Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.009
Filtrar
1.
ACS Nano ; 18(21): 13635-13651, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38753978

RESUMEN

As an escalating public health issue, obesity and overweight conditions are predispositions to various diseases and are exacerbated by concurrent chronic inflammation. Nonetheless, extant antiobesity pharmaceuticals (quercetin, capsaicin, catecholamine, etc.) manifest constrained efficacy alongside systemic toxic effects. Effective therapeutic approaches that selectively target adipose tissue, thereby enhancing local energy expenditure, surmounting the limitations of prevailing antiobesity modalities are highly expected. In this context, we developed a temperature-sensitive hydrogel loaded with recombinant high-density lipoprotein (rHDL) to achieve targeted delivery of resveratrol, an adipose browning activator, to adipose tissue. rHDL exhibits self-regulation on fat cell metabolism and demonstrates natural targeting toward scavenger receptor class B type I (SR-BI), which is highly expressed by fat cells, thereby achieving a synergistic effect for the treatment of obesity. Additionally, the dispersion of rHDL@Res in temperature-sensitive hydrogels, coupled with the regulation of their degradation and drug release rate, facilitated sustainable drug release at local adipose tissues over an extended period. Following 24 days' treatment regimen, obese mice exhibited improved metabolic status, resulting in a reduction of 68.2% of their inguinal white adipose tissue (ingWAT). Specifically, rHDL@Res/gel facilitated the conversion of fatty acids to phospholipids (PA, PC), expediting fat mobilization, mitigating triglyceride accumulation, and therefore facilitating adipose tissue reduction. Furthermore, rHDL@Res/gel demonstrated efficacy in attenuating obesity-induced inflammation and fostering angiogenesis in ingWAT. Collectively, this engineered local fat reduction platform demonstrated heightened effectiveness and safety through simultaneously targeting adipocytes, promoting WAT browning, regulating lipid metabolism, and controlling inflammation, showing promise for adipose-targeted therapy.


Asunto(s)
Tejido Adiposo , Lipoproteínas HDL , Animales , Ratones , Lipoproteínas HDL/química , Lipoproteínas HDL/metabolismo , Tejido Adiposo/metabolismo , Proteínas Recombinantes , Resveratrol/farmacología , Resveratrol/química , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Hidrogeles/química , Ratones Endogámicos C57BL , Humanos , Masculino , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/química , Sistemas de Liberación de Medicamentos , Receptores Depuradores de Clase B/metabolismo
2.
J Lipid Res ; 65(4): 100530, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38479648

RESUMEN

Atherosclerosis results from the deposition and oxidation of LDL and immune cell infiltration in the sub-arterial space leading to arterial occlusion. Studies have shown that transcytosis transports circulating LDL across endothelial cells lining blood vessels. LDL transcytosis is initiated by binding to either scavenger receptor B1 (SR-B1) or activin A receptor-like kinase 1 on the apical side of endothelial cells leading to its transit and release on the basolateral side. HDL is thought to partly protect individuals from atherosclerosis due to its ability to remove excess cholesterol and act as an antioxidant. Apolipoprotein A1 (APOA1), an HDL constituent, can bind to SR-B1, raising the possibility that APOA1/HDL can compete with LDL for SR-B1 binding, thereby limiting LDL deposition in the sub-arterial space. To examine this possibility, we used in vitro approaches to quantify the internalization and transcytosis of fluorescent LDL in coronary endothelial cells. Using microscale thermophoresis and affinity capture, we find that SR-B1 and APOA1 interact and that binding is enhanced when using the cardioprotective variant of APOA1 termed Milano (APOA1-Milano). In male mice, transiently increasing the levels of HDL reduced the acute deposition of fluorescently labeled LDL in the atheroprone inner curvature of the aorta. Reduced LDL deposition was also observed when increasing circulating wild-type APOA1 or the APOA1-Milano variant, with a more robust inhibition from the APOA1-Milano. The results suggest that HDL may limit SR-B1-mediated LDL transcytosis and deposition, adding to the mechanisms by which it can act as an atheroprotective particle.


Asunto(s)
Apolipoproteína A-I , Lipoproteínas HDL , Lipoproteínas LDL , Transcitosis , Animales , Humanos , Masculino , Ratones , Apolipoproteína A-I/metabolismo , Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Unión Proteica , Receptores Depuradores de Clase B/metabolismo
3.
J Biochem Mol Toxicol ; 38(2): e23646, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38345168

