Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 574
Filtrar
1.
Nat Commun ; 15(1): 3962, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730247

RESUMEN

Lanifibranor, a pan-PPAR agonist, improves liver histology in patients with metabolic dysfunction-associated steatohepatitis (MASH), who have poor cardiometabolic health (CMH) and cardiovascular events as major mortality cause. NATIVE trial secondary and exploratory outcomes (ClinicalTrials.gov NCT03008070) were analyzed for the effect of lanifibranor on IR, lipid and glucose metabolism, systemic inflammation, blood pressure (BP), hepatic steatosis (imaging and histological grading) for all patients of the original analysis. With lanifibranor, triglycerides, HDL-C, apolipoproteins, insulin, HOMA-IR, HbA1c, fasting glucose (FG), hs-CRP, ferritin, diastolic BP and steatosis improved significantly, independent of diabetes status: most patients with prediabetes returned to normal FG levels. Significant adiponectin increases correlated with hepatic and CMH marker improvement; patients had an average weight gain of 2.5 kg, with 49% gaining ≥2.5% weight. Therapeutic benefits were similar regardless of weight change. Here, we show that effects of lanifibranor on liver histology in MASH are accompanied with CMH improvement, indicative of potential cardiovascular clinical benefits.


Asunto(s)
Chalconas , Adulto , Anciano , Femenino , Humanos , Masculino , Persona de Mediana Edad , Adiponectina/metabolismo , Adiponectina/sangre , Glucemia/metabolismo , Glucemia/efectos de los fármacos , Presión Sanguínea/efectos de los fármacos , Enfermedades Cardiovasculares/tratamiento farmacológico , Chalconas/uso terapéutico , Chalconas/farmacología , Hígado Graso/tratamiento farmacológico , Hígado Graso/metabolismo , Resistencia a la Insulina , Metabolismo de los Lípidos/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/patología , Hígado/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Propionatos , Triglicéridos/sangre , Triglicéridos/metabolismo
2.
Bioorg Med Chem Lett ; 106: 129770, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38677560

RESUMEN

We have previously reported the total synthesis and structure-activity relationships (SAR) of 2-prenylated benzopyrans with PPAR agonist activity. Herein, we have described the synthesis and PPAR activity of 2-prenylated benzopyrans and 2-prenylated quinolines. The benzopyran nucleus was generated via enamine-catalyzed Kabbe condensation, and the quinoline nucleus via Friedländer condensation. Results demonstrated that both benzopyran (5a) and quinoline (4b) derivatives bearing a γ,δ-unsaturated ester displayed a pan-PPAR agonism. They were full PPARα agonists, but showed different preferences for PPARγ and PPARß/δ activation. It was noteworthy that quinoline 4b displayed full hPPARα activation (2-fold than WY-14,643), weak PPARß/δ and partial PPARγ activation. In addition, quinoline 4b showed anti-inflammatory effects on macrophages by reducing LPS-induced expression of both MCP-1 and IL-6. Therefore, 4b emerges as a first-in-class promising hit compound for the development of potential therapeutics aimed at treating metabolic syndrome, metabolic dysfunction-associated fatty liver disease (MAFLD), and its associated cardiovascular comorbidities.


Asunto(s)
Síndrome Metabólico , Quinolinas , Síndrome Metabólico/tratamiento farmacológico , Síndrome Metabólico/metabolismo , Quinolinas/química , Quinolinas/farmacología , Quinolinas/síntesis química , Relación Estructura-Actividad , Humanos , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Estructura Molecular , Lipopolisacáridos/farmacología , Lipopolisacáridos/antagonistas & inhibidores , Antiinflamatorios/síntesis química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Relación Dosis-Respuesta a Droga , Benzopiranos/farmacología , Benzopiranos/síntesis química , Benzopiranos/química , Animales , Ratones
3.
Eur J Med Chem ; 269: 116344, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38522113

