Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Pharmacol Ther ; 189: 71-88, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29684466

RESUMEN

Research on GPR34, which was discovered in 1999 as an orphan G protein-coupled receptor of the rhodopsin-like class, disclosed its physiologic relevance only piece by piece. Being present in all recent vertebrate genomes analyzed so far it seems to improve the fitness of species although it is not essential for life and reproduction as GPR34-deficient mice demonstrate. However, closer inspection of macrophages and microglia, where it is mainly expressed, revealed its relevance in immune cell function. Recent data clearly demonstrate that GPR34 function is required to arrest microglia in the M0 homeostatic non-phagocytic phenotype. Herein, we summarize the current knowledge on its evolution, genomic and structural organization, physiology, pharmacology and relevance in human diseases including neurodegenerative diseases and cancer, which accumulated over the last 20 years.


Asunto(s)
Receptores Lisofosfolípidos/fisiología , Animales , Evolución Molecular , Genómica , Historia del Siglo XX , Historia del Siglo XXI , Humanos , Fenotipo , Receptores Lisofosfolípidos/química , Receptores Lisofosfolípidos/historia
2.
Oncogene ; 35(31): 4021-35, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-26640151

RESUMEN

Over the past decade the importance of lipids for cancer cell metabolism and cancer-related processes such as proliferation, metastasis and chemotherapy resistance has become more apparent. The mechanisms by which lipid signals are transduced are poorly understood, but frequently involve G-protein Coupled Receptors (GPCRs), which can be explored as druggable targets. Here, we discuss how GPCRs recognize four classes of cancer-relevant lipids (lysophospholipids, phospholipids, fatty acids and eicosanoids). We compare the ligand-binding properties of >50 lipid receptors, we examine how their dysregulation contributes to tumorigenesis and how they may be therapeutically exploited.


Asunto(s)
Lípidos/fisiología , Neoplasias/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Animales , Eicosanoides/metabolismo , Endocannabinoides/fisiología , Ácidos Grasos/metabolismo , Humanos , Lisofosfolípidos/química , Lisofosfolípidos/fisiología , Neoplasias/etiología , Receptores de Leucotrienos/fisiología , Receptores Lisofosfolípidos/fisiología , Receptores de Tromboxanos/fisiología , Transducción de Señal
3.
Life Sci ; 92(8-9): 453-7, 2013 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-22820167

RESUMEN

This review presents a summary of what is known about the G-protein coupled receptors GPR35 and GPR55 and their potential characterization as lysophospholipid or cannabinoid receptors, respectively. Both GPR35 and GPR55 have been implicated as important targets in pain and cancer, and additional diseases as well. While kynurenic acid was suggested to be an endogenous ligand for GPR35, so was 2-arachidonoyl lysophosphatidic acid (LPA). Similarly, GPR55 has been suggested to be a cannabinoid receptor, but is quite clearly also a receptor for lysophosphatidylinositol. Interestingly, 2-arachidonyl glycerol (2-AG), an endogenous ligand for cannabinoid receptors, can be metabolized to 2-arachidonoyl LPA through the action of a monoacylglycerol kinase; the reverse reaction has also been demonstrated. Thus, it appears that mutual interconversion is possible between 2-arachidonoyl LPA and 2-AG within a cell, though the direction of the reaction may be site-dependent. The GPR55 natural ligand, 2-arachidonoyl LPI, can be degraded either to 2-AG by phospholipase C or to 2-arachidonoyl LPA by phospholipase D. Thus, GPR35, GPR55 and CB receptors are linked together through their natural ligand conversions. Additional agonists and antagonists have been identified for both GPR35 and GPR55, which will facilitate the future study of these receptors with respect to their physiological function. Potential therapeutic targets include pain, cancer, metabolic diseases and drug addiction.