RESUMEN

Circular RNAs (circRNAs) exhibit essential regulation in the malignant development of hepatocellular carcinoma (HCC). This study aims to investigate the physiological mechanisms of circ_0029343 encoded by scavenger receptor class B member 1 (SCARB1) involved in the growth and metastasis of HCC. Differentially expressed mRNAs in HCC were obtained, followed by the prediction of target genes of differentially expressed miRNAs and gene ontology and kyoto encyclopedia of genes and genomes analysis on the differentially expressed mRNAs. Moreover, the regulatory relationship between circRNAs encoded by SCARB1 and differentially expressed miRNAs was predicted. In vitro cell experiments were performed to verify the effects of circ_0029343, miR-486-5p, and SRSF3 on the malignant features of HCC cells using the gain- or loss-of-function experiments. Finally, the effects of circ_0029343 on the growth and metastasis of HCC cells in xenograft mouse models were also explored. It was found that miR-486-5p might interact with seven circRNAs encoded by SCARB1, and its possible downstream target gene was SRSF3. Moreover, SRSF3 was associated with the splicing of various RNA. circ_0029343 could sponge miR-486-5p to up-regulate SRSF3 and activate PDGF-PDGFRB (platelet-derived growth factor and its receptor, receptor beta) signaling pathway by inducing p73 splicing, thus promoting the proliferation, migration, and invasion and inhibiting apoptosis of HCC cells. In vivo, animal experiments further confirmed that overexpression of circ_0029343 could promote the growth and metastasis of HCC cells in nude mice. circ_0029343 encoded by SCARB1 may induce p73 splicing and activate the PDGF-PDGFRB signaling pathway through the miR-486-5p/SRSF3 axis, thus promoting the growth and metastasis of HCC cells.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroARNs , Humanos , Animales , Ratones , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patología , ARN Circular/genética , ARN Circular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patología , Ratones Desnudos , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Línea Celular Tumoral , Proliferación Celular/genética , MicroARNs/genética , MicroARNs/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo
4.
Adv Sci (Weinh) ; 11(13): e2305212, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38263873

RESUMEN

Platinum (Pt)-based chemotherapy is the main treatment for ovarian cancer (OC); however, most patients develop Pt resistance (Pt-R). This work shows that Pt-R OC cells increase intracellular cholesterol through uptake via the HDL receptor, scavenger receptor type B-1 (SR-B1). SR-B1 blockade using synthetic cholesterol-poor HDL-like nanoparticles (HDL NPs) diminished cholesterol uptake leading to cell death and inhibition of tumor growth. Reduced cholesterol accumulation in cancer cells induces lipid oxidative stress through the reduction of glutathione peroxidase 4 (GPx4) leading to ferroptosis. In turn, GPx4 depletion induces decreased cholesterol uptake through SR-B1 and re-sensitizes OC cells to Pt. Mechanistically, GPx4 knockdown causes lower expression of the histone acetyltransferase EP300, leading to reduced deposition of histone H3 lysine 27 acetylation (H3K27Ac) on the sterol regulatory element binding transcription factor 2 (SREBF2) promoter and suppressing expression of this key transcription factor involved in the regulation of cholesterol metabolism. SREBF2 downregulation leads to decreased SR-B1 expression and diminished cholesterol uptake. Thus, chemoresistance and cancer cell survival under high ROS burden obligates high GPx4 and SR-B1 expression through SREBF2. Targeting SR-B1 to modulate cholesterol uptake inhibits this axis and causes ferroptosis in vitro and in vivo in Pt-R OC.


Asunto(s)
Nanopartículas , Neoplasias Ováricas , Humanos , Femenino , Receptores Depuradores de Clase B/metabolismo , Colesterol/metabolismo , Factores de Transcripción/metabolismo , Neoplasias Ováricas/tratamiento farmacológico , Oxidación-Reducción
5.
Curr Probl Cardiol ; 49(2): 102226, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040207

RESUMEN

Scavenger Receptor Class B Type 1 (SR-B1), a receptor protein expressed on the cell membrane, plays a crucial role in the metabolism and transport of cholesterol and other lipids, contributing significantly to the homeostasis of lipid levels within the body. Bibliometric analysis involves the application of mathematical and statistical methods to quantitatively analyze different types of documents. It involves the analysis of structural and temporal trends in scholarly articles, coupled with the identification of subject emphasis and variations. Through a bibliometric analysis, this study examines the historical background, current research trends, and future directions in the exploration of SR-B1. By offering insights into the research status and development of SR-B1, this paper aims to assist researchers in identifying novel pathways and areas of investigation in this field of study. Following the screening process, it can be concluded that research on SR-B1 has consistently remained a topic of significant interest over the past 17 years. Interestingly, SR-B1 has recently garnered attention in areas beyond its traditional research focus, including the field of cancer. The primary objective of this review is to provide a concise and accessible overview of the development process of SR-B1 that can help readers who are not well-versed in SR-B1 research quickly grasp its key aspects. Furthermore, this review aims to offer insights and suggestions to researchers regarding potential future research directions and areas of emphasis relating to SR-B1.