RESUMEN

Liver fibrosis is commonly occurred in chronic liver diseases, but there is no approved drug for clinical use. The nuclear receptor peroxisome proliferator-activated receptors (PPARs) could not only regulate metabolic homeostasis but also possess anti-inflammatory and antifibrotic effects, and pan-PPARs agonist was considered as a potential anti-liver fibrosis agent. In this study, a series of novel piperazine pan-PPARs agonists were developed, and the preferred compound 12 displayed potent and well-balanced pan-PPARs agonistic activity. Moreover, compound 12 could dose-dependently stimulate the PPARs target genes expression and showed high selectivity over other related nuclear receptors. Importantly, compound 12 exhibited excellent pharmacokinetic profiles and good anti-liver fibrosis effects in vivo. Collectively, compound 12 holds promise for developing an anti-liver fibrosis agent.


Asunto(s)
Compuestos Heterocíclicos , Receptores Activados del Proliferador del Peroxisoma , Humanos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Cirrosis Hepática/tratamiento farmacológico , Receptores Citoplasmáticos y Nucleares , Hipoglucemiantes , Piperazinas
5.
Stem Cell Res Ther ; 15(1): 9, 2024 01 02.
Artículo en Inglés | MEDLINE | ID: mdl-38167146

RESUMEN

BACKGROUND: Acute kidney injury (AKI) has a complex pathophysiology and imposes serious health concerns worldwide. Extracellular vesicles (EVs) derived from induced mesenchymal stem cells (iMSCs) have been recognized as novel cell-free therapeutics for various inflammatory and degenerative disorders. In this study, we investigated whether iMSCs stimulated with a pan-peroxisome proliferator-activated receptor (PPAR) agonist could enhance the therapeutic efficacy of EVs against AKI. METHODS: Human iMSCs were primed with or without lanifibranor, a PPAR agonist for 24 h, and EVs were collected after an additional 24 h. The basic characteristics of EVs were evaluated using cryo-transmission electron microscopy imaging, immunoblot detection of EV markers, nanoparticle tracking analysis, and localization in AKI kidneys. In vitro, the potential of the EVs to promote the growth and survival of HK-2 cells undergoing cisplatin-induced apoptosis and anti-inflammatory effects in M1-polarized THP-1 was compared. Subsequently, AKI was induced in BALB/c mice using cisplatin. After 8 and 24 h of cisplatin treatment, iMSC-EVs or pan-PPAR-iMSC-EVs were injected intravascularly. At 96 h after cisplatin administration, the renoprotective effects of iMSC-EVs or pan-PPAR-iMSC-EVs in inhibiting inflammation and apoptosis were compared using serum biochemistry, histology, immunohistochemistry, and gene expression analysis by qPCR. RESULTS: Both EV types expressed EV markers and had typical EV morphology, and their localization in the renal tissue was confirmed. The proliferation and survival of HK-2 cells were higher in pan-PPAR-iMSC-EVs than those in iMSC-EVs. In M1-polarized THP-1 cells, the reduction in the mRNA expression of inflammatory cytokines was more significant in pan-PPAR-iMSC-EVs than that in iMSC-EVs. In the mouse model of cisplatin-induced AKI, pan-PPAR-iMSC-EVs markedly enhanced renoprotective effects compared to iMSC-EVs. Specifically, pan-PPAR-iMSC-EVs reduced tissue inflammation, immune cell infiltration, and apoptosis. Pan-PPAR-iMSC-EVs also increased renal capillary density. CONCLUSION: Priming iMSCs with a PPAR agonist significantly improved the therapeutic potential of EVs by reducing inflammation and apoptosis. The reported strategy may contribute to the development of a novel cell-free option for AKI treatment. TRIAL REGISTRATION: Not applicable.