Asunto(s)
Receptores de Cannabinoides/fisiología , Receptores Acoplados a Proteínas G/fisiología , Receptores Lisofosfolípidos/fisiología , Animales , Cannabinoides/farmacología , Cannabinoides/uso terapéutico , Expresión Génica , Humanos , Ligandos , Receptores de Cannabinoides/efectos de los fármacos , Receptores de Cannabinoides/genética , Receptores Acoplados a Proteínas G/biosíntesis , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/genética , Receptores Lisofosfolípidos/efectos de los fármacos , Receptores Lisofosfolípidos/genética
4.
Front Biosci (Landmark Ed) ; 16(5): 1797-810, 2011 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-21196265

RESUMEN

Sphingolipids are biologically active lipids ubiquitously expressed in all vertebrate cells, especially those in the CNS. Aside from their essential roles as structural components of cell membranes, studies over the past two decades have shown that they play vital roles in cellular signaling, cell differentiation and proliferation, apoptosis and inflammation. Given these properties, it is not surprising that disruption of sphingolipid metabolism is strongly associated with several diseases that exhibit diverse neurological, psychiatric, and metabolic consequences. Here, we review the emerging roles of sphingolipids in disease pathogenesis in psychiatric disorders, including schizophrenia, bipolar disorder and major depression. Understanding sphingolipid metabolism and it dysregulation in human disease is significant for the development of new therapeutic approaches.


Asunto(s)
Trastornos del Metabolismo de los Lípidos/fisiopatología , Trastornos Mentales/fisiopatología , Esfingolípidos/metabolismo , Animales , Trastorno Bipolar/metabolismo , Diferenciación Celular , Sistema Nervioso Central/embriología , Trastorno Depresivo Mayor/metabolismo , Humanos , Microdominios de Membrana/fisiología , Vaina de Mielina/fisiología , Enfermedades Neurodegenerativas/metabolismo , Oligodendroglía/fisiología , Receptores Lisofosfolípidos/fisiología , Esquizofrenia/metabolismo , Transducción de Señal/fisiología , Transmisión Sináptica/fisiología
5.
Mol Pharmacol ; 79(1): 61-8, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-20935081

RESUMEN

Sphingosine-1-phosphate and its receptors have emerged as important modulators of the immune response. The sphingosine-1-phosphate prodrug 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720) can alleviate experimental allergic airway inflammation. Nevertheless, the role of individual sphingosine-1-phosphate receptors in the regulation of allergic airway inflammation remains undefined. Using a newly characterized potent and selective sphingosine-1-phosphate receptor 1 (S1P1) agonist with physical properties allowing airway delivery, we studied the contribution of S1P1 signaling to eosinophilic airway inflammation induced in ovalbumin-immunized mice by airway challenges with ovalbumin. Airway delivery of receptor-nonselective sphingosine-1-phosphate prodrug significantly inhibits the sequential accumulation of antigen-presenting dendritic cells and CD4+ T cells in draining lymph nodes. This in turn suppressed by >80% the accumulation of CD4+ T cells and eosinophils in the airways. Systemic delivery of sphingosine-1-phosphate prodrug or of an S1P)1-specific agonist at doses sufficient to induce lymphopenia did not inhibit eosinophil accumulation in the airways. In contrast, local airway delivery of S1P1-specific agonist inhibited airways release of endogenous CCL5 and CCL17 chemokines, and significantly suppressed accumulation of activated T cells and eosinophils in the lungs. Specific S1P1 agonism in lungs contributes significantly to anti-inflammatory activities of sphingosine-1-phosphate therapeutics by suppressing chemokine release in the airways, and may be of clinical relevance.


Asunto(s)
Alérgenos/toxicidad , Quimiocinas/metabolismo , Neumonía/inmunología , Neumonía/patología , Receptores de Lisoesfingolípidos/agonistas , Receptores de Lisoesfingolípidos/fisiología , Animales , Quimiocinas/fisiología , Pulmón/efectos de los fármacos , Pulmón/fisiología , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ovalbúmina/toxicidad , Neumonía/metabolismo , Profármacos/farmacología , Profármacos/uso terapéutico , Receptores Lisofosfolípidos/agonistas , Receptores Lisofosfolípidos/fisiología , Tiofenos/farmacología , Tiofenos/uso terapéutico , beta-Alanina/análogos & derivados , beta-Alanina/farmacología , beta-Alanina/uso terapéutico
6.
Pharmacol Rev ; 62(4): 579-87, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-21079037

