Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Blood ; 144(5): 552-564, 2024 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-38820589

RESUMEN

ABSTRACT: Chronic kidney disease (CKD) is a major contributor to morbidity and mortality in sickle cell disease (SCD). Anemia, induced by chronic persistent hemolysis, is associated with the progressive deterioration of renal health, resulting in CKD. Moreover, patients with SCD experience acute kidney injury (AKI), a risk factor for CKD, often during vaso-occlusive crisis associated with acute intravascular hemolysis. However, the mechanisms of hemolysis-driven pathogenesis of the AKI-to-CKD transition in SCD remain elusive. Here, we investigated the role of increased renovascular rarefaction and the resulting substantial loss of the vascular endothelial protein C receptor (EPCR) in the progressive deterioration of renal function in transgenic SCD mice. Multiple hemolytic events raised circulating levels of soluble EPCR (sEPCR), indicating loss of EPCR from the cell surface. Using bone marrow transplantation and super-resolution ultrasound imaging, we demonstrated that SCD mice overexpressing EPCR were protective against heme-induced CKD development. In a cohort of patients with SCD, plasma sEPCR was significantly higher in individuals with CKD than in those without CKD. This study concludes that multiple hemolytic events may trigger CKD in SCD through the gradual loss of renovascular EPCR. Thus, the restoration of EPCR may be a therapeutic target, and plasma sEPCR can be developed as a prognostic marker for sickle CKD.


Asunto(s)
Anemia de Células Falciformes , Receptor de Proteína C Endotelial , Hemo , Ratones Transgénicos , Insuficiencia Renal Crónica , Animales , Anemia de Células Falciformes/complicaciones , Anemia de Células Falciformes/patología , Anemia de Células Falciformes/metabolismo , Anemia de Células Falciformes/sangre , Insuficiencia Renal Crónica/patología , Insuficiencia Renal Crónica/metabolismo , Insuficiencia Renal Crónica/sangre , Insuficiencia Renal Crónica/complicaciones , Insuficiencia Renal Crónica/etiología , Receptor de Proteína C Endotelial/metabolismo , Receptor de Proteína C Endotelial/genética , Ratones , Hemo/metabolismo , Humanos , Masculino , Femenino , Hemólisis , Riñón/metabolismo , Riñón/patología
2.
Sci Rep ; 13(1): 10919, 2023 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-37407627

RESUMEN

Citrus species among the most important and widely consumed fruit in the world due to Vitamin C, essential oil glands, and flavonoids. Highly variable simple sequence repeats (SSR) markers are one of the most informative and versatile molecular markers used in perennial tree genetic research. SSR survey of Citrus sinensis and Citrus maxima were identified perfect SSRs spanning nine chromosomes. Furthermore, we categorized all SSR motifs into three major classes based on their tract lengths. We designed and validated a class I SSRs in the C. sinensis and C. maxima genome through electronic polymerase chain reaction (ePCR) and found 83.89% in C. sinensis and 78.52% in C. maxima SSRs producing a single amplicon. Then, we selected extremely variable SSRs (> 40 nt) from the ePCR-verified class I SSRs and in silico validated across seven draft genomes of citrus, which provided us a subset of 84.74% in C. sinensis and 77.53% in C. maxima highly polymorphic SSRs. Out of these, 129 primers were validated on 24 citrus genotypes through wet-lab experiment. We found 127 (98.45%) polymorphic HvSSRs on 24 genotypes. The utility of the developed HvSSRs was demonstrated by analysing genetic diversity of 181 citrus genotypes using 17 HvSSRs spanning nine citrus chromosomes and were divided into 11 main groups through 17 HvSSRs. These chromosome-specific SSRs will serve as a powerful genomic tool used for future QTL mapping, molecular breeding, investigation of population genetic diversity, comparative mapping, and evolutionary studies among citrus and other relative genera/species.


Asunto(s)
Citrus , Citrus/genética , Receptor de Proteína C Endotelial/genética , Genoma de Planta , Marcadores Genéticos , Repeticiones de Microsatélite/genética , Cromosomas
3.
In Vivo ; 37(4): 1680-1687, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37369465