Asunto(s)
Colesterol , Humanos , Colesterol/metabolismo , Receptores Depuradores de Clase B/metabolismo
6.
Cardiovasc Res ; 120(5): 476-489, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38109696

RESUMEN

AIMS: The entry of lipoproteins from blood into the arterial wall is a rate-limiting step in atherosclerosis. It is controversial whether this happens by filtration or regulated transendothelial transport.Because sphingosine-1-phosphate (S1P) preserves the endothelial barrier, we investigated in vivo and in vitro, whether S1P and its cognate S1P-receptor 3 (S1P3) regulate the transendothelial transport of lipoproteins. METHODS AND RESULTS: Compared to apoE-haploinsufficient mice (CTRL), apoE-haploinsufficient mice with additional endothelium-specific knock-in of S1P3 (S1P3-iECKI) showed decreased transport of LDL and Evan's Blue but increased transport of HDL from blood into the peritoneal cave. After 30 weeks of high-fat diet feeding, S1P3-iECKI mice had lower levels of non-HDL-cholesterol and less atherosclerosis than CTRL mice. In vitro stimulation with an S1P3 agonist increased the transport of 125I-HDL but decreased the transport of 125I-LDL through human aortic endothelial cells (HAECs). Conversely, inhibition or knock-down of S1P3 decreased the transport of 125I-HDL but increased the transport of 125I-LDL. Silencing of SCARB1 encoding scavenger receptor B1 (SR-BI) abrogated the stimulation of 125I-HDL transport by the S1P3 agonist. The transendothelial transport of 125I-LDL was decreased by silencing of SCARB1 or ACVLR1 encoding activin-like kinase 1 but not by interference with LDLR. None of the three knock-downs prevented the stimulatory effect of S1P3 inhibition on transendothelial 125I-LDL transport. CONCLUSION: S1P3 regulates the transendothelial transport of HDL and LDL oppositely by SR-BI-dependent and SR-BI-independent mechanisms, respectively. This divergence supports a contention that lipoproteins pass the endothelial barrier by specifically regulated mechanisms rather than passive filtration.


Asunto(s)
Aterosclerosis , Células Endoteliales , Lipoproteínas HDL , Lipoproteínas LDL , Transporte de Proteínas , Receptores de Esfingosina-1-Fosfato , Animales , Humanos , Ratones , Aterosclerosis/metabolismo , Aterosclerosis/genética , Aterosclerosis/patología , Aterosclerosis/prevención & control , Transporte Biológico , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Lipoproteínas HDL/metabolismo , Lipoproteínas LDL/metabolismo , Lisofosfolípidos , Ratones Endogámicos C57BL , Ratones Noqueados para ApoE , Receptores Depuradores de Clase B/metabolismo , Receptores Depuradores de Clase B/genética , Receptores de Esfingosina-1-Fosfato/metabolismo , Receptores de Esfingosina-1-Fosfato/genética , Transporte de Proteínas/genética
7.
PLoS Pathog ; 19(11): e1011759, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37967063

RESUMEN

Hepatitis C virus (HCV) exploits the four entry factors CD81, scavenger receptor class B type I (SR-BI, also known as SCARB1), occludin, and claudin-1 as well as the co-factor epidermal growth factor receptor (EGFR) to infect human hepatocytes. Here, we report that the disintegrin and matrix metalloproteinase 10 (ADAM10) associates with CD81, SR-BI, and EGFR and acts as HCV host factor. Pharmacological inhibition, siRNA-mediated silencing and genetic ablation of ADAM10 reduced HCV infection. ADAM10 was dispensable for HCV replication but supported HCV entry and cell-to-cell spread. Substrates of the ADAM10 sheddase including epidermal growth factor (EGF) and E-cadherin, which activate EGFR family members, rescued HCV infection of ADAM10 knockout cells. ADAM10 did not influence infection with other enveloped RNA viruses such as alphaviruses and a common cold coronavirus. Collectively, our study reveals a critical role for the sheddase ADAM10 as a HCV host factor, contributing to EGFR family member transactivation and as a consequence to HCV uptake.


Asunto(s)
Hepacivirus , Hepatitis C , Humanos , Hepacivirus/fisiología , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Internalización del Virus , Proteínas Portadoras , Receptores ErbB/metabolismo , Tetraspanina 28/genética , Tetraspanina 28/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Secretasas de la Proteína Precursora del Amiloide/genética , Secretasas de la Proteína Precursora del Amiloide/metabolismo
8.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38035778

RESUMEN

The cluster of differentiation 36 (CD36) domain defines the characteristic ectodomain associated with class B scavenger receptor (SR-B) proteins. In bilaterians, SR-Bs play critical roles in diverse biological processes including innate immunity functions such as pathogen recognition and apoptotic cell clearance, as well as metabolic sensing associated with fatty acid uptake and cholesterol transport. Although previous studies suggest this protein family is ancient, SR-B diversity across Eukarya has not been robustly characterized. We analyzed SR-B homologs identified from the genomes and transcriptomes of 165 diverse eukaryotic species. The presence of highly conserved amino acid motifs across major eukaryotic supergroups supports the presence of a SR-B homolog in the last eukaryotic common ancestor. Our comparative analyses of SR-B protein structure identify the retention of a canonical asymmetric beta barrel tertiary structure within the CD36 ectodomain across Eukarya. We also identify multiple instances of independent lineage-specific sequence expansions in the apex region of the CD36 ectodomain-a region functionally associated with ligand-sensing. We hypothesize that a combination of both sequence expansion and structural variation in the CD36 apex region may reflect the evolution of SR-B ligand-sensing specificity between diverse eukaryotic clades.