RESUMEN

Lysophospholipids are cell membrane-derived lipids that include both glycerophospholipids such as lysophosphatidic acid (LPA) and sphingoid lipids such as sphingosine 1-phosphate (S1P). These and related molecules can function in vertebrates as extracellular signals by binding and activating G protein-coupled receptors. There are currently five LPA receptors, along with a proposed sixth (LPA1-LPA6), and five S1P receptors (S1P1-S1P5). A remarkably diverse biology and pathophysiology has emerged since the last review, driven by cloned receptors and targeted gene deletion ("knockout") studies in mice, which implicate receptor-mediated lysophospholipid signaling in most organ systems and multiple disease processes. The entry of various lysophospholipid receptor modulatory compounds into humans through clinical trials is ongoing and may lead to new medicines that are based on this signaling system. This review incorporates IUPHAR Nomenclature Committee guidelines in updating the nomenclature for lysophospholipid receptors ( http://www.iuphar-db.org/DATABASE/FamilyMenuForward?familyId=36).


Asunto(s)
Receptores Lisofosfolípidos/clasificación , Terminología como Asunto , Animales , Guías como Asunto , Humanos , Receptores Lisofosfolípidos/agonistas , Receptores Lisofosfolípidos/antagonistas & inhibidores , Receptores Lisofosfolípidos/fisiología
7.
Prostaglandins Other Lipid Mediat ; 89(3-4): 135-9, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19427394

RESUMEN

It is now widely accepted that lysophospholipids (LPLs), a product of the phospholipase A reaction, function as mediators through G-protein-coupled receptors. Notably, recent studies of lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) have revealed their essential roles in vivo. On the other hand, other LPLs such as lysophosphatidylserine (LPS), lysophosphatidylthreonine (LPT), lysophosphatidylethanolamine (LPE), lysophosphatidylinositol (LPI) and lysophosphatidylglycerol (LPG) have been reported to show lipid mediator-like responses both in vivo (LPS and LPT) and in vitro (LPS, LPT, LPE and LPG), while very little is known about their receptor, synthetic enzyme and patho-physiological roles. In this review, we summarize the actions of these LPLs as lipid mediators including LPS, LPT, LPE and LPG.


Asunto(s)
Lisofosfolípidos/fisiología , Animales , Humanos , Ligandos , Isoformas de Proteínas , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/fisiología , Receptores Lisofosfolípidos/química , Receptores Lisofosfolípidos/fisiología , Transducción de Señal
8.
Prostaglandins Other Lipid Mediat ; 89(3-4): 53-6, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19442546

RESUMEN

Intercellular lipid mediators such as prostaglandins and lysophosphatidic acid (LPA) interact with their G-protein-coupled receptors (GPCR) in the plasma membrane to modulate functions of target cells or tissues. Discovery of new members of intercellular lipid mediators and their GPCRs have been milestones in lipid biology and the foundation for drug development. Recent advances in intercellular lipid mediators are very interesting. New lipid molecules have been recognized as intercellular signaling mediators acting on GPCRs including resolvin E1, eoxin, acylethanolamides (arachidnonylethanolamide and oleoylethanolamide), fatty acids, bile acids, lipoamino aicd (N-palmitoyl glycine and N-arachidonyl glycine), estrogen, 5-oxo-ETE and 9-hydroxyoctadecadienoic acid, among others. Also new GPCRs for LPA have been identified. New intercellular lipid mediators and their GPCRs are reviewed.


Asunto(s)
Lípidos/fisiología , Receptores Acoplados a Proteínas G/fisiología , Transducción de Señal , Animales , Ácidos Araquidónicos/metabolismo , Ácidos y Sales Biliares/metabolismo , Descubrimiento de Drogas , Humanos , Lisofosfolípidos/metabolismo , Receptores Eicosanoides/fisiología , Receptores de Estrógenos/fisiología , Receptores Lisofosfolípidos/fisiología
9.
Arterioscler Thromb Vasc Biol ; 29(5): 650-6, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19265032

RESUMEN

G protein-coupled receptors (GPCRs) are widely expressed cell surface receptors that have been successfully exploited for the treatment of a variety of human diseases. Recent studies in genetically engineered mouse models have led to the identification of several GPCRs important for lymphatic vascular development and function. The adrenomedullin receptor, which consists of an oligomer between calcitonin receptor-like receptor and receptor activity modifying protein 2, is required for normal lymphatic vascular development and regulates lymphatic capillary permeability in mice. Numerous studies also suggest that lysophospholipid receptors are involved in the development of lymphatic vessels and lymphatic endothelial cell permeability. Given our current lack of pharmacological targets for the treatment of lymphatic vascular diseases like lymphedema, the continued identification and study of GPCRs in lymphatic endothelial cells may eventually lead to major breakthroughs and new pharmacological strategies for the treatment of lymphedema.