RESUMEN

BACKGROUND/AIM: The Philadelphia chromosome-negative (Ph-) myeloproliferative neoplasms (MPNs) are a group of blood cancers that arise from abnormal growth of blood cells in the bone marrow. Patients with MPNs are at increased risk for life-threatening thromboembolic complications. The detection of JAK2V617F in endothelial cells (ECs) brought a new perspective to the research of thromboembolic events. However, the mechanisms by which the mutation contributes to risk have yet to be entirely understood. Consequently, the objective of this study was to investigate how JAK2V617F impacts endothelial cells by considering thermoregulation. MATERIALS AND METHODS: We applied our previously created model for EC that was genetically modified with JAK2 wild type (WT)-GFP and JAK2V617F-GFP lentiviruses; the cells were cultured for 48 h at 37°C for normothermia and 32°C for mild hypothermia. We examined the effect of thermoregulation on infection efficiency and the expression of cell surface markers, including endothelial protein C receptor (EPCR), thrombomodulin (TM), and tissue factor (TF), which are related to the coagulation pathways. Furthermore, the microparticle production from the genetically modified EC (EMPs) was analyzed. RESULTS: We found suppression of the expression of coagulation factors, including EPCR, TM, and TF in JAK2V617F positive ECs under mild hypothermia. JAK2V617F-positive ECs showed slightly higher EMP production under mild hypothermia. CONCLUSION: Although the molecular mechanisms of the thermal effects on the tumor microenvironment with JAK2V617F and its effect on EMP production and coagulation are not known yet, the therapy-oriented effect of thermoregulation might be considered in future studies.


Asunto(s)
Hipotermia , Trastornos Mieloproliferativos , Humanos , Receptor de Proteína C Endotelial/genética , Células Endoteliales , Mutación
4.
Cells Dev ; 174: 203843, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37080459

RESUMEN

Endothelial protein C receptor (EPCR) has emerged as one of the most conserved and reliable surface markers for the prospective identification and isolation of hematopoietic stem cells (HSCs). Prior studies have consistently demonstrated that EPCR expression enriches HSCs capable of long-term multilineage repopulation in both mouse and human across different hematopoietic tissues, including bone marrow (BM), fetal liver and ex vivo HSC expansion cultures. However, little is known about the expression profiles of EPCR in multipotent progenitor (MPP) populations located immediately downstream of HSCs in the hematopoietic hierarchy and which play a major role in sustaining lifelong blood cell production. Here, we incorporate EPCR antibody detection into a multi-parameter flow cytometric panel, which allows accurate identification of HSCs and five MPP subsets (MPP1-5) in mouse BM. Our data reveal that all MPP populations contain EPCR-expressing cells. Multipotent MPP1 and MPP5 contain higher proportion of EPCR+ cells compared to the more lineage-biased MPP2-4. Notably, high expression of EPCR enriches phenotypic HSC and MPP5, but not MPP1. Comparison of EPCR expression profiles between young and old BM reveals ageing mediated expansion of EPCR-expressing cells only in HSCs, but not in any of the MPP populations. Collectively, our study provides a comprehensive characterization of the surface expression pattern of EPCR in mouse HSC and MPP1-5 cells during normal and aged hematopoiesis.


Asunto(s)
Médula Ósea , Células Madre Hematopoyéticas , Anciano , Animales , Humanos , Ratones , Médula Ósea/metabolismo , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/metabolismo , Células Madre Hematopoyéticas/metabolismo , Células Madre Multipotentes/metabolismo , Estudios Prospectivos
5.
Infect Genet Evol ; 110: 105413, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36775045

RESUMEN

Plasmodium parasites responsible for malaria follow a complex life cycle of which half takes place inside the human host. Parasites present diverse antigens at different stages of their life cycle and interact with many surface molecules to attach to and enter host cells. The CIDRα1 domain of Plasmodium falciparum Erythrocyte Membrane Protein 1 (PfEMP1) in infected erythrocytes adheres to one such vascular receptor endothelial protein C receptor (EPCR). EPCR is implicated in the pathogenesis of severe malaria as preferential binding of CIDRα1 to endothelium results in widespread sequestration of infected erythrocytes leading to endothelium inflammation and severe disease. A single EPCR variant S219G is clinically reported to provide protection from severe malaria. In this work, we have collated all single nucleotide polymorphisms (SNPs) in EPCR from dbSNP. We structurally mapped the SNPs on the three-dimensional complex of EPCR and PfEMP1 CIDRα1. Analysis shows that most EPCR mutations lie on the receptor surface and are non-conservative. Of the 11 mutations in the CIDRα1-interaction region of EPCR, S88P, L96V/I, and R98L/H/P/C are seen with comparably higher occurrences in diverse populations. Our structural analysis details a framework of the interactions between the parasite ligand and host factor EPCR. These structural glimpses provide a blueprint for designing both field-based variant sequencing studies and vaccine development.