Asunto(s)
Lesión Renal Aguda , Vesículas Extracelulares , Receptores Activados del Proliferador del Peroxisoma , Animales , Humanos , Ratones , Lesión Renal Aguda/patología , Cisplatino , Vesículas Extracelulares/metabolismo , Inflamación/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Células Madre Mesenquimatosas/metabolismo
6.
Trends Pharmacol Sci ; 45(1): 9-23, 2024 01.
Artículo en Inglés | MEDLINE | ID: mdl-38065777

RESUMEN

Peroxisome proliferator-activated receptors [PPARs; PPARα, PPARß/δ (also known as PPARδ), and PPARγ] widely recognized for their important role in glucose/lipid homeostasis, have recently received significant attention due to their additional anti-inflammatory and neuroprotective effects. Several newly developed PPAR agonists have shown high selectivity for specific PPAR isoforms in vitro and in vivo, offering the potential to achieve desired therapeutic outcomes while reducing the risk of adverse effects. In this review, we discuss the latest preclinical and clinical studies of the activation of PPARs by synthetic, natural, and isoform-specific (full, partial, and dual) agonists for the treatment of neuroinflammatory diseases, including HIV-associated neurocognitive disorders (HAND), Alzheimer's disease (AD), Parkinson's disease (PD), multiple sclerosis (MS), and cerebral ischemia.


Asunto(s)
PPAR delta , PPAR-beta , Humanos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/fisiología , Enfermedades Neuroinflamatorias , PPAR delta/agonistas , PPAR delta/fisiología , PPAR-beta/fisiología , PPAR alfa/agonistas , PPAR alfa/fisiología , PPAR gamma/agonistas , PPAR gamma/fisiología , Hipoglucemiantes
7.
N Engl J Med ; 390(9): 795-805, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-37962077

RESUMEN

BACKGROUND: Primary biliary cholangitis is a rare, chronic cholestatic liver disease characterized by the destruction of interlobular bile ducts, leading to cholestasis and liver fibrosis. Whether elafibranor, an oral, dual peroxisome proliferator-activated receptor (PPAR) α and δ agonist, may have benefit as a treatment for primary biliary cholangitis is unknown. METHODS: In this multinational, phase 3, double-blind, placebo-controlled trial, we randomly assigned (in a 2:1 ratio) patients with primary biliary cholangitis who had had an inadequate response to or unacceptable side effects with ursodeoxycholic acid to receive once-daily elafibranor, at a dose of 80 mg, or placebo. The primary end point was a biochemical response (defined as an alkaline phosphatase level of <1.67 times the upper limit of the normal range, with a reduction of ≥15% from baseline, and normal total bilirubin levels) at week 52. Key secondary end points were normalization of the alkaline phosphatase level at week 52 and a change in pruritus intensity from baseline through week 52 and through week 24, as measured on the Worst Itch Numeric Rating Scale (WI-NRS; scores range from 0 [no itch] to 10 [worst itch imaginable]). RESULTS: A total of 161 patients underwent randomization. A biochemical response (the primary end point) was observed in 51% of the patients (55 of 108) who received elafibranor and in 4% (2 of 53) who received placebo, for a difference of 47 percentage points (95% confidence interval [CI], 32 to 57; P<0.001). The alkaline phosphatase level normalized in 15% of the patients in the elafibranor group and in none of the patients in the placebo group at week 52 (difference, 15 percentage points; 95% CI, 6 to 23; P = 0.002). Among patients who had moderate-to-severe pruritus (44 patients in the elafibranor group and 22 in the placebo group), the least-squares mean change from baseline through week 52 on the WI-NRS did not differ significantly between the groups (-1.93 vs. -1.15; difference, -0.78; 95% CI, -1.99 to 0.42; P = 0.20). Adverse events that occurred more frequently with elafibranor than with placebo included abdominal pain, diarrhea, nausea, and vomiting. CONCLUSIONS: Treatment with elafibranor resulted in significantly greater improvements in relevant biochemical indicators of cholestasis than placebo. (Funded by GENFIT and Ipsen; ELATIVE ClinicalTrials.gov number, NCT04526665.).