Asunto(s)
Linfangiogénesis/fisiología , Linfedema/tratamiento farmacológico , Receptores de Calcitonina/fisiología , Animales , Proteína Similar al Receptor de Calcitonina , Endotelio Linfático/efectos de los fármacos , Endotelio Linfático/fisiología , Humanos , Linfangiogénesis/efectos de los fármacos , Linfedema/fisiopatología , Ratones , Ratones Noqueados , Receptores Acoplados a Proteínas G/efectos de los fármacos , Receptores Acoplados a Proteínas G/fisiología , Receptores Lisofosfolípidos/fisiología
10.
Trends Pharmacol Sci ; 30(3): 156-63, 2009 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19233486

RESUMEN

Preliminary data presented at conferences and in the patent literature introduced the possibility the orphan receptor GPR55 might account for some of the well-documented non-CB(1), non-CB(2) effects reported for certain cannabinoid ligands. Several peer-reviewed publications have recently emerged in which the pharmacology of the cannabinoids at GPR55 has been probed in more depth. Despite this, the classification of GPR55 as a cannabinoid receptor remains a contentious issue. The weight of evidence points to GPR55 as a receptor that is activated by certain cannabinoid ligands and by the bioactive lipid l-alpha-lysophosphatidylinsoitol. It couples to G(12) proteins, activates RhoA and mobilizes intracellular Ca(2+), possibly in an agonist- and tissue-dependant manner, thus displaying 'agonist functional selectivity'. Here, I review the recent literature in an effort to glean the key controversies and outstanding questions surrounding the interaction between cannabinoids and this orphan receptor.


Asunto(s)
Moduladores de Receptores de Cannabinoides/metabolismo , Cannabinoides/metabolismo , Receptores de Cannabinoides/fisiología , Receptores Lisofosfolípidos/fisiología , Animales , Sitios de Unión , Agonistas de Receptores de Cannabinoides , Moduladores de Receptores de Cannabinoides/farmacología , Cannabinoides/farmacología , Ligandos , Lisofosfolípidos/metabolismo , Lisofosfolípidos/farmacología , Ratones , Receptores de Cannabinoides/clasificación , Receptores Lisofosfolípidos/agonistas , Receptores Lisofosfolípidos/clasificación , Transducción de Señal/efectos de los fármacos , Relación Estructura-Actividad
11.
Hum Reprod Update ; 14(5): 519-36, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18562325

RESUMEN

BACKGROUND: Lysophosphatidic acid (LPA) and sphingosine-1-phosphate (S1P) are two prominent signaling lysophospholipids (LPs) exerting their functions through a group of G protein-coupled receptors (GPCRs). This review covers current knowledge of the LP signaling in the function and pathology of the reproductive system. METHODS: PubMed was searched up to May 2008 for papers on lysophospholipids/LPA/S1P/LPC/SPC in combination with each part of the reproductive system, such as testis/ovary/uterus. RESULTS: LPA and SIP are found in significant amounts in serum and other biological fluids. To date, 10 LP receptors have been identified, including LPA(1-5) and S1P(1-5). In vitro and in vivo studies from the past three decades have demonstrated or suggested the physiological functions of LP signaling in reproduction, such as spermatogenesis, male sexual function, ovarian function, fertilization, early embryo development, embryo spacing, implantation, decidualization, pregnancy maintenance and parturition, as well as pathological roles in ovary, cervix, mammary gland and prostate cancers. CONCLUSIONS: Receptor knock-out and other studies indicate tissue-specific and receptor-specific functions of LP signaling in reproduction. More comprehensive studies are required to define mechanisms of LP signaling and explore the potential use as a therapeutic target.