Asunto(s)
Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Receptor de Proteína C Endotelial/genética , Polimorfismo de Nucleótido Simple , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Plasmodium falciparum/genética , Antígenos CD/metabolismo , Malaria/parasitología , Proteínas Protozoarias/química , Genómica , Malaria Falciparum/parasitología , Eritrocitos/parasitología
6.
Expert Rev Hematol ; 16(2): 141-146, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36523147

RESUMEN

BACKGROUND: Due to their chronic hypercoagulable status, thalassemic individuals are at an elevated risk of developing thromboembolic sequence consequences. The goal of the current study is to assesses the EPCR gene polymorphism and soluble EPCR in Egyptian thalassemic children and its role in hypercoagulable state. RESEARCH DESIGN AND METHODS: Eighty children diagnosed as thalassemia major and 80 healthy youngsters as a control group. The EPCR gene was identified using a restriction fragment length polymerase chain reaction (RFLP PCR). Additionally, we assessed the soluble EPCR levels using an enzyme-linked immunosorbent assay (ELISA). RESULTS: Frequency of 1651C-G EPCR, the GC genotype was strongly related with an increased risk of coagulation (OR = 1.83 (0.64-5.26), P = 0.0.016). In addition, soluble EPCR was considerably higher in patients with thalassemia than in controls, P value <0.001. Our study revealed significance difference between soluble EPCR and different genotypes. CONCLUSION: Polymorphisms in the EPCR gene and an elevated soluble EPCR level in patients with ß-thalassemia major may contribute to these patients' hemostatic derangement in thalassemic Egyptian children.


Asunto(s)
Tromboembolia , Talasemia beta , Humanos , Niño , Receptor de Proteína C Endotelial/genética , Talasemia beta/genética , Polimorfismo Genético , Genotipo
7.
J Infect Dis ; 227(2): 179-182, 2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36416015

RESUMEN

The endothelial protein C receptor (EPCR)-rs867186 G allele has been linked to high plasma levels of soluble EPCR (sEPCR) and controversially associated with either susceptibility or resistance to severe and cerebral malaria. In this study, quantitative enzyme-linked immunosorbent assay and sequencing were used to assess sEPCR levels and EPCR-rs867186 polymorphism in blood samples from Beninese children with different clinical presentations of malaria. Our findings show that sEPCR levels were higher at hospital admission than during convalescence and that EPCR-rs867186 G allele was associated with increased sEPCR plasma levels, malaria severity, and mortality rate (P < .001, P = .03, and P = .04, respectively), suggesting a role of sEPCR in the pathogenesis of severe malaria.


Asunto(s)
Malaria Cerebral , Receptores de Superficie Celular , Humanos , Niño , Receptor de Proteína C Endotelial/genética , Polimorfismo Genético
8.
J Med Virol ; 94(10): 4803-4808, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35710974

RESUMEN

The development of cardiovascular disease shows increase after contracting coronavirus 2019 (COVID-19) disease and myocardial damage is observed in patients who have had the disease severely. The relationship between genetic cardiovascular risk factors with COVID-19 infection was investigated in our study. One hundred thirty-five patients, 27 of whom were COVID-19 (-) and 108 were COVID-19 (+) patients, were included in the study. Patients were divided into three groups ([COVID-19 [-], COVID-19 [+] asymptomatic, and COVID-19 [+] symptomatic + patients with pulmonary involvement]). Genetic cardiovascular risk factors were examined in blood samples taken from the patients with new generation sequencing analysis. In the clinical classification, there were no significant differences between the three groups in fibrinogen beta chain-455G>A, human platelet antigen 1 (HPA1b)/platelet receptor GPIIIa/(ITGB3) (HPA1a/b; GpIIIa; integrin beta 3 L33P), ACE I/D, AGT (M268T), AGTR1 (1166A>C), Apo E (E2/E3/E4) (rs7412, rs429358), eNOS (786T>C), eNOS (894G>T) genes (p > 0.05). However, significant differences were observed in PROCR H3 haplotype/G (endothelial protein C receptor gene [EPCR] 4600A>G [A3 haplotype]), PROCR H1 haplotype/C (EPCR 4678G>C [A1 haplotype]) genes (p < 0.05). When COVID-19 (+) and COVID-19 (-) groups were compared, it was observed that the infection was more common in people with PROCR H1 haplotype/C and PROCR H3 haplotype/G genotypes (p < 0.05). PROCR H1 and PROCR H3 haplotypes may be an important factor in contracting COVID-19 disease. In people with COVID-19 disease, revealing PROCR genetic differences and measuring sEPCR levels will be beneficial in the follow-up of the disease.


