia and reperfusion injury. Myocardial injury was attenuated in mice treated with the nonspecific ENT inhibitor dipyridamole. A comparison of mice with global Ent1 or Ent2 deletion showed cardioprotection only in Ent1-/- mice. Moreover, studies with tissue-specific Ent deletion revealed that mice with myocyte-specific Ent1 deletion (Ent1loxP/loxP Myosin Cre+ mice) experienced smaller infarct sizes. Measurements of cardiac adenosine levels demonstrated that postischemic elevations of adenosine persisted during reperfusion after targeting ENTs. Finally, studies in mice with global or myeloid-specific deletion of the Adora2b adenosine receptor (Adora2bloxP/loxP LysM Cre+ mice) implied that Adora2b signaling on myeloid-inflammatory cells in cardioprotection provided by ENT inhibition. These studies reveal a previously unrecognized role for myocyte-specific ENT1 in cardioprotection by enhancing myeloid-dependent Adora2b signaling during reperfusion. Extension of these findings implicates adenosine transporter inhibitors in cardioprotection against ischemia and reperfusion injury.


Asunto(s)
Tranportador Equilibrativo 1 de Nucleósido , Isquemia Miocárdica , Receptor de Adenosina A2B , Daño por Reperfusión , Animales , Ratones , Adenosina , Tranportador Equilibrativo 1 de Nucleósido/genética , Miocardio , Receptor de Adenosina A2B/genética
12.
Biomater Adv ; 151: 213457, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37172432

RESUMEN

Biodegradable microspheres offer great potential as functional building blocks for bottom-up bone tissue engineering. However, it remains challenging to understand and regulate cell behaviors in fabrication of injectable bone microtissues using microspheres. The study aims to develop an adenosine functionalized poly (lactide-co-glycolide) (PLGA) microsphere to enhance cell loading efficiency and inductive osteogenesis potential, and subsequently to investigate adenosine signaling-mediated osteogenic differentiation in cells grown on three-dimensional (3D) microspheres and flat control. Adenosine was loaded on PLGA porous microspheres via polydopamine coating, and the cell adhesion and osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) were improved on these microspheres. It was found that adenosine A2B receptor (A2BR) was further activated by adenosine treatment, which consequently enhanced osteogenic differentiation of BMSCs. This effect was more obvious on 3D microspheres compared to 2D flats. However, the promotion of osteogenesis on the 3D microspheres was not eliminated by blocking the A2BR with antagonist. Finally, adenosine functionalized microspheres could fabricate injectable microtissues in vitro, and improve cell delivery and osteogenic differentiation after injection in vivo. Therefore, it is considered that adenosine loaded PLGA porous microspheres will be of good value in minimally invasive injection surgery and bone tissue repair.


Asunto(s)
Células Madre Mesenquimatosas , Osteogénesis , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/farmacología , Receptor de Adenosina A2B , Microesferas , Porosidad , Diferenciación Celular
13.
Front Immunol ; 14: 1163585, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37187740

RESUMEN

Pancreatic ductal adenocarcinoma (PDAC) is characterized by a dense desmoplastic stroma that impedes drug delivery, reduces parenchymal blood flow, and suppresses the anti-tumor immune response. The extracellular matrix and abundance of stromal cells result in severe hypoxia within the tumor microenvironment (TME), and emerging publications evaluating PDAC tumorigenesis have shown the adenosine signaling pathway promotes an immunosuppressive TME and contributes to the overall low survival rate. Hypoxia increases many elements of the adenosine signaling pathway, resulting in higher adenosine levels in the TME, further contributing to immune suppression. Extracellular adenosine signals through 4 adenosine receptors (Adora1, Adora2a, Adora2b, Adora3). Of the 4 receptors, Adora2b has the lowest affinity for adenosine and thus, has important consequences when stimulated by adenosine binding in the hypoxic TME. We and others have shown that Adora2b is present in normal pancreas tissue, and in injured or diseased pancreatic tissue, Adora2b levels are significantly elevated. The Adora2b receptor is present on many immune cells, including macrophages, dendritic cells, natural killer cells, natural killer T cells, γδ T cells, B cells, T cells, CD4+ T cells, and CD8+ T cells. In these immune cell types, adenosine signaling through Adora2b can reduce the adaptive anti-tumor response, augmenting immune suppression, or may contribute to transformation and changes in fibrosis, perineural invasion, or the vasculature by binding the Adora2b receptor on neoplastic epithelial cells, cancer-associated fibroblasts, blood vessels, lymphatic vessels, and nerves. In this review, we discuss the mechanistic consequences of Adora2b activation on cell types in the tumor microenvironment. As the cell-autonomous role of adenosine signaling through Adora2b has not been comprehensively studied in pancreatic cancer cells, we will also discuss published data from other malignancies to infer emerging therapeutic considerations for targeting the Adora2b adenosine receptor to reduce the proliferative, invasive, and metastatic potential of PDAC cells.