Asunto(s)
Antígenos CD36 , Eucariontes , Antígenos CD36/genética , Antígenos CD36/química , Antígenos CD36/metabolismo , Ligandos , Filogenia , Receptores Depuradores de Clase B/metabolismo , Eucariontes/metabolismo
9.
Aging (Albany NY) ; 15(19): 10370-10388, 2023 10 05.
Artículo en Inglés | MEDLINE | ID: mdl-37801479

RESUMEN

OBJECTIVE: The metabolism of cholesterol has been found to be closely related to the proliferation, invasion, and metastasis of tumors. The purpose of this study was to investigate the correlation between cholesterol metabolic genes and the prognosis of clear cell renal cell carcinoma (ccRCC). METHODS: Gene expression profiles and clinical information of individuals diagnosed with prevalent malignant tumors were obtained from the TCGA database. For survival analysis, Kaplan-Meier curves were used. Consensus clustering was utilized to identify distinct molecular clusters. LASSO regression analysis was utilized to construct a novel prognostic signature. Differential analysis was used to analyze the differences in gene expression and various evaluation indicators between different subgroups. RT-qPCR and Immunohistochemistry were performed to examine the gene expression. Small interfering RNA transfection, CCK-8, and clone formation assays were conducted to verify the function of the target gene in ccRCC cell lines. RESULTS: Based on genes involved in cholesterol metabolism related to survival, two molecular ccRCC subtypes were identified with distinct clinical, immune, and biological features. A molecular signature which would be utilized to evaluate the prognosis and the immune status of the tumor microenvironment of ccRCC patients was also established. The SCARB1-mediated cholesterol-dependent metabolism occurred both in ccRCC and skin cutaneous melanoma. CONCLUSION: A gene signature related to cholesterol metabolism was developed and validated to forecast the prognosis of ccRCC, demonstrating a correlation with immune infiltration. Cholesterol metabolic genes such as SCARB1, were expected to contribute to the diagnosis and precision treatment of both ccRCC and skin cutaneous melanoma.


Asunto(s)
Carcinoma de Células Renales , Carcinoma , Neoplasias Renales , Melanoma , Neoplasias Cutáneas , Humanos , Melanoma/genética , Neoplasias Cutáneas/genética , Carcinoma de Células Renales/genética , Neoplasias Renales/genética , Pronóstico , Microambiente Tumoral , Receptores Depuradores de Clase B , Melanoma Cutáneo Maligno
10.
J Lipid Res ; 64(11): 100456, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37821077

RESUMEN

Compared with WT mice, HDL receptor-deficient (Scarb1-/-) mice have higher plasma levels of free cholesterol (FC)-rich HDL and exhibit multiple pathologies associated with a high mol% FC in ovaries, platelets, and erythrocytes, which are reversed by lowering HDL. Bacterial serum opacity factor (SOF) catalyzes the opacification of plasma by targeting and quantitatively converting HDL to neo HDL (HDL remnant), a cholesterol ester-rich microemulsion, and lipid-free APOA1. SOF delivery with an adeno-associated virus (AAVSOF) constitutively lowers plasma HDL-FC and reverses female infertility in Scarb1-/- mice in an HDL-dependent way. We tested whether AAVSOF delivery to Scarb1-/- mice will normalize erythrocyte morphology in an HDL-FC-dependent way. We determined erythrocyte morphology and FC content (mol%) in three groups-WT, untreated Scarb1-/- (control), and Scarb1-/- mice receiving AAVSOF-and correlated these with their respective HDL-mol% FC. Plasma-, HDL-, and tissue-lipid compositions were also determined. Plasma- and HDL-mol% FC positively correlated across all groups. Among Scarb1-/- mice, AAVSOF treatment normalized reticulocyte number, erythrocyte morphology, and erythrocyte-mol% FC. Erythrocyte-mol% FC positively correlated with HDL-mol% FC and with both the number of reticulocytes and abnormal erythrocytes. AAVSOF treatment also reduced FC of extravascular tissues to a lesser extent. HDL-FC spontaneously transfers from plasma HDL to cell membranes. AAVSOF treatment lowers erythrocyte-FC and normalizes erythrocyte morphology and lipid composition by reducing HDL-mol% FC.