Asunto(s)
COVID-19 , Receptor de Proteína C Endotelial , Integrina beta3 , Antígenos CD/genética , COVID-19/epidemiología , COVID-19/genética , Receptor de Proteína C Endotelial/genética , Haplotipos , Humanos , Integrina beta3/genética , Receptores de Superficie Celular
9.
Development ; 149(12)2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35587592

RESUMEN

Vascular establishment is one of the early events in embryogenesis. It is believed that vessel-initiating endothelial progenitors cluster to form the first primitive vessel. Understanding the molecular identity of these progenitors is crucial in order to elucidate lineage hierarchy. In this study, we identify protein C receptor (Procr) as an endothelial progenitor marker and investigate the role of Procr+ progenitors during embryonic vascular development. Using a ProcrmGFP-2A-lacZ reporter, we reveal a much earlier Procr expression (embryonic day 7.5) than previously acknowledged (embryonic day 13.5). Genetic fate-mapping experiments using ProcrCre and ProcrCreER demonstrate that Procr+ cells give rise to blood vessels throughout the entire embryo proper. Single-cell RNA-sequencing analyses place Procr+ cells at the start of endothelial commitment and maturation. Furthermore, targeted ablation of Procr+ cells results in failure of vessel formation and early embryonic lethality. Notably, genetic fate mapping and scRNA-seq pseudotime analysis support the view that Procr+ progenitors can give rise to hemogenic endothelium. In this study, we establish a Procr expression timeline and identify Procr+ vessel-initiating progenitors, and demonstrate their indispensable role in establishment of the vasculature during embryo development.


Asunto(s)
Hemangioblastos , Embrión de Mamíferos/metabolismo , Desarrollo Embrionario/genética , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/metabolismo , Hemangioblastos/metabolismo
10.
Cell Rep ; 38(12): 110548, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35320720

RESUMEN

The protein C receptor (Procr) has been implicated as a stem cell surface marker in several tissues. It is unknown whether Procr acts as a functional signaling receptor in stem cells. Here, by conditional knockout in mammary stem cells (MaSCs), we demonstrate that Procr is essential for mammary gland development and homeostasis. Through proteomics profiling, we identify that, upon stimulation by the ligand protein C, Procr interacts with heat shock protein 90 (HSP90AA1) via its short cytoplasmic tail, recruiting Src and IGF1R to the complex at the plasma membrane. We show that Procr acts as a signaling receptor of protein C in regulation of MaSCs through HSP90, Src, and IGF1R in vitro. In vivo, IGF1R deletion in MaSCs displays similar phenotypes to Procr deletion. These findings illustrate the essential role of Procr signaling in MaSC maintenance, shedding light onto the molecular regulation by Procr in tissue stem cells.


Asunto(s)
Proteína C , Células Madre , Animales , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/metabolismo , Glándulas Mamarias Animales/metabolismo , Proteína C/metabolismo , Transducción de Señal , Células Madre/metabolismo
11.
Nat Commun ; 13(1): 1222, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35264566

RESUMEN

Many individual genetic risk loci have been associated with multiple common human diseases. However, the molecular basis of this pleiotropy often remains unclear. We present an integrative approach to reveal the molecular mechanism underlying the PROCR locus, associated with lower coronary artery disease (CAD) risk but higher venous thromboembolism (VTE) risk. We identify PROCR-p.Ser219Gly as the likely causal variant at the locus and protein C as a causal factor. Using genetic analyses, human recall-by-genotype and in vitro experimentation, we demonstrate that PROCR-219Gly increases plasma levels of (activated) protein C through endothelial protein C receptor (EPCR) ectodomain shedding in endothelial cells, attenuating leukocyte-endothelial cell adhesion and vascular inflammation. We also associate PROCR-219Gly with an increased pro-thrombotic state via coagulation factor VII, a ligand of EPCR. Our study, which links PROCR-219Gly to CAD through anti-inflammatory mechanisms and to VTE through pro-thrombotic mechanisms, provides a framework to reveal the mechanisms underlying similar cross-phenotype associations.


Asunto(s)
Trombosis , Tromboembolia Venosa , Antígenos CD/genética , Cruzamientos Genéticos , Células Endoteliales/metabolismo , Receptor de Proteína C Endotelial/genética , Humanos , Proteína C/metabolismo , Receptores de Superficie Celular/genética , Trombosis/genética , Tromboembolia Venosa/genética
12.
Elife ; 112022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-35285801

RESUMEN

Ovarian surface epithelium (OSE) undergoes recurring ovulatory rupture and OSE stem cells rapidly generate new cells for the repair. How the stem cell activation is triggered by the rupture and promptly turns on proliferation is unclear. Our previous study has identified that Protein C Receptor (Procr) marks OSE progenitors. In this study, we observed decreased adherent junction and selective activation of YAP signaling in Procr progenitors at OSE rupture site. OSE repair is impeded upon deletion of Yap1 in these progenitors. Interestingly, Procr+ progenitors show lower expression of Vgll4, an antagonist of YAP signaling. Overexpression of Vgll4 in Procr+ cells hampers OSE repair and progenitor proliferation, indicating that selective low Vgll4 expression in Procr+ progenitors is critical for OSE repair. In addition, YAP activation promotes transcription of the OSE stemness gene Procr. The combination of increased cell division and Procr expression leads to expansion of Procr+ progenitors surrounding the rupture site. These results illustrate a YAP-dependent mechanism by which the stem/progenitor cells recognize the murine ovulatory rupture, and rapidly multiply their numbers, highlighting a YAP-induced stem cell expansion strategy.