Asunto(s)
Lisofosfolípidos/fisiología , Reproducción/fisiología , Transducción de Señal , Desarrollo Embrionario/fisiología , Femenino , Genitales/metabolismo , Humanos , Lisofosfolípidos/sangre , Lisofosfolípidos/metabolismo , Masculino , Neoplasias/metabolismo , Embarazo , Receptores Lisofosfolípidos/fisiología
12.
Artículo en Inglés | MEDLINE | ID: mdl-18481029

RESUMEN

Lysophosphatidic acid (LPA) and sphingosine 1-phosphate (S1P) are potent biologically active lipid mediators that exert a wide range of cellular effects through specific G protein-coupled receptors. To date, four LPA receptors and five S1P receptors have been identified. These receptors are expressed in a large number of tissues and cell types, allowing for a wide variety of cellular responses to lysophospholipid signaling, including cell adhesion, cell motility, cytoskeletal changes, proliferation, angiogenesis, process retraction, and cell survival. In addition, recent studies in mice show that specific lysophospholipid receptors are required for proper cardiovascular, immune, respiratory, and reproductive system development and function. Lysophospholipid receptors may also have specific roles in cancer and other diseases. This review will cover identification and expression of the lysophospholipid receptors, as well as receptor signaling properties and function. Additionally, phenotypes of mice deficient for specific lysophospholipid receptors will be discussed to demonstrate how these animals have furthered our understanding of the role lysophospholipids play in normal biology and disease.


Asunto(s)
Lisofosfolípidos , Receptores Lisofosfolípidos , Esfingosina/análogos & derivados , Animales , Membrana Celular/metabolismo , Humanos , Lisofosfolípidos/biosíntesis , Lisofosfolípidos/metabolismo , Lisofosfolípidos/fisiología , Receptores Lisofosfolípidos/biosíntesis , Receptores Lisofosfolípidos/metabolismo , Receptores Lisofosfolípidos/fisiología , Transducción de Señal , Esfingosina/biosíntesis , Esfingosina/metabolismo , Esfingosina/fisiología
13.
Curr Opin Genet Dev ; 16(4): 348-54, 2006 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-16806899

RESUMEN

Lysophospholipids play important roles in the migration of lymphocytes, smooth muscle cells and germ cells in vertebrates and invertebrates. In vertebrates, the migratory responses are mediated by specific G-protein-coupled receptors. These are expressed in both migrating lymphocyte and smooth muscle cells, and in their surrounding cells. In Drosophila germ cell migration, lipid phosphatases also act in both the surrounding and the migrating cells. In all three scenarios, the contributions of these genes in the stationary and migrating cells are being teased apart by genetic studies and direct observation, with exciting results.


Asunto(s)
Lisofosfolípidos/fisiología , Transducción de Señal , Animales , Quimiotaxis , Células Germinativas/citología , Células Germinativas/fisiología , Linfocitos/citología , Linfocitos/fisiología , Lisofosfolípidos/genética , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/fisiología , Receptores Lisofosfolípidos/genética , Receptores Lisofosfolípidos/fisiología
14.
J Cell Biochem ; 92(5): 937-48, 2004 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-15258917

RESUMEN

Changes in cellular Ca(2+) concentrations form a ubiquitous signal regulating numerous processes such as fertilization, differentiation, proliferation, contraction, and secretion. The Ca(2+) signal, highly organized in space and time, is generated by the cellular Ca(2+) signaling toolkit. Lysophospholipids, such as sphingosine-1-phosphate (S1P), sphingosylphosphorylcholine (SPC), or lysophosphatidic acid (LPA) use this toolkit in a specific manner to initiate their cellular responses. Acting as agonists at G protein-coupled receptors, S1P, SPC, and LPA increase the intracellular free Ca(2+) concentration ([Ca(2+)](i)) by using the classical, phospholipase C (PLC)-dependent pathway as well as PLC-independent pathways such as sphingosine kinase (SphK)/S1P. The S1P(1) receptor, via protein kinase C, inhibits the [Ca(2+)](i) transients caused by other receptors. Both S1P and SPC also act intracellularly to regulate [Ca(2+)](i). Intracellular S1P mobilizes Ca(2+) in intact cells independently of G protein-coupled S1P receptors, and Ca(2+) signaling by many agonists requires SphK-mediated S1P production. As shown for the FcepsilonRI receptor, PLC and SphK may contribute specific components to the overall [Ca(2+)](i) transient. Of the many open questions, identification of the intracellular S1P target site(s) appears to be of particular importance.


Asunto(s)
Señalización del Calcio/fisiología , Receptores Lisofosfolípidos/fisiología , Animales , Humanos , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...