Asunto(s)
Linfocitos T CD8-positivos , Neoplasias Pancreáticas , Receptor de Adenosina A2B , Humanos , Adenosina/metabolismo , Linfocitos T CD8-positivos/metabolismo , Hipoxia , Inmunoterapia , Neoplasias Pancreáticas/terapia , Microambiente Tumoral , Receptor de Adenosina A2B/efectos de los fármacos , Receptor de Adenosina A2B/metabolismo
14.
J Natl Cancer Inst ; 115(11): 1404-1419, 2023 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-37195421

RESUMEN

BACKGROUND: We investigated the role of A2B-adenosine receptor in regulating immunosuppressive metabolic stress in the tumor microenvironment. Novel A2B-adenosine receptor antagonist PBF-1129 was tested for antitumor activity in mice and evaluated for safety and immunologic efficacy in a phase I clinical trial of patients with non-small cell lung cancer. METHODS: The antitumor efficacy of A2B-adenosine receptor antagonists and their impact on the metabolic and immune tumor microenvironment were evaluated in lung, melanoma, colon, breast, and epidermal growth factor receptor-inducible transgenic cancer models. Employing electron paramagnetic resonance, we assessed changes in tumor microenvironment metabolic parameters, including pO2, pH, and inorganic phosphate, during tumor growth and evaluated the immunologic effects of PBF-1129, including its pharmacokinetics, safety, and toxicity, in patients with non-small cell lung cancer. RESULTS: Levels of metabolic stress correlated with tumor growth, metastasis, and immunosuppression. Tumor interstitial inorganic phosphate emerged as a correlative and cumulative measure of tumor microenvironment stress and immunosuppression. A2B-adenosine receptor inhibition alleviated metabolic stress, downregulated expression of adenosine-generating ectonucleotidases, increased expression of adenosine deaminase, decreased tumor growth and metastasis, increased interferon γ production, and enhanced the efficacy of antitumor therapies following combination regimens in animal models (anti-programmed cell death 1 protein vs anti-programmed cell death 1 protein plus PBF-1129 treatment hazard ratio = 11.74 [95% confidence interval = 3.35 to 41.13], n = 10, P < .001, 2-sided F test). In patients with non-small cell lung cancer, PBF-1129 was well tolerated, with no dose-limiting toxicities; demonstrated pharmacologic efficacy; modulated the adenosine generation system; and improved antitumor immunity. CONCLUSIONS: Data identify A2B-adenosine receptor as a valuable therapeutic target to modify metabolic and immune tumor microenvironment to reduce immunosuppression, enhance the efficacy of immunotherapies, and support clinical application of PBF-1129 in combination therapies.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Neoplasias Pulmonares , Humanos , Animales , Ratones , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Receptor de Adenosina A2B/metabolismo , Microambiente Tumoral , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/patología , Terapia de Inmunosupresión , Adenosina/metabolismo , Fosfatos , Línea Celular Tumoral
15.
Am J Pathol ; 193(7): 950-959, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37028594

RESUMEN

Klotho is known for its age-suppressing function and has been implicated in sarcopenia pathology. It has recently been proposed that the adenosine A2B receptor plays a crucial role in skeletal muscle energy expenditure. However, the association between Klotho and A2B remains elusive. In this study, Klotho knockout mice, aged 10 weeks, and wild-type mice, aged 10 and 64 weeks, were used for comparison in indicators of sarcopenia (n = 6 for each group). PCR was performed to confirm the mice genotypes. Skeletal muscle sections were analyzed using hematoxylin and eosin staining as well as immunohistochemistry staining. The skeletal muscle cross-sectional area was significantly reduced in Klotho knockout mice and wild-type mice, aged 64 weeks, when compared with wild-type mice, aged 10 weeks, with a decreased percentage of type IIa and IIb myofibers. Likely impaired regenerative capacity, as reflected by the reduction of paired box 7 (Pax7)- and myogenic differentiation protein 1 (MyoD)-positive cells, was also observed in Klotho knockout mice and aged wild-type mice. 8-Hydroxy-2-deoxyguanosine expression was enhanced with Klotho knockout and aging, indicating higher oxidative stress. Adenosine A2B signaling was impaired, with a lower expression of the A2B receptor and the cAMP-response element binding protein in Klotho knockout and aged mice. The present study provides the novel finding that sarcopenia involves adenosine signaling under the influence of Klotho knockout.