Asunto(s)
Colesterol , Péptido Hidrolasas , Femenino , Ratones , Animales , HDL-Colesterol , Ésteres del Colesterol/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo
11.
Cancer Med ; 12(19): 19744-19757, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37766594

RESUMEN

BACKGROUND: Colorectal cancer (CRC) is one of the most common tumors in the world. Cholesterol plays an important role in the pathogenesis of tumors. One of the cholesterol transporters, scavenger receptor class B type 1 (SR-B1), a multi-ligand membrane receptor protein, is expressed in the intestines which also highly expressed in various tumors. But the potential mechanism of SR-B1 in CRC development has not been reported. AIMS: This study aimed to clarify the importance of SR-B1 in the development and prognosis of CRC as much as possible to provide a possible strategy in CRC treatment. MATERIALS & METHODS: In this study, we used SR-B1 gene knockdown mice to study the effect of SR-B1 on colitis-induced or APCmin/+ -induced CRC. The expression of related molecules were detected through the immunohistochemistry and hematoxylin-eosin staining, western blot analysis, and Flow cytometry. The gene expression and microbiota in microenvironment of CRC mice were analyzed through eukaryotic mRNA sequencing and 16S rRNA high-throughput sequencing. RESULTS: The results showed that SR-B1 knockdown reduced the tumor load of colitis-induced or APCmin/+ -induced CRC. SR-B1 knockdown improved the immune microenvironment by affecting the level of tumor-associated macrophage (TAM), mononuclear myeloid-derived suppressor cells (M-MDSCs), granulocytic myeloid-derived suppressor cells (G-MDSCs), programmed cell death-ligand 1 (PD-L1), and human leukocyte antigen class I-B (HLA-B), and also reduced the level of low-density lipoprotein receptor (LDL-R), and increased the level of ATP binding cassette transporter A1 (ABCA1) to regulate the cholesterol metabolism, and regulated the expression of related genes and intestinal microbiota. SR-B1 knockdown can also trigger the anti-CRC effect of anti-PD 1 in colitis-induced CRC. DISCUSSION: SR-B1 deficiency significantly improved the immunity in tumor microenvironment of colitis-induced or APCmin/+ -induced CRC. In addition, the microbiota changes caused by SR-B1 deficiency favor improving the immune response to chemotherapeutic drugs and anti-PD1 therapy. The mechanism of action of SR-B1 deficiency on the development of CRC still needs further in-depth research. CONCLUSION: This study provides a new treatment strategy for treating CRC by affecting the expression of SR-B1 in intestine.


Asunto(s)
Colitis , Neoplasias Colorrectales , Receptores Depuradores de Clase B , Animales , Humanos , Ratones , Colesterol/metabolismo , Colitis/complicaciones , Colitis/genética , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/metabolismo , Ligandos , ARN Ribosómico 16S , Carga Tumoral , Microambiente Tumoral , Receptores Depuradores de Clase B/genética
12.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 45(3): 405-409, 2023 Jun.
Artículo en Chino | MEDLINE | ID: mdl-37407526

RESUMEN

Objective To explore the relationship between scavenger receptor class B member 1 (SCARB1) gene promoter methylation and the pathogenesis of coronary artery disease. Methods A total of 120 patients with coronary heart disease treated in Renji Hospital affiliated to Shanghai Jiao Tong University School of Medicine from December 2018 to May 2020 were selected as the case group,while 140 gender and age matched healthy participants were randomly selected as the control group for a case-control study.The methylation status was detected by high-throughput target sequencing after bisulfite converting,and the methylation of CpG sites in the promoter region of SCARB1 gene was compared between the two groups. Results The case group showed higher methylation level of SCARB1+67 and lower methylation level of SCARB1+134 than the control group (both P<0.001),and the differences remained statistically significant in men (both P<0.001) and women (both P<0.001).The overall methylation level in the case group was lower than that in the control group [(80.27±2.14)% vs.(81.11±1.27)%;P=0.006],while this trend was statistically significant only in men (P=0.002). Conclusion The methylation of SCARB1 gene promotor is associated with the pathogenesis and may participate in the occurrence and development of coronary heart disease.