Asunto(s)
Chalconas , Fármacos Gastrointestinales , Cirrosis Hepática Biliar , Receptores Activados del Proliferador del Peroxisoma , Propionatos , Humanos , Administración Oral , Fosfatasa Alcalina/sangre , Bilirrubina/sangre , Chalconas/administración & dosificación , Chalconas/efectos adversos , Chalconas/uso terapéutico , Colestasis/sangre , Colestasis/tratamiento farmacológico , Colestasis/etiología , Método Doble Ciego , Fármacos Gastrointestinales/administración & dosificación , Fármacos Gastrointestinales/efectos adversos , Fármacos Gastrointestinales/uso terapéutico , Cirrosis Hepática Biliar/sangre , Cirrosis Hepática Biliar/complicaciones , Cirrosis Hepática Biliar/tratamiento farmacológico , Receptores Activados del Proliferador del Peroxisoma/agonistas , PPAR alfa/agonistas , PPAR delta/agonistas , Propionatos/administración & dosificación , Propionatos/efectos adversos , Propionatos/uso terapéutico , Prurito/tratamiento farmacológico , Prurito/etiología , Resultado del Tratamiento , Ácido Ursodesoxicólico/efectos adversos , Ácido Ursodesoxicólico/uso terapéutico , Colagogos y Coleréticos/administración & dosificación , Colagogos y Coleréticos/efectos adversos , Colagogos y Coleréticos/uso terapéutico
8.
World J Gastroenterol ; 29(26): 4136-4155, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37475842

RESUMEN

The world is experiencing reflections of the intersection of two pandemics: Obesity and coronavirus disease 2019. The prevalence of obesity has tripled since 1975 worldwide, representing substantial public health costs due to its comorbidities. The adipose tissue is the initial site of obesity impairments. During excessive energy intake, it undergoes hyperplasia and hypertrophy until overt inflammation and insulin resistance turn adipocytes into dysfunctional cells that send lipotoxic signals to other organs. The pancreas is one of the organs most affected by obesity. Once lipotoxicity becomes chronic, there is an increase in insulin secretion by pancreatic beta cells, a surrogate for type 2 diabetes mellitus (T2DM). These alterations threaten the survival of the pancreatic islets, which tend to become dysfunctional, reaching exhaustion in the long term. As for the liver, lipotoxicity favors lipogenesis and impairs beta-oxidation, resulting in hepatic steatosis. This silent disease affects around 30% of the worldwide population and can evolve into end-stage liver disease. Although therapy for hepatic steatosis remains to be defined, peroxisome proliferator-activated receptors (PPARs) activation copes with T2DM management. Peroxisome PPARs are transcription factors found at the intersection of several metabolic pathways, leading to insulin resistance relief, improved thermogenesis, and expressive hepatic steatosis mitigation by increasing mitochondrial beta-oxidation. This review aimed to update the potential of PPAR agonists as targets to treat metabolic diseases, focusing on adipose tissue plasticity and hepatic and pancreatic remodeling.


Asunto(s)
COVID-19 , Diabetes Mellitus Tipo 2 , Hígado Graso , Resistencia a la Insulina , Enfermedades Metabólicas , Humanos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Resistencia a la Insulina/fisiología , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , COVID-19/metabolismo , Tejido Adiposo/metabolismo , Obesidad/metabolismo , Páncreas/metabolismo , Hígado Graso/metabolismo
9.
Phytomedicine ; 116: 154904, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37267691

RESUMEN

BACKGROUND: Peroxisome proliferator-activated receptors (PPARs) are a class of ligand-activated nuclear transcription factors, members of the type nuclear receptor superfamily, with three subtypes, namely PPARα, PPARß/δ, and PPARγ, which play a key role in the metabolic syndrome. In the past decades, a large number of studies have shown that natural products can act by regulating metabolic pathways mediated by PPARs. PURPOSE: This work summarizes the physiological importance and clinical significance of PPARs and reviews the experimental evidence that natural products mediate metabolic syndrome via PPARs. METHODS: This study reviews relevant literature on clinical trials, epidemiology, animals, and cell cultures published in NCBI PubMed, Scopus, Web of Science, Google Scholar, and other databases from 2001 to October 2022. Search keywords were "natural product" OR "botanical" OR "phytochemical" AND "PPAR" as well as free text words. RESULTS: The modulatory involvement of PPARs in the metabolic syndrome has been supported by prior research. It has been observed that many natural products can treat metabolic syndrome by altering PPARs. The majority of currently described natural compounds are mild PPAR-selective agonists with therapeutic effects that are equivalent to synthetic medicines but less harmful adverse effects. CONCLUSION: PPAR agonists can be combined with natural products to treat and prevent metabolic syndrome. Further human investigations are required because it is unknown how natural products cause harm and how they might have negative impacts.