Asunto(s)
Células Epiteliales , Ovario , Animales , Receptor de Proteína C Endotelial/genética , Células Epiteliales/fisiología , Epitelio/metabolismo , Femenino , Ratones , Ovario/metabolismo , Células Madre/metabolismo , Proteínas Señalizadoras YAP
13.
Thromb Haemost ; 122(8): 1326-1332, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35021256

RESUMEN

BACKGROUND: The protein C (PC) anticoagulant system has a key role in maintaining hemostatic balance. One missense (Ser219Gly) variant in the PC receptor (PROCR) was associated with venous thromboembolism (VTE) in genome-wide association studies. OBJECTIVES: This study aimed to determine the thrombotic risk of rare and common PROCR variants in a large population-based cohort of middle-aged and older adults. METHODS: The exonic sequence of PROCR was analyzed for the Ser219Gly variant and other qualifying variants in 28,794 subjects (born 1923-1950, 60% women) without previous VTE, who participated in the Malmö Diet and Cancer study (1991-1996). Incidence of VTE was followed up until 2018. Qualifying variants were defined as loss-of-function or nonbenign (PolyPhen-2) missense variants with minor allele frequencies (MAFs) <0.1%. RESULTS: Re-sequencing identified 36 PROCR variants in the study population (26,210 non-VTE exomes and 2,584 VTE exomes), 11 synonymous, 22 missense, and three loss-of-function variants. Kaplan-Meier analysis of the known Ser219Gly variant (rs867186) showed that homozygosity for this variant increased the risk of disease, whereas heterozygosity showed no effect. Cox multivariate regression analysis revealed an adjusted hazard ratio (HR) of 1.5 (95% confidence interval [CI]: 1.1-2.0). Fifteen rare variants were classified as qualifying and were included in collapsing analysis (burden test and SKAT-O). They did not contribute to risk. However, a Arg113Cys missense variant (rs146420040; MAF = 0.004) showed an increased VTE risk (HR = 1.3; 95% CI: 1.0-1.9). CONCLUSION: Homozygosity for the Ser219Gly variant and a previously identified functional PROCR variant (Arg113Cys) was associated with VTE. Other variants did not contribute to VTE.


Asunto(s)
Receptor de Proteína C Endotelial , Trombosis , Tromboembolia Venosa , Anciano , Estudios de Cohortes , Receptor de Proteína C Endotelial/genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Masculino , Persona de Mediana Edad , Proteína C/genética , Factores de Riesgo , Trombosis/epidemiología , Trombosis/genética , Tromboembolia Venosa/epidemiología , Tromboembolia Venosa/genética
14.
BMC Biotechnol ; 21(1): 42, 2021 07 19.
Artículo en Inglés | MEDLINE | ID: mdl-34281556

RESUMEN

BACKGROUND: Protein C receptor (Procr) has recently been shown to mark resident adult stem cells in the mammary gland, vascular system, and pancreatic islets. More so, high Procr expression was also detected and used as indicator for subsets of triple-negative breast cancers (TNBCs). Previous study has revealed Procr as a target of Wnt/ß-catenin signaling; however, direct upstream regulatory mechanism of Procr remains unknown. To comprehend the molecular role of Procr during physiology and pathology, elucidating the upstream effectors of Procr is necessary. Here, we provide a system for screening negative regulators of Procr, which could be adapted for broad molecular analysis on membrane proteins. RESULTS: We established a screening system which combines CRISPR-Cas9 guided gene disruption with fluorescence activated cell sorting technique (FACS). CommaDß (murine epithelial cells line) was used for the initial Procr upstream effector screening using lentiviral CRISPR-gRNA library. Shortlisted genes were further validated through individual lentiviral gRNA infection followed by Procr expression evaluation. Adam17 was identified as a specific negative inhibitor of Procr expression. In addition, MDA-MB-231 cells and Hs578T cells (human breast cancer cell lines) were used to verify the conserved regulation of ADAM17 over PROCR expression. CONCLUSION: We established an efficient CRISPR-Cas9/FACS screening system, which identifies the regulators of membrane proteins. Through this system, we identified Adam17 as the negative regulator of Procr membrane expression both in mammary epithelial cells and breast cancer cells.