Asunto(s)
Enfermedad de la Arteria Coronaria , Masculino , Humanos , Femenino , Metilación , Estudios de Casos y Controles , China , Enfermedad de la Arteria Coronaria/genética , Regiones Promotoras Genéticas , Metilación de ADN , Receptores Depuradores de Clase B/genética
13.
Chin Med J (Engl) ; 136(14): 1719-1731, 2023 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-37279381

RESUMEN

BACKGROUND: Angiogenesis is described as a complex process in which new microvessels sprout from endothelial cells of existing vasculature. This study aimed to determine whether long non-coding RNA (lncRNA) H19 induced the angiogenesis of gastric cancer (GC) and its possible mechanism. METHODS: Gene expression level was determined by quantitative real-time polymerase chain reaction and western blotting. Cell counting kit-8, transwell, 5-Ethynyl-2'-deoxyuridine (EdU), colony formation assay, and human umbilical vein endothelial cells (HUVECs) angiogenesis assay as well as Matrigel plug assay were conducted to study the proliferation, migration, and angiogenesis of GC in vitro and in vivo . The binding protein of H19 was found by RNA pull-down and RNA Immunoprecipitation (RIP). High-throughput sequencing was performed and next Gene Ontology (GO) as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis was conducted to analyze the genes that are under H19 regulation. Methylated RIP (me-RIP) assay was used to investigate the sites and abundance among target mRNA. The transcription factor acted as upstream of H19 was determined through chromatin immunoprecipitation (ChIP) and luciferase assay. RESULTS: In this study, we found that hypoxia-induced factor (HIF)-1α could bind to the promoter region of H19, leading to H19 overexpression. High expression of H19 was correlated with angiogenesis in GC, and H19 knocking down could inhibit cell proliferation, migration and angiogenesis. Mechanistically, the oncogenic role of H19 was achieved by binding with the N 6 -methyladenosine (m 6 A) reader YTH domain-containing family protein 1 (YTHDF1), which could recognize the m 6 A site on the 3'-untransated regions (3'-UTR) of scavenger receptor class B member 1 (SCARB1) mRNA, resulting in over-translation of SCARB1 and thus promoting the proliferation, migration, and angiogenesis of GC cells. CONCLUSION: HIF-1α induced overexpression of H19 via binding with the promoter of H19, and H19 promoted GC cells proliferation, migration and angiogenesis through YTHDF1/SCARB1, which might be a beneficial target for antiangiogenic therapy for GC.


Asunto(s)
MicroARNs , ARN Largo no Codificante , Neoplasias Gástricas , Humanos , Línea Celular Tumoral , Proliferación Celular/genética , Células Endoteliales/metabolismo , Regulación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/genética , Hipoxia , MicroARNs/genética , ARN , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Proteínas de Unión al ARN/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Neoplasias Gástricas/genética
14.
Orphanet J Rare Dis ; 18(1): 152, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37331934

RESUMEN

BACKGROUND: Allgrove disease is a rare genetic syndrome characterized by adrenal insufficiency, alacrimia, achalasia and complex neurological involvement. Allgrove disease is due to recessive mutations in the AAAS gene, which encodes for the nucleoporin Aladin, implicated in the nucleocytoplasmic transport. The adrenal insufficiency has been suggested to rely on adrenal gland-ACTH resistance. However, the link between the molecular pathology affecting the nucleoporin Aladin and the glucocorticoid deficiency is still unknown. RESULTS: By analyzing postmortem patient's adrenal gland, we identified a downregulation of Aladin transcript and protein. We found a downregulation of Scavenger receptor class B-1 (SCARB1), a key component of the steroidogenic pathway, and SCARB1 regulatory miRNAs (mir125a, mir455) in patient's tissues. With the hypothesis of an impairment in the nucleocytoplasmic transport of the SCARB1 transcription enhancer cyclic AMP-dependent protein kinase (PKA), we detected a reduction of nuclear Phospho-PKA and a cytoplasmic mislocalization in patient's samples. CONCLUSIONS: These results shed a light on the possible mechanisms linking ACTH resistance, SCARB1 impairment, and defective nucleocytoplasmic transport.


Asunto(s)
Insuficiencia Suprarrenal , Acalasia del Esófago , MicroARNs , Humanos , Acalasia del Esófago/genética , Acalasia del Esófago/metabolismo , Acalasia del Esófago/patología , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Complejo Poro Nuclear/metabolismo , Regulación hacia Abajo/genética , Proteínas del Tejido Nervioso/genética , Insuficiencia Suprarrenal/genética , Insuficiencia Suprarrenal/metabolismo , Insuficiencia Suprarrenal/patología , Proteínas Nucleares/genética , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo
15.
BMC Mol Cell Biol ; 24(1): 15, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37009875

RESUMEN

Nasopharyngeal carcinoma is a tumor with high malignancy and poor prognosis, which severely affects the health of the patients. LncRNAs and microRNAs are crucial for the occurrence and development of nasopharyngeal carcinoma, which regulate the progression of nasopharyngeal carcinoma through the ceRNA network. SCARB1 plays an essential role in nasopharyngeal carcinoma. However, the mechanism underlying the regulation of SCARB1 in nasopharyngeal carcinoma through non-coding RNAs remains unclear. Our findings indicated that the SCAT8/miR-125b-5p axis promoted the malignant progression of nasopharyngeal carcinoma by driving the expression of SCARB1. Mechanistically, the expression of SCARB1 could be regulated by the lncRNA, SCAT8 and the microRNA, miR-125b-5p. Moreover, as a ceRNA of miR-125b-5p, SCAT8 can not only regulate the expression of SCARB1, but also regulate the malignant progression of nasopharyngeal carcinoma. Notably, our results reveal a novel ceRNA regulatory network in nasopharyngeal carcinoma, which could serve as a potential target for the diagnosis and treatment of nasopharyngeal carcinoma.