Asunto(s)
Síndrome Metabólico , Receptores Activados del Proliferador del Peroxisoma , Animales , Humanos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Síndrome Metabólico/tratamiento farmacológico , Factores de Transcripción , PPAR gamma , PPAR alfa , Hipoglucemiantes
10.
Int J Biol Macromol ; 242(Pt 2): 125008, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-37217063

RESUMEN

Atherosclerosis, a chief pathogenic factor of cardiovascular disease, is associated with many factors including inflammation, dyslipidemia, and oxidative stress. Peroxisome proliferator-activated receptors (PPARs) are nuclear receptors and are widely expressed with tissue- and cell-specificity. They control multiple genes that are involved in lipid metabolism, inflammatory response, and redox homeostasis. Given the diverse biological functions of PPARs, they have been extensively studied since their discovery in 1990s. Although controversies exist, accumulating evidence have demonstrated that PPAR activation attenuates atherosclerosis. Recent advances are valuable for understanding the mechanisms of action of PPAR activation. This article reviews the recent findings, mainly from the year of 2018 to present, including endogenous molecules in regulation of PPARs, roles of PPARs in atherosclerosis by focusing on lipid metabolism, inflammation, and oxidative stress, and synthesized PPAR modulators. This article provides information valuable for researchers in the field of basic cardiovascular research, for pharmacologists that are interested in developing novel PPAR agonists and antagonists with lower side effects as well as for clinicians.


Asunto(s)
Aterosclerosis , Receptores Activados del Proliferador del Peroxisoma , Humanos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo , Aterosclerosis/tratamiento farmacológico , Inflamación , Oxidación-Reducción
11.
Clin. transl. oncol. (Print) ; 25(3): 601-610, mar. 2023.
Artículo en Inglés | IBECS | ID: ibc-216419

RESUMEN

Obesity may create a mitogenic microenvironment that influences tumor initiation and progression. The obesity-associated adipokine, leptin regulates energy metabolism and has been implicated in cancer development. It has been shown that some cell types other than adipocytes can express leptin and leptin receptors in tumor microenvironments. It has been shown that peroxisome proliferator-activated receptors (PPAR) agonists can affect leptin levels and vice versa leptin can affect PPARs. Activation of PPARs affects the expression of several genes involved in aspects of lipid metabolism. In addition, PPARs regulate cancer cell progression through their action on the tumor cell proliferation, metabolism, and cellular environment. Some studies have shown an association between obesity and several types of cancer, including breast cancer. There is some evidence that suggests that there is crosstalk between PPARs and leptin during the development of breast cancer. Through a systematic review of previous studies, we have reviewed the published relevant articles regarding leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ (AU)


Asunto(s)
Humanos , Neoplasias de la Mama/metabolismo , Leptina/metabolismo , Obesidad , Proliferadores de Peroxisomas/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Transducción de Señal , Microambiente Tumoral
12.
Clin Transl Oncol ; 25(3): 601-610, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36348225

RESUMEN

Obesity may create a mitogenic microenvironment that influences tumor initiation and progression. The obesity-associated adipokine, leptin regulates energy metabolism and has been implicated in cancer development. It has been shown that some cell types other than adipocytes can express leptin and leptin receptors in tumor microenvironments. It has been shown that peroxisome proliferator-activated receptors (PPAR) agonists can affect leptin levels and vice versa leptin can affect PPARs. Activation of PPARs affects the expression of several genes involved in aspects of lipid metabolism. In addition, PPARs regulate cancer cell progression through their action on the tumor cell proliferation, metabolism, and cellular environment. Some studies have shown an association between obesity and several types of cancer, including breast cancer. There is some evidence that suggests that there is crosstalk between PPARs and leptin during the development of breast cancer. Through a systematic review of previous studies, we have reviewed the published relevant articles regarding leptin signaling in breast cancer and its crosstalk with peroxisome proliferator-activated receptors α and γ.