Asunto(s)
Receptor de Adenosina A2B , Sarcopenia , Ratones , Animales , Receptor de Adenosina A2B/genética , Receptor de Adenosina A2B/metabolismo , Glucuronidasa/metabolismo , Mutación con Pérdida de Función , Sarcopenia/genética , Sarcopenia/metabolismo , Sarcopenia/patología , Músculo Esquelético/metabolismo , Ratones Noqueados
16.
Technol Cancer Res Treat ; 22: 15330338221150318, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36786018

RESUMEN

Adenosine receptors play a key role in cancer progression. This study investigated the effect of the adenosine A2B receptor (ADORA2B) on epithelial-mesenchymal transition (EMT) markers and cell metastasis of gastric cancer (GC) cells. Public databases were used to investigate the specificity of ADORA2B expression in GC tissue. We used immunohistochemistry and immunofluorescence to detect ADORA2B expression in GC tissue, paracancerous tissue, and metastatic greater omental tissue. AGS and HGC-27 GC cells were selected. The effect of ADORA2B on the invasion and migration of GC cells was examined using cell scratch and transwell assays. The effect of ADORA2B on the expression of EMT marker proteins (ß-catenin, N-cadherin, and vimentin) in GC cells was measured by cellular immunohistochemistry, immunofluorescence, and Western blot. The effects of an ADORA2B inhibitor combined with cisplatin on EMT markers in GC cells were further explored. The expression levels of ADORA2B in GC tissue, metastatic greater omental tissue, and lymphatic metastasis tissue were significantly higher than those in paracancerous tissue, and ADORA2B was associated with lymph node metastasis and invasion. ADORA2B significantly regulated the invasion and migration ability of GC cells and the expression levels of EMT marker proteins. The combination of an ADORA2B antagonist (PSB-603) and cisplatin had a more significant effect on reversing the expression of EMT marker proteins. ADORA2B was overexpressed in GC tissue, metastatic greater omental tissue, and metastatic lymph node tissue. ADORA2B regulated the expression of EMT marker proteins in GC cells and affected GC cell metastasis. Antagonizing ADORA2B expression increased the efficacy of cisplatin treatment.


Asunto(s)
Neoplasias Gástricas , Humanos , Neoplasias Gástricas/tratamiento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo , Cisplatino/farmacología , Antagonistas de Receptores Purinérgicos P1/farmacología , Receptor de Adenosina A2B/genética , Receptor de Adenosina A2B/metabolismo , Cadherinas , Metástasis Linfática , Transición Epitelial-Mesenquimal/genética , Línea Celular Tumoral , Movimiento Celular , Regulación Neoplásica de la Expresión Génica , Invasividad Neoplásica
17.
J Med Chem ; 66(1): 890-912, 2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36517209

RESUMEN

The modulation of the A2B adenosine receptor is a promising strategy in cancer (immuno) therapy, with A2BAR antagonists emerging as immune checkpoint inhibitors. Herein, we report a systematic assessment of the impact of (di- and mono-)halogenation at positions 7 and/or 8 on both A2BAR affinity and pharmacokinetic properties of a collection of A2BAR antagonists and its study with structure-based free energy perturbation simulations. Monohalogenation at position 8 produced potent A2BAR ligands irrespective of the nature of the halogen. In contrast, halogenation at position 7 and dihalogenation produced a halogen-size-dependent decay in affinity. Eight novel A2BAR ligands exhibited remarkable affinity (Ki < 10 nM), exquisite subtype selectivity, and enantioselective recognition, with some eutomers eliciting sub-nanomolar affinity. The pharmacokinetic profile of representative derivatives showed enhanced solubility and microsomal stability. Finally, two compounds showed the capacity of reversing the antiproliferative effect of adenosine in activated primary human peripheral blood mononuclear cells.


Asunto(s)
Halogenación , Antagonistas de Receptores Purinérgicos P1 , Cricetinae , Animales , Humanos , Células CHO , Leucocitos Mononucleares/metabolismo , Antagonistas del Receptor de Adenosina A2/farmacología , Receptor de Adenosina A2B/metabolismo , Ligandos , Halógenos
18.
Sci Adv ; 8(51): eadd3709, 2022 12 23.
Artículo en Inglés | MEDLINE | ID: mdl-36563137

RESUMEN

The human adenosine A2B receptor (A2BR) is a class A G protein-coupled receptor that is involved in several major physiological and pathological processes throughout the body. A2BR recognizes its ligands adenosine and NECA with relatively low affinity, but the detailed mechanism for its ligand recognition and signaling is still elusive. Here, we present two structures determined by cryo-electron microscopy of A2BR bound to its agonists NECA and BAY60-6583, each coupled to an engineered Gs protein. The structures reveal conserved orthosteric binding pockets with subtle differences, whereas the selectivity or specificity can mainly be attributed to regions extended from the orthosteric pocket. We also found that BAY60-6583 occupies a secondary pocket, where residues V2506.51 and N2737.36 were two key determinants for its selectivity against A2BR. This study offers a better understanding of ligand selectivity for the adenosine receptor family and provides a structural template for further development of A2BR ligands for related diseases.