Asunto(s)
Proteína ADAM17/metabolismo , Receptor de Proteína C Endotelial/genética , Lentivirus/genética , Glándulas Mamarias Humanas/enzimología , Proteína ADAM17/genética , Secuencia de Bases , Línea Celular , Regulación hacia Abajo , Receptor de Proteína C Endotelial/metabolismo , Biblioteca de Genes , Vectores Genéticos/genética , Vectores Genéticos/metabolismo , Humanos , Lentivirus/metabolismo , ARN Guía de Kinetoplastida/genética
15.
Elife ; 102021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33908865

RESUMEN

Sequestration of Plasmodium falciparum(P. falciparum)-infected erythrocytes to host endothelium through the parasite-derived P. falciparum erythrocyte membrane protein 1 (PfEMP1) adhesion proteins is central to the development of malaria pathogenesis. PfEMP1 proteins have diversified and expanded to encompass many sequence variants, conferring each parasite a similar array of human endothelial receptor-binding phenotypes. Here, we analyzed RNA-seq profiles of parasites isolated from 32 P. falciparum-infected adult travellers returning to Germany. Patients were categorized into either malaria naive (n = 15) or pre-exposed (n = 17), and into severe (n = 8) or non-severe (n = 24) cases. For differential expression analysis, PfEMP1-encoding var gene transcripts were de novo assembled from RNA-seq data and, in parallel, var-expressed sequence tags were analyzed and used to predict the encoded domain composition of the transcripts. Both approaches showed in concordance that severe malaria was associated with PfEMP1 containing the endothelial protein C receptor (EPCR)-binding CIDRα1 domain, whereas CD36-binding PfEMP1 was linked to non-severe malaria outcomes. First-time infected adults were more likely to develop severe symptoms and tended to be infected for a longer period. Thus, parasites with more pathogenic PfEMP1 variants are more common in patients with a naive immune status, and/or adverse inflammatory host responses to first infections favor the growth of EPCR-binding parasites.


Asunto(s)
Malaria Falciparum/genética , Plasmodium falciparum/fisiología , Adulto , Antígenos CD36/genética , Antígenos CD36/metabolismo , Estudios de Cohortes , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/metabolismo , Femenino , Humanos , Malaria Falciparum/metabolismo , Malaria Falciparum/patología , Masculino , Plasmodium falciparum/genética , Unión Proteica , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Adulto Joven
16.
Science ; 371(6534)2021 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-33707237

RESUMEN

Antiphospholipid antibodies (aPLs) cause severe autoimmune disease characterized by vascular pathologies and pregnancy complications. Here, we identify endosomal lysobisphosphatidic acid (LBPA) presented by the CD1d-like endothelial protein C receptor (EPCR) as a pathogenic cell surface antigen recognized by aPLs for induction of thrombosis and endosomal inflammatory signaling. The engagement of aPLs with EPCR-LBPA expressed on innate immune cells sustains interferon- and toll-like receptor 7-dependent B1a cell expansion and autoantibody production. Specific pharmacological interruption of EPCR-LBPA signaling attenuates major aPL-elicited pathologies and the development of autoimmunity in a mouse model of systemic lupus erythematosus. Thus, aPLs recognize a single cell surface lipid-protein receptor complex to perpetuate a self-amplifying autoimmune signaling loop dependent on the cooperation with the innate immune complement and coagulation pathways.


Asunto(s)
Presentación de Antígeno , Autoinmunidad , Coagulación Sanguínea/inmunología , Receptor de Proteína C Endotelial/inmunología , Lupus Eritematoso Sistémico/inmunología , Lisofosfolípidos/inmunología , Monoglicéridos/inmunología , Animales , Anticuerpos Antifosfolípidos/biosíntesis , Autoanticuerpos/biosíntesis , Modelos Animales de Enfermedad , Pérdida del Embrión/inmunología , Endosomas/inmunología , Receptor de Proteína C Endotelial/genética , Humanos , Inmunidad Innata , Lupus Eritematoso Sistémico/sangre , Ratones , Ratones Mutantes , Esfingomielina Fosfodiesterasa/metabolismo , Trombosis/inmunología , Receptor Toll-Like 7/inmunología
17.
Elife ; 102021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33683204

RESUMEN

Extensive fibrin deposition in the lungs and altered levels of circulating blood coagulation proteins in COVID-19 patients imply local derangement of pathways that limit fibrin formation and/or promote its clearance. We examined transcriptional profiles of bronchoalveolar lavage fluid (BALF) samples to identify molecular mechanisms underlying these coagulopathies. mRNA levels for regulators of the kallikrein-kinin (C1-inhibitor), coagulation (thrombomodulin, endothelial protein C receptor), and fibrinolytic (urokinase and urokinase receptor) pathways were significantly reduced in COVID-19 patients. While transcripts for several coagulation proteins were increased, those encoding tissue factor, the protein that initiates coagulation and whose expression is frequently increased in inflammatory disorders, were not increased in BALF from COVID-19 patients. Our analysis implicates enhanced propagation of coagulation and decreased fibrinolysis as drivers of the coagulopathy in the lungs of COVID-19 patients.