Asunto(s)
Neoplasias de la Mama , Receptores Activados del Proliferador del Peroxisoma , Humanos , Femenino , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Leptina , PPAR alfa , Obesidad , Transducción de Señal , Microambiente Tumoral
13.
J Hepatol ; 77(4): 1136-1160, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35750137

RESUMEN

Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease and is emerging as the leading cause of cirrhosis, liver transplantation and hepatocellular carcinoma (HCC). NAFLD is a metabolic disease that is considered the hepatic manifestation of the metabolic syndrome; however, during the evolution of NAFLD from steatosis to non-alcoholic steatohepatitis (NASH), to more advanced stages of NASH with liver fibrosis, the immune system plays an integral role. Triggers for inflammation are rooted in hepatic (lipid overload, lipotoxicity, oxidative stress) and extrahepatic (gut-liver axis, adipose tissue, skeletal muscle) systems, resulting in unique immune-mediated pathomechanisms in NAFLD. In recent years, the implementation of single-cell RNA-sequencing and high dimensional multi-omics (proteogenomics, lipidomics) and spatial transcriptomics have tremendously advanced our understanding of the complex heterogeneity of various liver immune cell subsets in health and disease. In NAFLD, several emerging inflammatory mechanisms have been uncovered, including profound macrophage heterogeneity, auto-aggressive T cells, the role of unconventional T cells and platelet-immune cell interactions, potentially yielding novel therapeutics. In this review, we will highlight the recent discoveries related to inflammation in NAFLD, discuss the role of immune cell subsets during the different stages of the disease (including disease regression) and integrate the multiple systems driving inflammation. We propose a refined concept by which the immune system contributes to all stages of NAFLD and discuss open scientific questions arising from this paradigm shift that need to be unravelled in the coming years. Finally, we discuss novel therapeutic approaches to target the multiple triggers of inflammation, including combination therapy via nuclear receptors (FXR agonists, PPAR agonists).


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , Enfermedad del Hígado Graso no Alcohólico , Carcinoma Hepatocelular/patología , Comunicación Celular , Fibrosis , Humanos , Inflamación/patología , Lípidos , Hígado/patología , Cirrosis Hepática/complicaciones , Neoplasias Hepáticas/patología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , ARN , Receptores Citoplasmáticos y Nucleares
14.
Biomed Pharmacother ; 151: 113127, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35598367

RESUMEN

Nonalcoholic fatty liver disease (NAFLD) is a general term for a series of liver diseases including simple steatosis, non-alcoholic steatohepatitis, liver fibrosis, which is closely related to metabolic syndrome. The pathogenesis of NAFLD is relatively complex, which has gradually changed from the previous 'two-hit' hypothesis to the current "multiple hits" hypothesis. However, there is currently no approved treatment for NAFLD in clinic, highlighting the urgent need for drug development. Peroxisome proliferator activated receptors (PPARs) are members of the nuclear receptor superfamily, whose different subtypes have been proved to regulate different stages of NAFLD, thus becoming promising drug targets for NAFLD. As important sources of drug development, natural products have been proven to treat NAFLD through multiple pathways and multiple targets. In this paper, we outline the regulatory role of PPARs in NAFLD, and summarize some natural products that target PPARs to ameliorate NAFLD, in order to provide reference for drug development of NAFLD.


Asunto(s)
Productos Biológicos , Enfermedad del Hígado Graso no Alcohólico , Receptores Activados del Proliferador del Peroxisoma , Productos Biológicos/metabolismo , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Humanos , Hipoglucemiantes/uso terapéutico , Hígado/metabolismo , Cirrosis Hepática/metabolismo , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/metabolismo , Receptores Citoplasmáticos y Nucleares/metabolismo
15.
Neurotherapeutics ; 19(3): 994-1006, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35334081