Asunto(s)
Adenosina , Receptor de Adenosina A2B , Humanos , Adenosina/metabolismo , Adenosina-5'-(N-etilcarboxamida) , Microscopía por Crioelectrón , Ligandos , Receptor de Adenosina A2B/metabolismo , Proteínas de Unión al GTP/metabolismo
19.
Biochem Pharmacol ; 206: 115331, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36330948

RESUMEN

Intestinal barrier dysfunction, a leaky gut, contributes to the pathophysiology of various diseases such as dementia and irritable bowel syndrome (IBS). We recently clarified that orexin, ghrelin, or adenosine A2B signaling in the brain improved leaky gut through the vagus nerve. The present study was performed to clarify whether basal forebrain cholinergic neurons (BFCNs) are implicated in the central regulation of intestinal barrier function. We activated BFCNs using benzyl quinolone carboxylic acid (BQCA), a positive muscarinic M1 allosteric modulator, and evaluated colonic permeability by quantifying the absorbed Evans blue in rat colonic tissue. Intracisternal (not intraperitoneal) injection of BQCA blocked the increased colonic permeability in response to lipopolysaccharide. Vagotomy blocked BQCA-induced improvement of colonic hyperpermeability. Intracisternally administered pirenzepine, a muscarinic M1 selective antagonist, prevented intestinal barrier function improvement by intravenously administered 2-deoxy-d-glucose, central vagal stimulant. Adenosine A2B receptor antagonist but not dopamine or opioid receptor antagonist prevented BQCA-induced blockade of colonic hyperpermeability. Additionally, intracisternal injection of pirenzepine blocked orexin- or butyrate-induced intestinal barrier function improvement. These results suggest that BFCNs improve leaky gut through adenosine A2B signaling and the vagal pathway. Furthermore, BFCNs mediate orexin- or butyrate-induced intestinal barrier function improvement. Since BFCNs play a role in cognitive function and a leaky gut is associated with dementia, the present finding may lead us to speculate that BFCNs are involved in the development of dementia by regulating intestinal barrier function.


Asunto(s)
Prosencéfalo Basal , Demencia , Animales , Ratas , Adenosina/farmacología , Butiratos , Colinérgicos , Neuronas Colinérgicas , Orexinas , Pirenzepina , Receptor de Adenosina A2B , Nervio Vago
20.
Int J Mol Sci ; 23(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36362227

RESUMEN

The adenosine A2A and A2B receptors are promising therapeutic targets in the treatment of obesity and diabetes since the agonists and antagonists of these receptors have the potential to positively affect metabolic disorders. The present study investigated the link between body weight reduction, glucose homeostasis, and anti-inflammatory activity induced by a highly potent and specific adenosine A2B receptor antagonist, compound PSB-603. Mice were fed a high-fat diet for 14 weeks, and after 12 weeks, they were treated for 14 days intraperitoneally with the test compound. The A1/A2A/A2B receptor antagonist theophylline was used as a reference. Following two weeks of treatment, different biochemical parameters were determined, including total cholesterol, triglycerides, glucose, TNF-α, and IL-6 blood levels, as well as glucose and insulin tolerance. To avoid false positive results, mouse locomotor and spontaneous activities were assessed. Both theophylline and PSB-603 significantly reduced body weight in obese mice. Both compounds had no effects on glucose levels in the obese state; however, PSB-603, contrary to theophylline, significantly reduced triglycerides and total cholesterol blood levels. Thus, our observations showed that selective A2B adenosine receptor blockade has a more favourable effect on the lipid profile than nonselective inhibition.


Asunto(s)
Enfermedades Metabólicas , Antagonistas de Receptores Purinérgicos P1 , Animales , Ratones , Adenosina/farmacología , Antagonistas del Receptor de Adenosina A2/farmacología , Antagonistas del Receptor de Adenosina A2/uso terapéutico , Antagonistas del Receptor de Adenosina A2/metabolismo , Peso Corporal , Colesterol/uso terapéutico , Glucosa/metabolismo , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Nucleósidos de Purina , Antagonistas de Receptores Purinérgicos P1/uso terapéutico , Receptor de Adenosina A2B/metabolismo , Teofilina , Triglicéridos/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...