Asunto(s)
MicroARNs , Neoplasias Nasofaríngeas , ARN Largo no Codificante , Humanos , Carcinoma Nasofaríngeo/metabolismo , Línea Celular Tumoral , MicroARNs/genética , MicroARNs/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Neoplasias Nasofaríngeas/metabolismo , Receptores Depuradores de Clase B
16.
Immun Inflamm Dis ; 11(4): e786, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37102664

RESUMEN

Scavenger receptor type B I (SR-BI), the major receptor for high-density lipoprotein (HDL) mediates the delivery of cholesterol ester and cholesterol from HDL to the cell membrane. SR-BI is implicated as a receptor for entry of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2). SR-BI is colocalized with the angiotensin-converting enzyme 2 (ACE2) increasing the binding and affinity of SARS-CoV-2 to ACE2 with subsequent viral internalization. SR-BI regulates lymphocyte proliferation and the release of pro-inflammatory cytokines from activated macrophages and lymphocytes. SR-BI is reduced during COVID-19 due to consumption by SARS-CoV-2 infection. COVID-19-associated inflammatory changes and high angiotensin II (AngII) might be possible causes of repression of SR-BI in SARS-CoV-2 infection. In conclusion, the downregulation of SR-BI in COVID-19 could be due to direct invasion by SARS-CoV-2 or through upregulation of pro-inflammatory cytokines, inflammatory signaling pathways, and high circulating AngII. Reduction of SR-BI in COVID-19 look like ACE2 may provoke COVID-19 severity through exaggeration of the immune response. Further studies are invoked to clarify the potential role of SR-BI in the pathogenesis of COVID-19 that could be protective rather than detrimental.


Asunto(s)
COVID-19 , Receptores Depuradores de Clase B , Humanos , Enzima Convertidora de Angiotensina 2 , Citocinas , Lipoproteínas HDL/metabolismo , SARS-CoV-2 , Receptores Depuradores de Clase B/genética
17.
Nanomedicine ; 50: 102672, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37044196

RESUMEN

ATP-binding cassette transporter A1 (ABCA1) plays a crucial role in atherosclerotic formation through mediated cholesterol efflux in macrophage-derived foam cells. In this study, a scavenger receptors AI (SR-AI) targeted theranostic nanoparticles was constructed for atherosclerosis regression via ABCA1 activation in foam cells. ABCA1-upregulator 5242331 and IR780 were encapsulated in PLGA-PEG micelles which were conjugated with SR-AI targeting peptide (PP1) to formulate the nanoparticles (SAU-NPs). Immunostaining revealed that SR-AI was highly expressed both in macrophage foam cells and in atherosclerotic plaque of ApoE-/- mice. The SAU-NPs have shown more active targeting to plaque lesion with higher stability compared with non-SR-AI targeted nanoparticles. The transformation from macrophage to foam cells was inhibited by SAU-NPs carried 5242331. Cholesterol deposition was effectively reduced in foam cells by SAU-NPs through activating the LXRα-ABCA1/ABCG1/SR-BI pathway. In conclusion, theranostic SAU-NPs which carried ABCA1-upregulator 5242331 exert beneficial effects on atherosclerosis regression via LXRα activation.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Animales , Ratones , Aterosclerosis/patología , Transportador 1 de Casete de Unión a ATP/metabolismo , Colesterol/metabolismo , Placa Aterosclerótica/tratamiento farmacológico , Medicina de Precisión , Receptores Depuradores de Clase B/metabolismo
18.
Exp Eye Res ; 229: 109429, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36863431

RESUMEN

The macular carotenoids lutein and zeaxanthin are taken up from the bloodstream into the human retina through a selective process, for which the HDL cholesterol receptor scavenger receptor BI (SR-BI) in the cells of retinal pigment epithelium (RPE) is thought to be a key mediator. However, the mechanism of SR-BI-mediated selective uptake of macular carotenoids is still not fully understood. Here, we investigate possible mechanisms using biological assays and cultured HEK293 cells, a cell line without endogenous SR-BI expression. Binding affinities between SR-BI and various carotenoids were measured by surface plasmon resonance (SPR) spectroscopy, which shows that SR-BI cannot bind lutein or zeaxanthin specifically. Overexpression of SR-BI in HEK293 cells results in more lutein and zeaxanthin taken up than ß-carotene, and this effect can be eliminated by an SR-BI mutant (C384Y) whose cholesterol uptake tunnel is blocked. Next, we determined the effects of HDL and hepatic lipase (LIPC), SR-BI's partners in HDL cholesterol transport, on SR-BI-mediated carotenoid uptake. HDL addition dramatically reduced lutein, zeaxanthin, and ß-carotene in HEK293 cells expressing SR-BI, but the cellular lutein and zeaxanthin are higher than ß-carotene. LIPC addition increases the uptake of all three carotenoids in HDL-treated cells, and promotes the transport of lutein and zeaxanthin better than ß-carotene. Our results suggest that SR-BI and its HDL cholesterol partner HDL and LIPC may be involved in the selective uptake of macular carotenoids.