RESUMEN

Leigh syndrome (LS) is one of the most common mitochondrial encephalopathy diseases in infants. To date, there is still an absence of effective therapy. Bezafibrate (BEZ), a pan-peroxisome proliferator-activated receptor (PPAR) agonist, ameliorates the phenotype of the mouse model of mitochondrial disease via an unclear mechanism. Here, we applied it to Ndufs4 knockout (KO) mice, a widely used LS animal model, to observe the therapeutic effects and metabolic changes associated with BEZ treatment to explore the therapeutic strategies for mitochondrial diseases. Administration of BEZ significantly enhances survival and attenuates disease progression in Ndufs4 KO mice. Decreased oxidative stress and stunted growth were also observed. As a PPAR agonist, we did not find mitochondrial biogenesis or enhanced metabolism upon BEZ treatment. On the contrary, mice with dietary BEZ showed daily torpor bouts and lower metabolic rates. We speculate that activating energy-saving metabolism in mice may be associated with the therapeutic effects of BEZ, but the exact mechanism of action requires further study.


Asunto(s)
Bezafibrato , Encefalomiopatías Mitocondriales , Letargo , Animales , Bezafibrato/farmacología , Bezafibrato/uso terapéutico , Modelos Animales de Enfermedad , Complejo I de Transporte de Electrón/genética , Complejo I de Transporte de Electrón/metabolismo , Hipoglucemiantes , Ratones , Ratones Noqueados , Encefalomiopatías Mitocondriales/tratamiento farmacológico , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/genética , Receptores Activados del Proliferador del Peroxisoma/metabolismo
16.
Molecules ; 27(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35164223

RESUMEN

A new series of aryloxyacetic acids was prepared and tested as peroxisome proliferator-activated receptors (PPARs) agonists and fatty acid amide hydrolase (FAAH) inhibitors. Some compounds exhibited an interesting dual activity that has been recently proposed as a new potential therapeutic strategy for the treatment of Alzheimer's disease (AD). AD is a multifactorial pathology, hence multi-target agents are currently one of the main lines of research for the therapy and prevention of this disease. Given that cholinesterases represent one of the most common targets of recent research, we decided to also evaluate the effects of our compounds on the inhibition of these specific enzymes. Interestingly, two of these compounds, (S)-5 and 6, showed moderate activity against acetylcholinesterase (AChE) and even some activity, although at high concentration, against Aß peptide aggregation, thus demonstrating, in agreement with the preliminary dockings carried out on the different targets, the feasibility of a simultaneous multi-target activity towards PPARs, FAAH, and AChE. As far as we know, these are the first examples of molecules endowed with this pharmacological profile that might represent a promising line of research for the identification of novel candidates for the treatment of AD.


Asunto(s)
Ácido Acético/química , Acetilcolinesterasa/química , Amidohidrolasas/antagonistas & inhibidores , Receptores Activados del Proliferador del Peroxisoma/agonistas , Inhibidores de la Colinesterasa , Humanos
17.
Chem Biol Drug Des ; 100(6): 947-967, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34990085

RESUMEN

PPARs stand for 'peroxisome proliferator-activated receptors' and are ligand-activated transcription factors of nuclear hormone receptor superfamily. A list of the most commonly used single receptor PPAR agonists, that is α (alpha) PPAR agonists, ß/δ(beta/delta) PPAR agonists, γ(gamma) PPAR agonists, along with pan PPAR agents, that are being researched on, are marketed, are in clinical trials or are being studied for further derivative findings, has been listed. Type 2 diabetes constitutes about 90% of total diabetes cases. Pan PPAR ligands could very well pave the foundation for a new class of agents, that can act on all 3 PPAR receptors, and produce better effects in general, than the individual receptor-acting ligands or dual combination ligands (α/ γ). In this review paper, we have detailed various pan PPAR agonists that can be used to treat type 2 diabetes, which can generate potential derivatives as well.