Asunto(s)
Coagulación Sanguínea/genética , COVID-19/patología , Fibrina/genética , Pulmón/patología , SARS-CoV-2 , Anticoagulantes/metabolismo , Líquido del Lavado Bronquioalveolar , COVID-19/genética , COVID-19/metabolismo , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/metabolismo , Fibrina/metabolismo , Expresión Génica , Humanos , Sistema Calicreína-Quinina/genética , Calicreínas/genética , Calicreínas/metabolismo , Cininas/genética , Cininas/metabolismo , Pulmón/metabolismo , ARN Mensajero/metabolismo , Análisis de Secuencia de ARN , Trombomodulina/genética , Trombomodulina/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/genética , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
18.
Sci Rep ; 11(1): 3680, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33574457

RESUMEN

The Plasmodium falciparum erythrocyte-membrane-protein-1 (PF3D7_1150400/PF11_0521) contains both domain cassette DC13 and DBLß3 domain binding to EPCR and ICAM-1 receptors, respectively. This type of PfEMP1 proteins with dual binding specificity mediate specific interactions with brain micro-vessels endothelium leading to the development of cerebral malaria (CM). Using plasma collected from children at time of hospital admission and after 30 days, we study an acquisition of IgG response to PF3D7_1150400/PF11_0521 DC13 and DBLß3_D4 recombinant constructs, and five peptides located within these constructs, specifically in DBLα1.7_D2 and DBLß3_D4 domains. We found significant IgG responses against the entire DC13, PF11_0521_DBLß3_D4 domain, and peptides. The responses varied against different peptides and depended on the clinical status of children. The response was stronger at day 30, and mostly did not differ between CM and uncomplicated malaria (UM) groups. Specifically, the DBLß3 B3-34 peptide that contains essential residues involved in the interaction between PF11_0521 DBLß3_D4 domain and ICAM-1 receptor demonstrated significant increase in reactivity to IgG1 and IgG3 antibodies at convalescence. Further, IgG reactivity in CM group at time of admission against functionally active (ICAM-1-binding) PF11_0521 DBLß3_D4 domain was associated with protection against severe anemia. These results support development of vaccine based on the PF3D7_1150400/PF11_0521 structures to prevent CM.


Asunto(s)
Inmunoglobulina G/sangre , Malaria Cerebral/inmunología , Malaria Falciparum/inmunología , Péptidos/inmunología , Proteínas Protozoarias/inmunología , Anemia/complicaciones , Anticuerpos Antiprotozoarios/sangre , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/sangre , Antígenos de Protozoos/inmunología , Encéfalo/inmunología , Encéfalo/metabolismo , Encéfalo/parasitología , Encéfalo/patología , Preescolar , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/inmunología , Endotelio Vascular/metabolismo , Endotelio Vascular/parasitología , Eritrocitos/parasitología , Femenino , Humanos , Inmunoglobulina G/inmunología , Lactante , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/inmunología , Malaria Cerebral/sangre , Malaria Cerebral/genética , Malaria Cerebral/parasitología , Malaria Falciparum/sangre , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Masculino , Péptidos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/patogenicidad , Unión Proteica/genética , Unión Proteica/inmunología , Proteínas Protozoarias/genética
19.
Am J Respir Cell Mol Biol ; 64(4): 477-491, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33600743

RESUMEN

Streptococcus pneumoniae is the leading cause of hospital community-acquired pneumonia. Patients with pneumococcal pneumonia may develop complicated parapneumonic effusions or empyema that can lead to pleural organization and subsequent fibrosis. The pathogenesis of pleural organization and scarification involves complex interactions between the components of the immune system, coagulation, and fibrinolysis. EPCR (endothelial protein C receptor) is a critical component of the protein C anticoagulant pathway. The present study was performed to evaluate the role of EPCR in the pathogenesis of S. pneumoniae infection-induced pleural thickening and fibrosis. Our studies show that the pleural mesothelium expresses EPCR. Intrapleural instillation of S. pneumoniae impairs lung compliance and lung volume in wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. Intrapleural S. pneumoniae infection induces pleural thickening in wild-type mice. Pleural thickening is more pronounced in EPCR-overexpressing mice, whereas it is reduced in EPCR-deficient mice. Markers of mesomesenchymal transition are increased in the visceral pleura of S. pneumoniae-infected wild-type and EPCR-overexpressing mice but not in EPCR-deficient mice. The lungs of wild-type and EPCR-overexpressing mice administered intrapleural S. pneumoniae showed increased infiltration of macrophages and neutrophils, which was significantly reduced in EPCR-deficient mice. An analysis of bacterial burden in the pleural lavage, the lungs, and blood revealed a significantly lower bacterial burden in EPCR-deficient mice compared with wild-type and EPCR-overexpressing mice. Overall, our data provide strong evidence that EPCR deficiency protects against S. pneumoniae infection-induced impairment of lung function and pleural remodeling.