Asunto(s)
Carotenoides , Luteína , Humanos , beta Caroteno , Carotenoides/metabolismo , Antígenos CD36 , Colesterol , HDL-Colesterol/metabolismo , Células HEK293 , Luteína/farmacología , Receptores Depuradores/metabolismo , Receptores Depuradores de Clase B/genética , Receptores Depuradores de Clase B/metabolismo , Zeaxantinas
19.
Artículo en Inglés | MEDLINE | ID: mdl-36931457

RESUMEN

BACKGROUND AND AIMS: Scavenger receptor class B1 (SCARB1) - also known as the high-density lipoprotein (HDL) receptor - is a multi-ligand scavenger receptor that is primarily expressed in liver and steroidogenic organs. This receptor is known for its function in reverse cholesterol transport (RCT) in mammals and hence disruption leads to a massive increase in HDL cholesterol in these species. The extracellular domain of SCARB1 - which is important for cholesterol handling - is highly conserved across multiple vertebrates, except in zebrafish. METHODS: To examine the functional conservation of SCARB1 among vertebrates, two stable scarb1 knockout zebrafish lines, scarb1 715delA (scarb1 -1 nt) and scarb1 715_716insGG (scarb1 +2 nt), were created using CRISPR-Cas9 technology. RESULTS: We demonstrate that, in zebrafish, SCARB1 deficiency leads to disruption of carotenoid-based pigmentation, reduced fertility, and a decreased larvae survival rate, whereas steroidogenesis was unaltered. The observed reduced fertility is driven by defects in female fertility (-50 %, p < 0.001). Importantly, these alterations were independent of changes in free (wild-type 2.4 ± 0.2 µg/µl versus scarb1-/- 2.0 ± 0.1 µg/µl) as well as total (wild-type 4.2 ± 0.4 µg/µl versus scarb1-/- 4.0 ± 0.3 µg/µl) plasma cholesterol levels. Uptake of HDL in the liver of scarb1-/- zebrafish larvae was reduced (-86.7 %, p < 0.001), but this coincided with reduced perfusion of the liver. No effect was observed on lipoprotein uptake in the caudal vein. SCARB1 deficient canaries, which also lack carotenoids in their plumage, similarly as scarb1-/- zebrafish, failed to show an increase in plasma free- and total cholesterol levels. CONCLUSION: Our findings suggest that the specific function of SCARB1 in maintaining plasma cholesterol could be an evolutionary novelty that became prominent in mammals, while other known functions were already present earlier during vertebrate evolution.


Asunto(s)
Colesterol , Pez Cebra , Animales , Femenino , Pez Cebra/genética , Receptores Depuradores de Clase B/genética , HDL-Colesterol , Mamíferos
20.
Sci Signal ; 16(777): eadd4900, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36943922

RESUMEN

Cytokine release syndrome (CRS) is a systemic inflammatory syndrome associated with infection- or drug-induced T cell activation and can cause multiple organ failure and even death. Because current treatments are ineffective in some patients with severe CRS, we set out to identify risk factors and mechanisms behind severe CRS that might lead to preventive therapies and better clinical outcomes in patients. In mice, we found that deficiency in the adrenal stress response-with similarities to such in patients called relative adrenal insufficiency (RAI)-conferred a high risk for lethal CRS. Mice treated with CD3 antibodies were protected against lethal CRS by the production of glucocorticoids (GC) induced by the adrenal stress response in a manner dependent on the scavenger receptor B1 (SR-BI), a receptor for high-density lipoprotein (HDL). Mice with whole-body or adrenal gland-specific SR-BI deficiency exhibited impaired GC production, more severe CRS, and increased mortality in response to CD3 antibodies. Pretreatment with a low dose of GC effectively suppressed the development of CRS and rescued survival in SR-BI-deficient mice without compromising T cell function through apoptosis. Our findings suggest that RAI may be a risk factor for therapy-induced CRS and that pretreating RAI patients with GC may prevent lethal CRS.


Asunto(s)
Glándulas Suprarrenales , Glucocorticoides , Ratones , Animales , Receptores Depuradores de Clase B , Ratones Noqueados , Glucocorticoides/farmacología , Lipoproteínas HDL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...