Asunto(s)
Diabetes Mellitus Tipo 2 , PPAR delta , Humanos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Ligandos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Receptores Citoplasmáticos y Nucleares , PPAR gamma/agonistas , PPAR alfa/agonistas
18.
J Inherit Metab Dis ; 45(1): 17-28, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34713454

RESUMEN

Barth Syndrome is an X-linked disorder of mitochondrial cardiolipin metabolism caused by pathogenic variants in TAFAZZIN with pleiotropic effects including cardiomyopathy, neutropenia, growth delay, and skeletal myopathy. Management requires a multidisciplinary approach to the organ-specific manifestations including specialists from cardiology, hematology, nutrition, physical therapy, genetics, and metabolism. Currently, treatment is centered on management of specific clinical features, and is not targeted toward remediating the underlying biochemical defect. However, two clinical trials have been recently undertaken which target the mitochondrial pathology of this disease: a study to examine the effects of elamipretide, a cardiolipin targeted agent, and a study to examine the effects of bezafibrate, a peroxisome proliferator-activated receptor (PPAR) agonist. Treatments to directly target the defective TAFAZZIN pathway are under development, including enzyme and gene therapies.


Asunto(s)
Síndrome de Barth/terapia , Bezafibrato/uso terapéutico , Oligopéptidos/uso terapéutico , Aciltransferasas/genética , Animales , Síndrome de Barth/genética , Síndrome de Barth/metabolismo , Cardiolipinas/metabolismo , Cardiomiopatías/metabolismo , Cardiomiopatías/terapia , Ensayos Clínicos como Asunto , Terapia Enzimática , Terapia Genética , Humanos , Ratones , Enfermedades Musculares/metabolismo , Enfermedades Musculares/terapia , Neutropenia/metabolismo , Neutropenia/terapia , Receptores Activados del Proliferador del Peroxisoma/agonistas
19.
Exp Mol Pathol ; 124: 104723, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34822814

RESUMEN

The Peroxisome proliferator-activated receptors (PPARs) are key regulators of metabolic events in our body. Owing to their implication in maintenance of homeostasis, both PPAR agonists and antagonists assume therapeutic significance. Understanding the molecular mechanisms of each of the PPAR isotypes in the healthy body and during disease is crucial to exploiting their full therapeutic potential. This article is an attempt to present a rational analysis of the multifaceted therapeutic effects and underlying mechanisms of isotype-specific PPAR agonists, dual PPAR agonists, pan PPAR agonists as well as PPAR antagonists. A holistic understanding of the mechanistic dimensions of these key metabolic regulators will guide future efforts to identify novel molecules in the realm of metabolic, inflammatory and immunotherapeutic diseases.


Asunto(s)
Receptores Activados del Proliferador del Peroxisoma , Animales , Apoptosis , Diabetes Mellitus/fisiopatología , Homeostasis , Humanos , Metabolismo de los Lípidos , Receptores Activados del Proliferador del Peroxisoma/agonistas , Receptores Activados del Proliferador del Peroxisoma/antagonistas & inhibidores , Receptores Activados del Proliferador del Peroxisoma/metabolismo
20.
Drugs ; 82(1): 87-92, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34846697

RESUMEN

Chiglitazar (Bilessglu®) is an orally administered, non-thiazolidinedione small-molecule agonist of α, δ and γ peroxisome proliferator-activated receptors (PPARs) being developed by Chipscreen Biosciences for the treatment of type 2 diabetes (T2D) and non-alcoholic steatohepatitis. In October 2021, chiglitazar was approved in China for use as an adjunct to diet and exercise to improve glycaemic control in adult patients with T2D. The drug is also in phase 2 clinical development in China for the treatment of non-alcoholic steatohepatitis. This article summarizes the milestones in the development of chiglitazar leading to this first approval for the treatment of T2D.


Asunto(s)
Carbazoles/uso terapéutico , Diabetes Mellitus Tipo 2/tratamiento farmacológico , Hipoglucemiantes/uso terapéutico , Receptores Activados del Proliferador del Peroxisoma/agonistas , Propionatos/uso terapéutico , Carbazoles/efectos adversos , Carbazoles/farmacología , China , Ensayos Clínicos Fase II como Asunto , Ensayos Clínicos Fase III como Asunto , Aprobación de Drogas , Humanos , Hipoglucemiantes/efectos adversos , Hipoglucemiantes/farmacología , Propionatos/efectos adversos , Propionatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...