Asunto(s)
Receptor de Proteína C Endotelial/deficiencia , Pulmón/metabolismo , Pleura/metabolismo , Derrame Pleural/metabolismo , Pleuresia/metabolismo , Neumonía Neumocócica/metabolismo , Streptococcus pneumoniae/patogenicidad , Animales , Carga Bacteriana , Células Cultivadas , Modelos Animales de Enfermedad , Receptor de Proteína C Endotelial/genética , Femenino , Fibrosis , Interacciones Huésped-Patógeno , Humanos , Pulmón/microbiología , Pulmón/patología , Pulmón/fisiopatología , Macrófagos/metabolismo , Macrófagos/microbiología , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Infiltración Neutrófila , Neutrófilos/metabolismo , Neutrófilos/microbiología , Pleura/microbiología , Pleura/patología , Derrame Pleural/microbiología , Derrame Pleural/patología , Derrame Pleural/fisiopatología , Pleuresia/microbiología , Pleuresia/patología , Pleuresia/fisiopatología , Neumonía Neumocócica/microbiología , Neumonía Neumocócica/patología , Neumonía Neumocócica/fisiopatología
20.
mBio ; 11(6)2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33203751

RESUMEN

PfEMP1 is the major antigen involved in Plasmodium falciparum-infected erythrocyte sequestration in cerebrovascular endothelium. While some PfEMP1 domains have been associated with clinical phenotypes of malaria, formal associations between the expression of a specific domain and the adhesion properties of clinical isolates are limited. In this context, 73 cerebral malaria (CM) and 98 uncomplicated malaria (UM) Beninese children were recruited. We attempted to correlate the cytoadherence phenotype of Plasmodium falciparum isolates with the clinical presentation and the expression of specific PfEMP1 domains. Cytoadherence level on Hbec-5i and CHO-ICAM-1 cell lines and var genes expression were measured. We also investigated the prevalence of the ICAM-1-binding amino acid motif and dual receptor-binding domains, described as a potential determinant of cerebral malaria pathophysiology. We finally evaluated IgG levels against PfEMP1 recombinant domains (CIDRα1.4, DBLß3, and CIDRα1.4-DBLß3). CM isolates displayed higher cytoadherence levels on both cell lines, and we found a correlation between CIDRα1.4-DBLß1/3 domain expression and CHO-ICAM-1 cytoadherence level. Endothelial protein C receptor (EPCR)-binding domains were overexpressed in CM isolates compared to UM whereas no difference was found in ICAM-1-binding DBLß1/3 domain expression. Surprisingly, both CM and UM isolates expressed ICAM-1-binding motif and dual receptor-binding domains. There was no difference in IgG response against DBLß3 between CM and UM isolates expressing ICAM-1-binding DBLß1/3 domain. It raises questions about the role of this motif in CM pathophysiology, and further studies are needed, especially on the role of DBLß1/3 without the ICAM-1-binding motif.IMPORTANCE Cerebral malaria pathophysiology remains unknown despite extensive research. PfEMP1 proteins have been identified as the main Plasmodium antigen involved in cerebrovascular endothelium sequestration, but it is unclear which var gene domain is involved in Plasmodium cytoadhesion. EPCR binding is a major determinant of cerebral malaria whereas the ICAM-1-binding role is still questioned. Our study confirmed the EPCR-binding role in CM pathophysiology with a major overexpression of EPCR-binding domains in CM isolates. In contrast, ICAM-1-binding involvement appears less obvious with A-type ICAM-1-binding and dual receptor-binding domain expression in both CM and UM isolates. We did not find any variations in ICAM-1-binding motif sequences in CM compared to UM isolates. UM and CM patients infected with isolates expressing the ICAM-1-binding motif displayed similar IgG levels against DBLß3 recombinant protein. Our study raises interrogations about the role of these domains in CM physiopathology and questions their use in vaccine strategies against cerebral malaria.


Asunto(s)
Antígenos de Protozoos/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Malaria Cerebral/parasitología , Malaria Falciparum/parasitología , Plasmodium falciparum/inmunología , Proteínas Protozoarias/metabolismo , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos de Protozoos/genética , Benin , Moléculas de Adhesión Celular/genética , Moléculas de Adhesión Celular/metabolismo , Niño , Preescolar , Receptor de Proteína C Endotelial/genética , Receptor de Proteína C Endotelial/metabolismo , Eritrocitos/parasitología , Humanos , Molécula 1 de Adhesión Intercelular/genética , Malaria Cerebral/fisiopatología , Malaria Falciparum/fisiopatología , Plasmodium falciparum/genética , Plasmodium falciparum/fisiología , Unión Proteica , Dominios Proteicos , Proteínas Protozoarias/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA